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Abstract.
A Robinson manifold is defined as a Lorentz manifold (M, g) of dimension 2n > 4

with a bundle N ⊂ C ⊗ TM such that the fibres of N are maximal totally null and there
holds the integrability condition [SecN, SecN ] ⊂ SecN . The real part of N ∩ N̄ is a
bundle of null directions tangent to a congruence of null geodesics. This generalizes the
notion of a shear-free congruence of null geodesics (SNG) in dimension 4. Under a natural
regularity assumption, the setM of all these geodesics has the structure of a Cauchy–Riemann
manifold of dimension 2n − 1. Conversely, every such CR manifold lifts to many Robinson
manifolds. Three definitions of a CR manifold are described here in considerable detail; they
are equivalent under the assumption of real analyticity, but not in the smooth category. The
distinctions between these definitions have a bearing on the validity of the Robinson theorem
on the existence of null Maxwell fields associated with SNGs.

This paper is largely a review intended to recall the major influence that Ivor Robinson
exerted on the development of this subject.

1. Introduction

Around 1956, Ivor Robinson started studying null solutions of Maxwell’s equations and
discovered that, with every such solution, there is associated a shear-free congruence of null
geodesics (SNG) [14]. This notion turned out to be of significance in the work on solutions
of Einstein’s equations. A particularly simple twisting SNG, discovered by Robinson around
1963, played a major role in Roger Penrose’s work on twistors [10, 12]. Maxwell’s equations
for a null field associated with this Robinson congruence lead to the celebrated Hans Lewy
differential operator. All SNGs on compactified Minkowski space-time are obtained by
a twistor construction (the Kerr–Penrose theorem). The notion of an SNG generalizes to
Lorentz manifolds of higher even dimension [4, 9] (Section 2). I propose to call them
Robinson manifolds. There is a further generalization to Riemannian manifolds of arbitrary
signature. Every Robinson manifold of dimension 2n has an associated Cauchy–Riemann
manifold of dimension 2n − 1. Conversely, such a CR manifold can be ‘lifted’ to many
Robinson manifolds [15, 16] (Section 4).
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In Robinson’s original paper [14] there is a sketch of the proof of a theorem saying that,
with every SNG, there is an associated null and non-zero solution of Maxwell’s equations.
Later, the proof was recognized to be valid in the real-analytic category [17] or, more
generally, when the underlying CR space is embeddable (‘realizable’) [16]. To appreciate
these subtleties, it is desirable to consider three different definitions of CR manifolds; this is
presented here in Section 3.

The notation in this paper is standard; for example, the symbols ⊗, ∧ and y denote the
tensor, exterior and interior products, respectively. If V is a vector space with a scalar product
and K ⊂ V , then K⊥ is the vector subspace of V consisting of all vectors that are orthogonal
to all elements of K. Manifolds and maps among them are smooth (of class C∞). If N →M

is a vector bundle, then SecN is the module over C∞(M) of its sections. If f : M → M

is a diffeomorphism and Y is a tensor field on M , then f ∗Y is its pull-back by f , e.g., if
Y ∈ C∞(M), then f ∗Y = Y ◦ f . If (φt) is the flow generated by the vector field X , then
LXY = (d/dt)φ∗tY |t=0 is the Lie derivative of Y with respect to X . All considerations are
local.

2. Robinson and Hermite manifolds

2.1. Definition of Robinson manifolds

Recall first Robinson’s definition of a shear-free congruence of null geodesics and its natural
generalization. Let (M, g) be an oriented space-time. Using the Hodge duality operator ? one
associates with a real 2-form f (the electromagnetic field) the complex 2-form F = f − i ? f

so that ?F = iF (F is ‘self-dual’) and Maxwell’s equations without charges and currents are

dF = 0.

The field f , assumed to be 6= 0, is null if, and only if, there is a real 1-form κ = g(k) 6= 0

such that

κ ∧ F = 0.

The trajectories of the null vector field k form an SNG. To generalize, note that

N = {w ∈ C⊗ TM | w yF = 0}

is a complex vector bundle with fibres that are maximal totally null (MTN). Maxwell’s
equations imply

[SecN, SecN ] ⊂ SecN. (1)

It is now easy to generalize:

Definition. A Robinson manifold is a triple (M, g,N), where M is an orientable manifold
with g of signature (2n−1, 1) andN ⊂ C⊗TM is a fibre bundle with MTN fibres, satisfying
the integrability condition (1).
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Let N0 be the annihilator of N ,

N0 = {α ∈ C⊗ T ∗M | w yα = 0 for every w ∈ N}.

The integrability condition is equivalent to

dSecN0 ⊂ SecN0 ∧ Sec (C⊗ T ∗M).

The signature being Lorentzian, N ∩ N̄ = C ⊗ K, where K ⊂ TM is a bundle of null
directions.

Remark 1. It might be more appropriate to say that the bundle N → M with MTN fibres,
satisfying (1), defines onM a Robinson structure. Clearly,N and N̄ define the same Robinson
structure. A manifold (M, g) may have several distinct Robinson structures: such is the case
of Einstein space-times of type D. Minkowski space-time has an infinity of distinct Robinson
structures.

The trajectories of the line bundle K → M define a congruence on (foliation of) M ;
assume from now on this foliation to be regular in the sense that the setM of all its leaves
has the structure of a manifold such that the canonical projection M → M is a submersion.
In Section 4 it is shown thatM is a CR manifold.

2.2. Definition of Hermite manifolds

Robinson manifolds are the Lorentzian analogues of Hermite manifolds of proper Riemannian
geometry [9]. To see this, consider a proper Riemannian manifold (M, g) of even dimension.
Let N ⊂ C⊗ TM be a vector bundle with MTN fibres. Since now g is positive-definite, the
intersection N ∩ N̄ contains only zero vectors so that C ⊗ TM = N ⊕ N̄ . The bundle N
defines on M an almost complex structure J ∈ Sec EndTM ,

J(w + w̄) = i(w − w̄) for w ∈ N,

which is orthogonal, g(J(u), J(v)) = g(u, v) for every u, v ∈ TM . Therefore, N defines
on (M, g) the structure of an almost Hermite manifold; it becomes a Hermite manifold when
the integrability condition (1) is satisfied. A Hermite manifold is Kähler if J is covariantly
constant; this is equivalent to the invariance of N with respect to parallel transport.

3. Three definitions of CR structures

In the theory of relativity, a CR structure appeared for the first time in Penrose’s theory of
twistors: the set of projective null twistors is a 5-dimensional CR manifold. The approach of
pure mathematicians to the subject is presented in [5, 18].

Consider a smooth manifoldM of dimension 2n−ε, where ε ∈ {0, 1}. (If the dimension
is 3, then I say thatM is a space.)
(a) A complex chart onM is a pair (U, z), where U is an open subset ofM and

z : U → Cn ∼= R2n
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is a smooth immersion, so that, at every p ∈ U ,

spanp{Re dz1, . . . ,Re dzn, Im dz1, . . . , Im dzn} = T ∗pM. (2)

Two charts (U, z) and (U ′, z′) are said to be compatible if there is a function f : Cn → Cn

which is biholomorphic (i.e. both f and f−1 are holomorphic) and such that z′ = f ◦ z on
U ∩ U ′. A CR atlas is an atlas of pairwise compatible complex charts.

For ε = 0, a CR atlas defines on M the structure of a complex manifold of complex
dimension n.

For ε = 1, a CR atlas defines onM the structure of a locally embeddable CR manifold.
(b) Given a complex chart (U, z), define

F = dz1 ∧ . . . ∧ dzn

so that

dF = 0. (3)

If F ′ corresponds to a chart (U ′, z′) compatible with (U, z), then

F ′ = det(
∂f

∂z
)F on U ∩ U ′

and the immersion property (2) gives

if w ∈ C⊗ TM and w yF = 0, w y F̄ = 0, then w = 0.

(c) This being so, define

N = {w ∈ C⊗ TM | w yF = 0},

then dimCNp = n− ε and (2) gives

N ∩ N̄ = 0

and (3) implies

[SecN , SecN ] ⊂ SecN .

If ε = 0, then C⊗TM = N ⊕N̄ and J : TM→ TM given by J |N = i idN is the complex
structure ofM.

To summarize, there are three related notions of CR structure on a manifold M of
dimension 2n− ε:

A. M has a CR atlas.

B. There is a complex line bundle Ω ⊂ C⊗∧n T ∗M such that
1. the elements of Ω are decomposable,
2. if 0 6= ω ∈ Ωp and w ∈ C⊗ TpM, then

w yω = 0 and w̄ yω = 0 imply w = 0,

3. every p ∈ M has a neighborhood admitting a local, non-vanishing section F of Ω

such that dF = 0.
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C. There is a vector bundle N ⊂ C⊗ TM such that
1. dimCNp = n− ε,
2. N ∩ N̄ = 0,
3. [SecN , SecN ] ⊂ SecN .

Clearly, always A⇒ B and B ⇒ C.
In the analytic category, all three definitions are equivalent. In the smooth category (C∞),

things are much more difficult:
If ε = 0, then also C ⇒ A, but this is a highly non-trivial result of Newlander and

Nirenberg (1957).
For ε = 1 define the Levi form h: let (mµ) be a local basis of SecN , choose l ∈ SecTM

so that (mµ,mν , l), µ, ν = 1, . . . , n− 1 is a local basis of Sec (C⊗ TM), put

[mµ,mν ] = ihµνl + . . . , then hµν = hνµ.

If the Hermitian form h is positive-definite, then M is said to be pseudo-convex. Then,
assumingM to be pseudo-convex, one has [5]

if n > 4, then C⇒ A,
the case n = 3 appears not to have been settled,
for n = 2 there is an example constructed by Nirenberg (1974) ofM such that C and

not A.
Without the assumption of pseudo-convexity, LeBrun [6] constructedM of dimension 7

such that B and not A.
Remark 2. If M is a CR space (n = 2), then the fibres of N → M are complex one-
dimensional; therefore, the integrability condition C3 is no restriction whatsoever.

4. The structure of Robinson manifolds

Theorem. Consider a Robinson manifold (M, g,N) of dimension 2n. Let (φt) be the flow
generated by a vector field k : M → K = ReN ∩ N̄ , then
(i) the bundle N → M is invariant with respect to the action of the flow (φt) and the

trajectories of (φt) are null geodesics,
(ii) the bundle N → M defines a Cauchy–Riemann structure in the sense of definition C on

the quotient manifoldM,
(iii) the (2n−2)-dimensional fibres of the bundle K⊥/K →M have a complex structure and
a positive-definite quadratic form, induced by g.

Proof. (i) The integrability condition implies [SecK, SecN ] ⊂ SecN : this gives the
invariance property, φ∗tN = N ; let κ = g(k), then kerκ = N + N̄ , therefore Lkκ‖κ so
that∇kk‖k and the geodesic property is established.
(ii) The bundleN/N∩N̄ is invariant with respect to the action of (φt) and projects to a bundle
N → M, with fibres of complex dimension n − 1, such that C2 holds; the integrability
condition (1) implies C3.
(iii) Only the complex structure requires a construction: since K⊥ = Re (N + N̄), one can
put J(w + w̄ mod K) = i(w − w̄) mod K for w ∈ N .



Robinson manifolds and Cauchy–Riemann spaces 6

There is a converse: given a CR manifoldM of dim 2n−1, one constructs M = R×M
and makes it into a Robinson manifold (the bundle N → M is uniquely determined by the
CR structure ofM, but there is a great freedom in choosing g).

5. Robinson space-times

The case of dimension 4 is well known, but, since it is also the most important one, it is
worth-while to review it briefly here. In a sense made precise below, in this case, unlike as in
higher dimensions, all information about the Robinson structure is encoded in the properties
of the bundle K.

Let (M, g,N) be a space- and time-oriented Robinson manifold of dimension 4. The
fibres of the bundleK⊥/K →M are two-dimensional ‘screen spaces’. According to part (iii)
of the Theorem, each screen space has a complex structure, which, in this case, is equivalent
to a conformal structure and an orientation; this being preserved by the flow is the classical
geodesic and shear-free condition,

Lkg = ρg + κ⊗ ξ + ξ ⊗ κ, (4)

for some function ρ and 1-form ξ. Conversely, given a bundle K of null directions, the
space and time orientations of M induce an orientation in the screen spaces; together with the
induced Euclidean metric this determines a complex structure J in each screen space. This
complex structure defines the bundle

N = {w ∈ C⊗K⊥ | J(w mod C⊗K) = iw mod C⊗K}

with MTN fibres. Equation (4) implies [SecK, SecN ] ⊂ SecN ; in view of Remark 2 this is
enough to establish the validity of (1).

Goldberg and Sachs showed that, for Einstein space-times, the existence of an SNG
congruence is equivalent to the algebraic degeneracy of the Weyl tensor of conformal
curvature [3].

Problem 1. Find a generalization of the Goldberg–Sachs theorem to manifolds of dimension
> 4.

Problem 2. In dimension 4, are there not conformally flat Lorentz manifolds that have 4
distinct SNGs? From the Goldberg–Sachs theorem it follows that such manifolds cannot be
conformal to an Einstein space-time.

Nurowski found a not conformally flat space-time with three distinct Robinson structures
[9].

6. The Cartan description of CR spaces; their lifts to space-times

LetM be a CR space in the weak sense C: there is complex line bundle N ⊂ C⊗ TM and
N ∩ N̄ = 0. Let (m, m̄, l) be a (local) basis of Sec (C⊗ TM) with m ∈ SecN and (µ̄, µ, κ)

the dual basis of 1-forms, with κ real. The pair (κ, µ), defined up to

κ 7→ κ′ = aκ, µ 7→ µ′ = bµ+ cκ,
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where a 6= 0 is a real function and b 6= 0, c are complex functions, provides a convenient
(Cartan) description of the CR structure onM. Namely, N is the annihilator of span{κ, µ}.

6.1. Lifts

Consider M = R×M→M, pull κ and µ back to M , let r be a coordinate on R, k = ∂/∂r,
P a nowhere vanishing function on M and ν a 1-form on M such that k y ν 6= 0, then the
metric

g = P 2(µ⊗ µ̄+ µ̄⊗ µ) + κ⊗ ν + ν ⊗ κ (5)

defines on M the structure of a Robinson manifold and every Robinson 4-manifold can be
locally so obtained, as a lift of a CR spaceM to the Lorentz manifold M .

Assume now that the CR structure onM is of the stronger type B: there exists (locally)
a non-vanishing function A : M → C such that the 2-form F = Aκ ∧ µ is closed. Pulled
back to M , this form is also closed; it is self-dual for every metric of the form (5); its real part
is a null Maxwell field associated with the SNG congruence generated by k.

Problem 3. Characterize the CR spaces that admit lifts to Minkowski space-time.

NB. The Kerr–Penrose theorem yields a method of constructing all analytic SNGs in
Minkowski space-time, but does not provide a characterization of the CR structure in terms
of the pair (κ, µ).

If the null shear-free congruence generated by k is non-twisting,

κ ∧ dκ = 0,

then the associated CR geometry is trivial, locally: M = R × C. Plane-fronted waves and
Robinson–Trautman metrics are of this type.

6.2. Embeddable CR spaces

Consider a spaceM with a CR structure (of type C) characterized by the pair (κ, µ). If the
equation

dz ∧ κ ∧ µ = 0 (6)

has two solutions z1 and z2 such that the map

(z1, z2) :M→ C2 (7)

is an immersion, then the structure is embeddable (i.e. of type A in the sense of Section
3). Note that if f : C2 → C2 is a biholomorphic map, then the pair (w1, w2), where
wk = fk(z1, z2), k = 1, 2, is also such an immersion. The image ofM by (7) is a hypersurface
in C2; let its equation be

G(z1, z2, z1, z2) = 0, dG 6= 0 on M, (8)

where G is a real, smooth function, defined in a neighbourhood of M in C2. Let G1 =

∂G/∂z1 and G2 = ∂G/∂z2. Note that, since G is real, one has ∂G/∂z1 = ∂G/∂z1. One
constructs onM the forms

κ′ = i(G1dz1 +G2dz2), µ′ = G2dz1 −G1dz2.
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The pair (κ′, µ′) defines the same CR structure as the pair (κ, µ).
Penrose conjectured that non-embeddable CR structures may be of physical relevance in

quantum gravity [11].

7. Robinson’s twisting congruence and the Hans Lewy equation

Consider the Minkowski line-element

g = dX2 + dY 2 − 2dWdr

and introduce new coordinates

X + iY = (r + i)(x+ iy), W = u+ 1
2
r(x2 + y2)

to obtain

g = (r2 + 1)(dx2 + dy2)− 2κdr, κ = du+ xdy − ydx.

The congruence generated by k = ∂/∂r is null, shear-free, and twisting,

κ ∧ dκ = 2du ∧ dx ∧ dy.

The complex 2-form

F = A(x, y, u, r)κ ∧ (dx+ idy)

is self-dual and Maxwell’s equations dF = 0 reduce to ∂A/∂r = 0 and the equation
Z(A) = 0, where

Z =
∂

∂x
+ i

∂

∂y
− i(x+ iy)

∂

∂u

is an operator on R3 introduced by Hans Lewy in 1957. He constructed a smooth function h
such that the equation Z(A) = h has no solution, even locally.

The underlying CR geometry onM = R3 with coordinates u, x, y is given by the pair

(κ, µ = dx+ idy).

Two solutions of (6) are z1 = x+ iy and z2 = u+ 1
2
i(x2 + y2) so that equation (8) is now that

of the hyperquadric, i(z2 − z2) = |z1|2. The biholomorphic map

w1 =
√

2
z1

z2 + i
, w2 =

z2 − i

z2 + i

transforms the hyperquadric into the 3-sphere of equation

|w1|2 + |w2|2 = 1.

This is the most symmetric, non-trivial, 3-dimensional CR geometry: its group of
automorphisms is SU2,1. The CR structure on S3 can be viewed as obtained from the complex
structure of S2 = CP1 via the Hopf map.

There are several interesting Robinson manifolds that are lifts of this CR structure; in
particular, the Gödel universe, the Taub–NUT solution and Hauser’s waves of type N.

Élie Cartan solved the problem of equivalence for CR spaces and found all such spaces
that are homogeneous. The maximal group of CR symmetries of such a space is either 8-
dimensional (for the hyperquadric) or has dimension 3 [1].
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8. Analogies between Robinson and Hermite manifolds

8.1. Spinor calculus in four dimensions

Recall that the space S of Dirac spinors, associated with a real 4-dimensional quadratic space
(V, g), carries the Dirac representation of the Clifford algebra γ : Cl(V, g) → EndS. If (eµ)

is an orthonormal frame in V , then γµ = γ(eµ), µ = 1, . . . , 4, are the corresponding Dirac
matrices and γ5 = γ1γ2γ3γ4. The space of Dirac spinors decomposes into the direct sum of
two complex 2-dimensional spaces of Weyl (chiral, reduced) spinors, S = S+⊕S−. Using the
symbols for carrier spaces to denote representations of the spin groups, one has the following
equivalences:

S∗± ∼ S±,

S ⊗ S ∼ ∧V,

S+ ⊗ S+ ∼ ∧even
+ V,

S+ ⊗ S− ∼ ∧odd
+ V,

where the lower sign + on the right refers to self-duality of multivectors,

S+ ⊗sym S+ ∼ ∧2
+ V.

There are also equivalences of representations that depend on the signature of the quadratic
form on V :

in Lorentz signature S± ∼ S∓,
in Euclidean signature S± ∼ S± and the Hermitian scalar product on S is positive

definite when restricted to S±.
These differences between the properties of spinor representations have consequences

for the Cartan–Petrov–Penrose classification of Weyl tensors and for the Goldberg–Sachs
theorem in Euclidean signature; they are described in [13]; see also [9].

8.2. The analogies

There are interesting analogies between the Hermite and Robinson manifolds; some of them
are briefly presented in the Table. More information on this subject is in [8, 9]. In the Table,
ϕ 6= 0 denotes a spinor field of (say) positive chirality. It defines the bundle

N = {w ∈ C⊗ TM | γ(w)ϕ = 0}

Einstein–Robinson manifolds with a null k satisfying ∇k = k ⊗ p have been described
by Ehlers and Kundt in [2].
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Table. Summary of comparison.

Lorentz (M, g) Riemann

F = ϕ⊗ ϕ defines
N ⊂ C⊗ TM

(I + iγ5)kµγ
µ = ϕ⊗ ϕ = 1

4
(I + γ5 + 2iJµνγ

[µγν])‖ϕ‖2

where
k is null J2 = −id

k null geod.⇔ [SecN, SecN ] ⊂ SecN ⇔ J integrable
shear-free

Robinson Hermite

Dk‖k ⇔ N is invariant ⇔ ∇J = 0
by parallel transport

Ehlers–Kundt Kähler

9. A difficult problem in elementary form

Consider the following local problem in R3. Recall that if the functions z1, z2 : R3 → C are
smooth, then

div (grad z1 × grad z2) = 0.

Let −→F be a smooth, complex vector field on R3 such that

div
−→
F = 0.

Do there exist functions z1 and z2 such that
−→
F = grad z1 × grad z2 ?

A positive answer to this question is equivalent to the following
Conjecture. If a Robinson manifold admits a nowhere vanishing null solution of Maxwell’s
equations, then the associated CR space is embeddable.

In other words, the conjecture states that, in dimension 3, B⇒ A. This is known to be
true under the assumption of analyticity, but the smooth case is open. It is known that if a CR
space lifts to an Einstein–Robinson space, then C⇒ A [7].
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10. Concluding remarks

The discovery by Ivor Robinson of the role played by shear-free congruences of null geodesics
has had a profound, stimulating influence on research in general relativity theory, especially on
work on exact solutions and gravitational waves; it contributed to the emergence of Penrose’s
twistors.

Algebraically special gravitational fields are exceptional, but very important: the
dominant part of the curvature tensor of an asymptotically flat space-time is of this type
(peeling-off). Their role is somewhat analogous to that of the completely integrable systems.

The Kerr solution has been recognized as representing the final state of a rotating black
hole, but it was discovered by looking for Einstein–Robinson manifolds with a twisting
congruence. The charged Kerr–Newman solution—also a Robinson manifold—has the
gyromagnetic ratio predicted by the Dirac theory of the electron. This provides a somewhat
mysterious, striking link between classical general relativity and quantum physics.

Penrose’s twistor ideas, the relation between Cauchy–Riemann spaces and Robinson
manifolds and the analogy between Robinson and Hermite manifolds opened up interesting
and subtle connections between general relativity and complex analysis.
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