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Projective quadrics are known to be conformal compactifications of Euclidean spaces. In
particular, the (projective) real quadric Qp 4 = (Sp x Sq)/Z, is associated, in this manner,
with the flat space R?*4 endowed with a metric tensor of signature (p,q). For p and ¢
positive, the quadric Qp 4 is orientable iff p + ¢ is even. The quadric has two natural
metrics, invariant with respect to the action of O(p + 1) x O(g + 1): a proper Riemannian
one and a pseudo-Riemannian metric of signature (p,q). This paper contains an explicit
description of spin structures on real, even-dimensional quadrics for both metrics, whenever
these structures exist. In particular, it is shown that, for p and g even positive, the proper
(pseudo-Riemannian) metric gives rise to two inequivalent spin structures iff p + ¢ = 2
(mod 4) (p 4+ ¢ =0 (mod 4)). If p and g are odd and > 1, then there is no spin structure
for either metric whenever p + ¢ = 0 (mod 4); otherwise, there are two spin structures for
each of the metrics. There always exist spin structures on real quadrics with a Lorentzian
metric, i.e., when p and g are odd and p or ¢ = 1.
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1. Introduction

Roger Penrose proposed to use the conformal compactification M of
Minkowski space-time for a convenient description of fields and particles of
zero mass [1]. The manifold M is diffeomorphic to the real projective quadric
(S; x S3)/Z,. The canonical Riemannian metrics on the circle S; and the three-
sphere S; define, in a natural manner, two metrics on M: a proper Rieman-
nian one and a pseudo-Riemannian metric of signature (1,3). The manifold M
with either of the two metrics admits two inequivalent spin structures. Penrose
and Rindler [2] gave a description of these two structures—for the pseudo-
Riemannian case—in a geometrical language adapted to the needs of physics;
see also ref. [3].

In this paper, we take up the general problem of finding the spin structures on
the proper (p,q > 0) real (projective) quadrics

Opq = (Sp xSq) /2,

endowed with one of the two natural metrics (proper or pseudo-Riemannian)
descending from S, x S,. (To alleviate the language, from now on, the adjec-
tive “projective” will be omitted from the expression “projective quadric”.) We
restrict ourselves to even-dimensional quadrics, because, as we show in section
4, the manifold Q,, is orientable if, and only if, p + ¢ is even. The study of
the odd-dimensional case requires the consideration of pin structures. Our work
prepares ground for the computation of the spectrum of the Dirac operator on
Op.g-

The manifold Q,, can be regarded as a “real form” of the complex quadric
0, of complex dimension n = p + g. In fact, the embedding of Q; 3 in Q4, the
Grassmannian of complex two-planes in C*, plays a fundamental role in twistor
theory [2,4-6]. The quadrics Q, have a conformal structure, but no complex
bilinear Riemannian metric. For this reason, it is appropriate to define on Q,
a conformal spin structure as a prolongation of its bundle of conformal frames
corresponding to the non-trivial extension of the complex conformal group by
Z, [7]. It is interesting to relate the spin structures on Q, 4 to the conformal spin
structures on Qp14 [8].

The nature of the construction of spin structures we present here is differential-
geometric and Lie group-theoretic. Our method is an extension of the one used
in the study of spin (and pin) structures on spheres and projective spaces [9,10]
and simply connected Riemannian symmetric spaces [11]. The results concern-
ing existence and the number of inequivalent spin structures on Qp 4, P + ¢ =
2m, where p, g and m are positive integers, are summarized in table 1.

In particular, for the familiar real forms of Q4 we have the following: as is
well known, the sphere S; = Qg4 admits one spin structure; the “neutral form”
05, has two spin structures, but the proper Riemannian metric on (S; x S;)/Z;
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Table 1

Summary of results concerning existence and
the number of inequivalent spin structures
on QOpg, p + g = 2m, where p,q and m are
positive integers. Here the words “proper”
and “pseudo” refer to the natural, proper Rie-
mannian and pseudo-Riemannian metrics,
respectively, and the figures in the last two
columns indicate the numbers of inequiva-
lent spin structures.

pandg>0 m mod 2 proper pseudo
even 0
1

odd, p,g > 1 0
1

D= lgodd > 1 Qior |

A D DO NMNO
DD R D IRD

p=g=1 1

does not give rise to any spin structure; the compactified Minkowski space has
two spin structures irrespective of whether it is given a Lorentzian or a proper
Riemannian metric. The quadric Qs s has no spin structure for either of the two
metrics. :

The paper is organized as follows: The next section contains a summary of our
notation and terminology. Section 3 contains a brief review of the conformal
geometry of projective quadrics. We give, in particular, a short description of the
conformal embedding of a pseudo-Euclidean space into an appropriate quadric
and of the associated action of the isotropy group of a “point at infinity™; this is
well known, but hard to find in print. In section 4, we prove that real quadrics are
symmetric spaces and exhibit their groups of isometries. The following section
contains theorems on spin structures of homogeneous Riemannian manifolds
and of products of spin manifolds. These theorems serve as tools to construct spin
structures on the real quadrics (section 6). The last part of the paper contains a
brief comparison of our results with those that can be inferred, on the existence
of spin structures, from the computation of the Stiefel-Whitney classes of the
real quadrics.

2. Notation and preliminaries

Our notation and terminology follow the custom prevaling in differential ge-
ometry and mathematical physics; we often use refs. [12-14]. In this section,
we summarize some of our notation and recall the definitions and properties of
Clifford algebras and spin groups relevant to our work on spin structures; further
details may be found in refs. [7, 15-18].



130 M. Cahen et al. / Spin structures on real projective quadrics

2.1. DIFFERENTIAL GEOMETRY

We work in the category of finite-dimensional, smooth (i.e. of class C*)
manifolds and often omit the adjective “smooth”. If M is such a manifold, then
TM is (the total space of) its tangent bundle; if f : M — N is smooth, then
f.: TM — TN isits tangent (derived) map and the symbol f* is used to denote
the corresponding pullback of differential forms from N to M. If E — M is a
vector bundle over M, then its fibre E, over x € M is a vector space. If FF — M
is another vector bundle, then there are the bundles E & F — M (the Whitney
sum) and Hom (E, F) — M such that (E®F ), = Ex®F, and Hom(E,F)y =
Hom (E,, Fy). If F — M is a vector subbundle of the vector bundle £ — M,
then there is the quotient bundle E/F — M etc.

The fibre of TM — M is the tangent space Ty M to M at x. A frame (linear
basis) at x is an isomorphism of vector spaces & : R” — T, M, where n = dim M.
If a € GL(n,R), then the composition &a is also a frame at x. The set of all
frames on M is made into the total space of a principal GL(#n,R)-bundle, the
bundle of linear frames.

If P — M is a principal G-bundle, then the Lie group G acts on P to the right;
the action map is P x G 3 (¢,a) — &a € P. Let p : H — G be a homomorphism
of Lie groups; a map o : Q — P is a morphism of the H-bundle Q — M into the
G-bundle P — M, corresponding to p, if the diagram

oxXp

QxH——»PxG
! l
B ot (2.1)
N '
M

is commutative. In particular, if p and o are surjective (injective), then o :
Q — P is said to be a prolongation (restriction) of P to H. There are topological
obstructions to the existence of prolongations and restrictions. On the other
hand, given an H-bundle Q — M and a homomorphism p : H — G there is
always an extension of Q to G, i.e. a G-bundle P — M and a morphism o : Q —
P, corresponding to p. The extension is a bundle associated with the H-bundle
Q — M; the total space P is Q x, G, the set of equivalence classes [(n,a)],
where 7 € Q, a € Gand [(n,a)] = [(n’,a’)] if, and only if, there exists b € H
such that n’ = nb and a = p(b)a’.

If H = G, p = id and ¢ is a diffeomorphism, then ¢ is said to be an iso-
morphism of G-bundles over M. Consider now two prolongations g; : Q; — P
(i = 1,2) of the G-bundle P to H, both corresponding to p : H — G. These
prolongations are said to be equivalent if there is an isomorphism k : Q; — [0))
of H-bundles over M such that g; o k = 0.
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If M is an oriented, proper Riemannian n-manifold, then its bundle of lin-
ear frames restricts to SO (n); similarly, giving on M an orientation and a met-
ric tensor of signature (p,q) is equivalent to restricting its bundle of linear
frames to SO(p, q). If the latter bundle can be further restricted to SO° (p,q),
the connected open subgroup of SO(p, ), then M is said to be space- and time-
orientable.

2.2. CLIFFORD ALGEBRAS AND SPIN GROUPS

Analgebra 4 over K = Ror Cissaid to be Z,-graded if there is a decomposition
A = Ag® A, such that 4;4; C A, ;, where i + j is understood mod 2. Ifa € 4;,
then i = &(a) is the degree of a. Elements of degree 0 (degree 1) are called
even (odd) and A is the even subalgebra of A. A Z,-grading of A is equivalent
to giving an involution a of A characterized by the property a(a) = (—1)¢@g
for @ homogeneous (i.e. of definite degree). Given a Z,-graded algebra A4, one
defines the twisted algebra AT as having the same underlying vector space and
grading as 4, whereas the product of two homogeneous elements a and b is given
in AT by

aTh = (—1)¢@e®)gp,

The even subalgebras of 4 and AT are isomorphic.

Let V' be a finite-dimensional vector space over K = R or C with a scalar
product g, defined to be a bilinear, symmetric and non-degenerate map g :
V' xV — K. The Clifford algebra Cl(g) is the universal associative algebra over
K with unit, generated by K @ V, subject to all relations of the form

Wt vw — 2o9(uy), wuvel

Universality implies that, if 4 is another associative algebra over K with unit
and [ : V — Ais a Clifford map for g, i.e. a linear map such that f (v)? =
g(v,v) for every v € V, then there is a homomorphism of algebras with unit
Cl(g) — A, extending the map /. In particular, the Clifford map for g,

V—-Cl(g), v~ —v

extends to the involution a of C1(g ), defining its Z,-grading. The even subalgebra
of Cl(g) is denoted by Cly(g). In general, the algebras Cl(g) and Cl(—g) are
not isomorphic. However, the canonical injection V' — Cl(—g)T is a Clifford
map for g and extends to the isomorphism of algebras with unit

1:Cl(g) — Cl(-g)T

such that 1(v)? = g(v,v). Restricted to Cly( g), this gives a natural isomor-
phism
1:Clp(g) — Clp(—g). (2:2)
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Let V and W be vector spaces over K with scalar products g and h, respec-
tively. Their direct sum ¥ & W has an obvious scalar product g @ h. The in-
jections V — V & W and W — V @& W extend to monomorphisms of algebras
Cl(g) — Cl(g ® h) and Cl(h) — Cl(g & h); the algebras Cl(g) and Cl(h) are
identified with their images in Cl(g & & ). The map

Clo(g) ® Clg(h) — Clo(g ® h), (2.3)

defined by a ® b — ab, is a homomorphism of algebras.
The “numeric” vector space K” (K = R or C) has the standard quadratic form

Gt + 22, rela sl K’ (2.4)

and there is the associated scalar product (z|w) of vectors z,w € K".

From now on, through to the end of this section, we consider vector spaces
and algebras over the reals only. We say that u € V" is a unit vector if g (v, u) =
u? = 1 or —1 and note that the map v — —uvu~',v € V, is a reflection in
the hyperplane orthogonal to u. The spin group Spin(g) C Clp(g) is defined
as the set of Clifford products of all even sequences of unit vectors; the group
multiplication is induced by the Clifford product. If a € Spin(g) and v € V,
then p(a) = ava~-! is a vector with the same square as v. Since p(a) is the
composition of an even sequence of reflections in hyperplanes, it is a proper
orthogonal transformation. By the Cartan-Dieudonné theorem (ref. [19], §6,
prop. 5), every such transformation can be represented as the composition of
an even sequence of reflections so that p is a homomorphism of Spin(g) onto
SO(g), the group of orientation-preserving automorphisms of V', orthogonal
with respect to g. One shows that kerp = {1,—1} = Z; there is the exact
sequence

1 - Z, — Spin(g) — SO(g) — 1.

By restriction, one obtains from (2.2) and (2.3) the isomorphism of groups

1:Spin(g) — Spin(—g), (2.5)
and the homomorphism
Spin(g) x Spin(h) — Spin(g & k), (a,b) — ab. (2.6)
By combining (2.5) and (2.6) one obtains also the homorphism
Spin(g) x Spin(h) — Spin(g & (—h)), (a,b)— ai(b). (2.7)
If V = R? x R? and g is of signature (p,q),
gu,u) = (x|x) — (ly), u= (x,y) eR? xRY, (2.8)

then we write Cl(p, q), Spin(p, q), etc., instead of Cl(g), Spin(g), etc.
The groups Spin(n) = Spin(n,0), n = 1,2,..., are compact; they are con-
nected for n > 2 and Spin(1) = Z,. For pg # 0, the group Spin(p, ¢q) is non-
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Table 2
The fundamental groups of
Spin®(p, q).

pandq 7, (Spin®(p, q))

pi=0orl, g+ 2 0
p=gq=2 207
= Z
pand g >3 Zy

compact and has two connected components. The component of the unit ele-
ment, Spin0 (p,q), gives rise to the exact sequence

1 — 2, — Spin®(p,q) — SO°(p, q) — 1.

The group Spin0 (p,q) can be equivalently defined as consisting of products of
all sequences containing an even number of space-like and an even number of
time-like unit vectors.

With a suitable specification of g and /4, the homomorphisms (2.6) and (247)
reduce to the homomorphisms

¢+ : Spin(p) x Spin(q) — Spin(p + ¢q), (2:9)

¢— : Spin(p) x Spin(g) — Spin’(p, q). (2.10)

The fundamental groups of Spin® (p, ¢) are given in table 2.

The group Spin(p, ¢) has a natural structure of a Lie group. Its Lie algebra can
be identified with the vector subspace of Cly(p, ) spanned by all elements of
the form uv, where (u,v) is a pair of orthogonal unit vectors. If 42> = v2, then
p(cost + uv sint) is the rotation by the angle 27 in the plane spanned by « and
v. If u? = —v2, then p(cosh? + uvsinht) is a special Lorentz transformation
for every ¢ € R and uv is an element of Spin(p, ¢) not in Spin® (p, q).

Let (e1,---,ep, f1,- -+, fg) be the standard linear basis in R? x R? orthonormal
with respect to (2.8). If p + g is even, p + ¢ = 2m, then the volume element

Vo}p,q=e1"'epfl"‘ﬁ1 (211)

1s in the centre of Spin (p, ¢); it is in Spin0 (p,q) if, and only if, both p and g are
even. Its square is

vol2, = (=1)™*2, (2.12)

We write
voly,, = volym o (2,139

and note
Vol = (= 1) (2.14)
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3. Quadrics and conformal compactification

3.1. PROJECTIVE SPACES

Consider a (n + 2)-dimensional vector space W over K = R or C. The set
W' c W of all non-zero vectors is an open (real or complex) submanifold of W
and the equivalence relation R in W,

w; = w, mod R iff there is A € K such that wy = Awy, (B2L)

is regular: the projective space = W' /R has a natural topology and a differential
structure that make it into a compact manifold of dimension » + 1 over K such
that the canonical projection W’ — P is a submersion. For every w € W’ there
is the line through w,

[w] ={AweW:A€K} (3°2)
and P can be identified with the set of all such lines. The manifold 7W' can
be identified with W’ x W:if u : R — W’ is a curve, then its tangent vector at
t € Ris characterized by (u(t),u(t)) € W' x W. The equivalence relation (3.1)
extends to TW' = W' x W,

(wy,v1) = (wy,v,) mod R iff there are A, u € K
such that w, = Aw; and v, = Av; + pwy,

and TP is then identified with TW’/R. If (w,v) € W' x W, then [(w,v)]
denotes its class with respect to the equivalence relation R defined by (3.3); this
is a vector tangent to P at [w].
Let E = P x W be the total space of the trivial bundle £ — P and
F={(ulvieEwe [w]}

that of the canonical line bundle of P. Note that the fibre of F over [w] € P is
the line [w] itself. With the vector [ (w,v)] € TP one associates the linear map
[w] — W/[w] such that w — v + [w]. This observation leads to the proof of
a natural isomorphism of vector bundles over P,

TP = Hom(F,E/F). (3.4)
The general linear group GL (W) acts transitively on W’ and, by
alw] = [aw], ae GL(W),
also on P. This action lifts to 7P,
a.[(w,v)] = [(aw,av)]. (359

3:3)

3.2. QUADRICS

Assume now that W is given a scalar product g such that there exist two
vectors wo and w., with the property

g(wp, W) = gWoo, Weo) =0, gluwg, we ) =1/2. (3.6)
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For K = C this aséumption is equivalent to n > 0; for K = R it is equivalent to
the statement that the signature of g is (p + 1,q + 1) with p and ¢ > 0. From
now we assume n > 1.
The light cone,
N={weW :glw,w) =0},
is an (n + 1)-dimensional submanifold (hypersurface) in W’ and the quadric,
Q0 ={[w] eP:w e N},

is an n-dimensional submanifold (hypersurface) in P. The map W’ — P restricts
to a submersion N — Q. By considering the tangent to a curve in N one obtains

TN = {(w,v) e NxW:g(w,v) = 0}
and also
TQ = {[(w,v)] e TP: (w,v) € TN}. (3.7)

The vector bundle E — P restricts to a vector bundle over Q; similarly the
subbundle F — P restricts to a line subbundle over Q; we use the same letter
E (F) to denote the total space of this induced bundle. The special orthogonal
group SO(g) acts transitively on Q (ref. [19], §4, theor. 1, cor. 2). The kernel
of inefficiency of this action is

= {I} for n odd , J = {I,-1I} for n even . (3.8)

The effective Mdbius group of transformations of Q is SO(g)/J.
If V is a vector subspace of W, then V' + is the subspace orthogonal to V. Since
g is non-degenerate, V++ = V. Ifa € SO(g), then

aV =V is equivalent to aV+ = V', (3.9)

If V C V1, then all elements of V have vanishing squares; such vectors, and V'
itself, are said to be null (sometimes: isotropic). The subbundle F of E admits
an orthogonal subbundle F+ relative to the fibre metric g on E:

F* = {([w],v) € @ x W:g(w,v) = 0}.
As g(w,w) =0, F c FL.

Proposition 1. There is a natural isomorphism of vector bundles over Q,

TQ = Hom(F,F*/F).

This is simply a reformulation of (3.4), using the condition that [(w,v)] €
T'Q if and only if g(w,v) = 0. The scalar product g induces a scalar product
in the fibres of the bundle F+/F — Q, but the tangent bundle 7Q inherits only
a weaker conformal structure, which is preserved by the action of the Mobius
group.
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3.3. CONFORMAL COMPACTIFICATION

If wy, weo € W are as in (3.6), then
V = span{wy, Weo } - (3.10)

is an n-dimensional vector subspace of W and there is a decomposition of W
into a direct sum of vector spaces,

W =V&Kw)d KW,

such that (Kwa, )+ = V @ Kw... The restriction 4 of g to V' is non-degenerate;
if K = R and the signature of g is (p + 1,4 + 1), then the signature of h is
(p, q). The injection

V-0, i(w)=[v+w—-gWv)uxl, (3.11)

is smooth and its image is open and dense in Q; more precisely, the complement
of the image is the set

O = {[w] € Q: g(w,wy) = 0}. (3:12)

IfK =Randporg = 0, then O = [Ws] is zero-dimensional, the quadric Q
is diffeomorphic to the n-dimensional sphere S,,, which is a one-point conformal
compactification of ¥ = R” with 4 the standard scalar product. If K = C or
K = R and pg > 1, then Q. is the (n — 1)-dimensional compactified “light
cone at infinity” [1, 20].

Ifa e SO(g),veVandi(v) = [w], then from the definition of the action
of SO(g) on Q, one has ai(v) = [aw]. The vector av need not be in V" and,
even if it is, i (av) need not coincide with ai(v).

Proposition 2. The map i is a conformal diffeomorphism of V on its image in Q.

To prove the proposition, evaluate the tangent map i, : TV — TQ using
TV =V x V and considering a curve R > ¢ — i(u + tv) € Q, where u,v € V.
Computing the tangent vector to the curve at ¢ = 0 one obtains

L (u,v) = [(u 4+ wo— g(U, U)Woo, ¥V — 28 (U, V)W) 1. B13)

Since v is orthogonal to the null vector ws, One sees that i is conformal.
If [w] € i(V), then g(w,ws) # 0. The inverse of (3.11) is the smooth map
i~!:i(V) — V given by

N ([w]) = Gw — g(w, Wee )Wo — & (W, W) Weo )/ & (W, Wee ).

In particular, i~! ([wg]) = 0, whereas [w.] does not belong to i(V):itis a
“point at infinity” with respect to V. Note that, since V' is conformally flat, so

is Q.
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3.4. THE LINEAR ISOTROPY REPRESENTATION

The restriction / of g to V' gives rise to the special orthogonal group SO (4).
The conformal group of h is

CO(h) = {aeGL(V):3l € K'suchthatv € V = g(av,av) = I*g(v,v)}.

There is the exact sequence

1o EL K x SO Teng

where
fol,a)v = lav, (l,a,v) € K' xSO(h) x V,

J is as in (3.8) and K’ is the multiplicative group of non-zero elements of K.
The homomorphism f; makes

=K xSl <V (3.14)

into a semi-direct product of K’ x SO (%) by V: the composition of elements in
H is given by
Laoillia'\v') = (Baad fLauiu), (3.15)
where
f,a,v)v =v + fo(l,a)v'. (3.16)
The map v’ — f(/,a,v)v’ defines an action of H in ¥ which is a composition

of a rotation a, dilatation by / and translation by v.
IEet

Hy = {a €50(g) : alws] = [we]}
be the isotropy subgroup of SO(g) at [ws] € Q. As W admits a linear frame
composed of null vectors, an element a € SO(g) is uniquely determined by its

action on N. Hence a € H, is equivalent to aQ., = Q and also to ai (V) =
i(V).If a € Hy, then there is A(a) € K’ such that

aWs, = Al@) s (3.17)

Sinée [we] € i(V) and g (awy, aws) = g(wo, W ), thereisa vectorv(a) € V
such that

awg = Ala) "' (v(a) + wo— h(v(a),v(a))ws). (3.18)
If v € V, then A(a)g(av,ws) = glav,aws) = g, ws) = 0 and
g(av,awy) = g(v,wy) = 0. There thus exists 4 (a) € O(A) such that

av = u(a)v —2h(u(a)v,v(a))We. (3.19)

Checking that det u(a) = deta one establishes u(a) € SO(4) and proves that
the map

He — H, avw (A(a),u(a),v(a))
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is an isomorphism of groups. The action of H,, in i (V') induces the action (3.16)
of H in V: this is expressed by the relation

aoi =1io f(Aa),ula)v(a)), (3.20)

easy to verify from (3.11), (3.17)-(3.19) and a[w] = [aw].
Elements of O(g) not in H,, induce in V local conformal transformations.
For example, the map a : W — W given by

Ay = Wes, AWes = Uy, av =v forvelV,
is orthogonal. Assuming 4 (v,v) # 0 one has
alv + wo — h(v,0)We] = [-v/h(v,v) + Wo — Weo/h (v, V)],

i.e., a induces the inversion v — —v/h(v,v) defined on V' with its light cone
removed.
The tangent space To.Q to Q at [wy ] is isomorphic to V; an isomorphism j
is given by
ik 1.0, Juhs Huwo vl (3.21)
The tangent action of H,, in T..Q, i.e. the linear isotropy representation of Hy,
is given by (3.5) and, through (3.21), induces an action of CO(4) in V. This is
expressed by
a.oj = jo fo(Ala)™", u(a)). (3-22)

3.5. COMPLEX QUADRICS

Complex quadrics are outside the scope of this paper and we restrict ourselves
to a few remarks on their properties. The complex quadric of complex dimension
n,

0,z e P itziz) = U, (3523}
is diffeomorphic to the Grassmannian G (2,n) of oriented two-planes in R"*2,
The complex quadric has two “natural” geometric structures: the (holomor-
phic) conformal geometry induced by the quadratic form (z|z) in C"*? as de-
scribed in section 3.3 and the Kéhler structure induced by the Hermitean form
(z|z). The latter structure can be thought of as induced by the embedding of
Q, in CP,,, equipped with the Fubini-Study metric [12]. Since G(p,n) =
SO(n + p)/(SO(n) xSO(p)), the quadric Q,, considered as a proper Rieman-
nian space, is a spin manifold if, and only if, » = 1 or n is even [11, th. 8].

Complex quadrics do not admit any smooth, complex-bilinear Riemannian
metric. This may be seen as follows [21]: such a metric would define a complex-
linear isomorphism of the tangent bundle 7 = T Q, on the dual bundle 7. The
Kihler metric—which exists—defines an isomorphism of 7* with the complex
conjugate bundle 7. For the first Chern classes one has ¢;(T) = —¢;(T') and
¢1(T) # 0 for complex quadrics [12]. Therefore, 7 and 7* cannot be isomor-
phic.
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4. The real quadrics

From now on we assume K = R and consider only the real quadrics. Let
X =RPt Y =R+l and W = X x Y be given a scalar product g of signature
(p + 1,q + 1) such that

gw,w) = (x[x) = (ly), w=(x,y)€eXx]Y.
The real quadric

Qo =il 3] (3,) < R BT (x|x) = (plp) £ 0} (4.1)
is a compact, (p + ¢q)-dimensional submanifold of the real projective space
RP,,1 = Sy41/Z,, where n = p + q. The embedding

Opq = Qp+es [, ¥)] 0 [(x,V—1y)]
defines O, 4 as a “real form” of Q, 4, cf. (3.23).

Since every line [(x,y)] € Q,, contains exactly two opposite vectors, say
(x,y) and (—x,—y), such that (x|x) = (y|y) = 1, the quadric Q0,4 may be
identified with the quotient (S, x S;)/Z, and the embedding

(Sp xS¢)/Zy = Qpg = RPpig41 = Spig+1/22 (4.2)
comes from the tautological map
Sp X Sq = Spig+1 (4.3)

sending (x,y) €S, xS, to (x/V2,y/V2) € Spyqs1. Clearly, Qp0 = Qpp = Sp.
From now on we consider only proper quadrics, i.e., such that pg > 1.

The connected component SO%(p + 1,4 + 1) of the group of orthogonal
transformations of W acts transitively and conformally on Q, 4. This group can
be restricted—without loss of transitivity—to its maximal compact subgroup

G =SO(p+1)xSO(q + 1). (4.4)

The structure of the tangent bundle 7, , = 70, 4 can be obtained from propo-
sition 1 or directly from that of 7'(S, x S;). Namely, we have

Proposition 3. The tangent bundle T, , of the proper quadric Q4 decomposes
into the direct sum of two vector bundles T, , and T, , with fibre dimensions p
and q, respectively. Each of these subbundles is orientable iff its fibre dimension
is odd. The bundle T, , is orientable iff p + q is even.

Proof. The tangent bundle of the p-sphere S, is
TS, = {(x,u) €S, xRP*!: (x|u) = 0}.
Consider the action of the group Z, = {1,—1} in TS, x T'S; given by
(Ce, u); y, v al) = ((-x,—u), (=),=0));
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then
T, = (IS, a 05,115,

The formula
[(x,u), (,v)] = [(x,u), (»,0)] + [(x,0), (y,v)]
defines the subbundles 7}, , and 7/, and the decomposition
Tpq = Tpq® Tpy (4.5)
Consider now the canonical projections
pri:Sp, xS; — Sy, Pra:i Sy x§;— 8§,

and
niS, %8 — (S, xSy)/E, (X, y) = [ V)] (4.6)

Let «, be the antipodal map, o, : S, — Sp, @y (x) = —x. If w, is the standard
volume p-form on S, then oy, = (—1)1’+1a)p and, whenever p is odd, the
form w), defines a nowhere vanishing section of the bundle A” 7%, thus proving
the orientability of 7, ,. Moreover,

Wpg = PI]Wp APry0y
isa (p + g)-form on S, x S; such that
apqWpg = (=1)P My,

where
Apg i8Sy X85 = Sp x 8y,  apelx,y) = (=x,-y). (4.7)

Therefore, if p + q is even, then the form w), ; descends to a volume form on the
quadric, thus proving its orientability. Conversely, if the quadric is orientable,
then, since G is compact and connected, there is a volume form w on the quadric,
invariant with respect to G. The form 7*w on S, x S is then also invariant with
respect to G and a; ;770w = 1w, therefore, 7*w is proportional to w,, and
p + q is even. A similar argument shows that 7, , (7,/,) is orientable only if p
(q) 1s odd. O

The group G acts as a transitive group of isometries of two distinguished
~ Riemannian metrics g,f, and g, , on O, 4; they can be described as follows. Let
gn denote the standard proper Riemannian metric on S,; the metrics gij are
characterized by

m* gy, = Prigp £ D138y (4.8)
The metric g,', coincides, up to a numerical factor, with the restriction to Qp 4

of the Fubini-Study metric on CP, ... The conformal class of the metric g, ,
defines the conformal geometry on Q,, described in section 3.
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From now on, throughout the paper, we assume
P g 2m,  mo= 2l (4.9)

By virtue of this assumption, the integers p and ¢ are simultaneously even or
odd; we refer to these two cases as even and odd, respectively.

Proposition 4. In the even case, the action of the group G = SO(p + 1) x
SO(q + 1) on Q4 is effective; in the odd case, the kernel of inefficiency J is Z5,
generated by (—Ip41,—1I;41) € G, where I, denotes the identity in R".

This is a straightforward consequence of the fact that —7,, belongs to SO (n)
iff n is even.

To determine the isotropy group of a point in Qp, under the action of G it is
convenient to consider the monomorphism

hp : O(p) —» SO(p + 1) (4.10)
characterized by
Eile; =Ade =1, D
hy(A)ey .1 = (detA)epy. (4.11)
An element of SO(p + 1) is in the image of 4, if, and only if, it commutes with

the reflection E,,; of RP*! in the hyperplane orthogonal to e, . ;. The reflection
of R?*! in the hyperplane orthogonal to f;; is denoted by F, .

Proposition 5. The subgroup H of G leaving invariant the point [(ep41, fg+1)] €
Qp.,q is isomorphic to the group

S(O(p) xO(q)) = {(4,B) € O(p) x O(q) : det4 = det B}.

In the odd case, the isotropy subgroup of the effective group G/Z, is isomorphic
to SO(p) x SO(q).

Indeed, if (4’, B') € H, then cither A'ep1 = €p41 and B'fo11 = fz41 OF
Ae,., = —e and Bif,.1 = —f;.1. Therefore, therc is a pair (4, B) ¢
O(p) x O(q) such that A' = h,(A4), B’ = h;(B) and det4 = det B.

In the odd case, det(—A4) = —detA for A € O(p) or O(g) and there is the
commutative diagram of group homomorphisms

S(0(p) x O(q)) "2 SO(p + 1) xSO(g + 1)
I !
SO(p) xSO(q) — (SO(p +1) xSO(g + 1))/Z,
where the first vertical arrow is (A4, B) — (e4,eB), ¢ = det 4 = det B, and the
lower horizontal arrow is injective.
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It is also worth noting that
S(O(p) xO(g)) = SO(p + g) NSO(p,q), (4:12)

SO(p) x SO(g) = SO(p + q) NSO°(p, q). (4.13)
The map

0:G— G, O'(A,B) = (Ep+1AEp+l,Fq+lBFq+1)

is an involutive automorphism of G. The subgroup G? of G consisting of all
elements left invariant by ¢ is isomorphic to O(p) x O(g) and its connected
component of the unit element is GJ = SO(p) x SO(q). This proves (see ref.
12} ch: X0, 52):

Proposition 6. The triple (G, H, o) is a symmetric space,
GG E i,

Jor either of the two metrics g, and g, , on Qp4.

The tangent space to Q4 at [(€,41, f34+1) ] is isomorphic to R? x R?. Depend-
ing on whether the quadric is given the metric g, or g, ,, this vector space in-
herits a bilinear form of signature (p + ¢,0) or (p, q), respectively. The action
of the effective isotropy group on tangent vectors induces an injection of this
group into SO(p +¢q) or SO(p, q), respectively. A simple computation, based on
proposition 3, or on the canonical decomposition of the symmetric Lie algebra
associated with the symmetric space (G, H, o), leads to

Proposition 7. The tangent action of the isotropy group H of a point on the
quadric Q, 4 induces the automorphism

S(O(p) xO(g)) — S(O(p) xO(q)) (4.14)

given by
(4,B) — (e4,¢eB), (4.15)

where ¢ = det A = det B.

Since deted = deteB = eP*!, in the odd case—unlike in the even one—the
effective isotropy group injects into the connected component of the identity
of the pseudo-orthogonal group. This is so because only in the odd case is the
quadric not only orientable, but also space- and time-orientable: the subbundles
T,, and T, are both orientable (proposition 3).

- Recall that in the “Lorentzian case”, i.e. when p and g are both odd and p or
q = 1, the quadric is a Cartesian product of a circle by a sphere. Indeed, let p =
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1 and ¢ = 2m — | and represent an odd-dimensional sphere as a hypersurface
e,
Som_1 = {z€C?™: (z]z) = 1}.
If z €Sy, and zg € Sy, 1i.e. zg € Cand |zg| = 1, then zyz € S;,,_; and the map
(S1 X Som=1)/Z2 = Si X Som-1, [(20,2)] — (2§, z02) (4.16)

is a diffeomorphism.

5. Spin structures on homogeneous spaces

5.1. DEFINITIONS

We recall now the definition of a spin structure on a connected, oriented n-
dimensional proper Riemannian manifold M. Let = : P — M be the principal
SO (n)-bundle of orthonormal frames of the given orientation on M. A spin
structure on M is a prolongation (section 2.1) ¢ : P — P of P to Spin(n),
corresponding to p : Spin(n) — SO (#n). The map ¢ makes P into a double cover
of Pand mo o : P — M is a principal Spin (n)-bundle.

A Riemannian manifold with a given spin structure is said to be a spin mani-
fold.

It is clear that the definition of a spin structure extends, mutatis mutandis,
to pseudo-Riemannian manifolds. If such a manifold is not only orientable, but
also space- and time-orientable, then its bundle of frames can be restricted to
SO%(p, q) and, if M has a spin structure, then the bundle of “spin frames” P
can be restricted to Spin0 (p,q). To distinguish between different signatures and
orientabilities, we shall use expressions such as Spin(n)-structure, Spin(p, q)-
structure and Spin0 (p, g)-structure. There are similar structures corresponding
to non-orientable and space- or time-orientable manifolds (see ref. [15], but
note that Satz 2.2 on p. 71 should be replaced by the condition for the existence
of spin structures on pseudo-Riemannian manifolds given by Karoubi [16], cf.
section 7).

5.2. BUNDLE OF ORTHONORMAL FRAMES

The bundle of orthonormal frames of a homogeneous Riemannian manifold
can be described as follows.

Proposition 8. Let M be an n-dimensional, oriented proper Riemannian mani-
Jold with a transitive Lie group G of orientation-preserving isometries. Let H be
the isotropy subgroup of G at the point o € M and t: H — SO(n) be the linear
isotropy representation defined by the tangent action of H on vectors. The bundle
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P of orthonormal frames of the given orientation on M is isomorphic to the bun-
dle associated by t with the principal H-bundle G — G/H = M. The action of G
on M lifts to an action to the left on P, commuting with the action of SO (n).

Proof. The representation 7 can be described as follows. Let &, : R* — T,M be
an orthonormal frame at o, i.e., an isometry from R”, with its standard scalar
product, to T, M endowed with the bilinear form obtained by restriction of the
metric tensor on M. If a, : TM — TM is the action of a € G on tangent
vectors, then, for ¢ € H, we have t(c) = &;! o ¢, 0&,. The bundle G x,SO(n)
associated with G — G/H by 7 consists of equivalence classes [(a,b)], where
(a,b) € GxSO(n) and [(a,b)] = [(a’,b")] whenever there exists ¢ € H such
that @’ = ac and b = 7(c)b’. The map

Gx:S0(n) = P, [(a,b)]—acolo0b (5.1)

is well defined, bijective and equivariant with respect to the action of SO(n)
in both bundles: it defines the isomorphism whose existence is asserted in the
proposition. The lift of the action of G to P is given by a[(b,c)] = [(ab,c)],
where a,b € G and ¢ € SO(n). O

It is clear that proposition 8 extends, in an obvious manner, to pseudo-
Riemannian manifolds. In the sequel, we formulate several propositions about
spin structures associated with homogeneous, proper Riemannian manifolds.
The assumption that the metric is positive-definite is made to alleviate the expo-
sition. It will be clear that our considerations can be extended to homogeneous,
pseudo-Riemannian manifolds. In fact, such extensions will have to be used in
the applications of the general theorems to the real quadrics @, , with the metric
tensor g, .

5.3. LIFTS TO SPIN

Consider the homomorphism
p : Spin(n) — SO(n),

defined in section 2.2, a Lie group H and a homomorphism

7: H — SO(n). (5:2)
We say that the homomorphism
7: H — Spin(n) (5:3)

is a lift of T to Spin(n) if po 7 = 7.

Lemma 1. Any two lifts of a homomorphism (5.2) coincide when restricted to the
connected component Hy of the unit element of the Lie group H. If T and ©' are
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two such lifts, then the map H — Spin(n) given by a — t'(a)t(a~") takes values
in Z, C Spin(n) and factors through the canonical map H — H/H to yield a
homomorphism k : H/Hy — Z,. Conversely, given such a homomorphism k and
a lift T of 1, the map t' : H — Spin(n), given by t'(a) = k (aHy)t(a), is another
lift of .

To prove the lemma, it is enough to note that, given two lifts 7 and 7’ of ,
the map a — 7'(a)t(a~!) from H to Spin(n) is a lift of the map a — I, from
H to SO(n); therefore, the former map is Z,-valued and constant over every
connected component of H.

5.4. THE UNIVERSAL COVERING GROUP

The universal covering group of a connected Lie group is simply connected
and the following lemma holds [22]:

Lemma 2. The universal covering group G of a connected Lie group G is a
principal m, (G)-bundle over G, the Abelian discrete group m1 (G) can be identified
with a subgroup of the centre of G and there is an exact sequence

a6 G561 (5.4)

Every double cover G of G can be represented as G x ¢ Z,, where 0 : 1, (G) — Z, is
a homomorphism. In particular, if 0 is surjective, then G = G/ ker 6 is connected;
otherwise, G = G x Z,.

5.5. CONSTRUCTION OF SPIN STRUCTURES

Consider two spin manifolds M’ and M" of dimension p and g, respectively.
The metric tensors g’ on M’ and g” on M" define two metric tensors g+ and
g~ on the product manifold M = M’ x M",

g* =prig’ tpr;g”.
Let ¢’ : P’ — P’ be the spin structure on M’, where P’ is the SO (p)-bundle of
orthonormal frames on M’ and let a similar notation apply to A”. The principal
SO(p) xSO(g)-bundle P’ x P" — M' x M" can be considered as a restriction of
the SO(p + ¢)-bundle (SO°(p, ¢)-bundle) of frames on M, orthonormal with

respect to g+ (g~ ). The manifold P’ x P” is a fourfold cover of P’ x P” and
the bundles

(P' x P") %y, Spin(p + q),  (P' x P") x,_Spin®(p,q),

where the homomorphisms ¢, and ¢_ are as in (2.9) and (2.10), define spin
structures on M, associated with g+ and g, respectively. This observation can
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be used to construct spin structures on the quadrics Q) 2,1 = Sy X Sypm—1. In
the general case, we can appeal to

Theorem 1. Let M be an n-dimensional, oriented, connected Riemannian man-
ifold with a transitive Lie group G of orientation-preserving isometries. Let H be
the isotropy group of a point o of M and t : H — SO(n) be the linear isotropy
representation. Then

(i) if T lifts to T : H — Spin(n), then there is a spin structure on M such that
P = G x; Spin(n);

(ii) if T and ' are two lifts of T and the spin structures defined by P and P' =
G x; Spin(n) are isomorphic, then T = 1';

(iii) if the group G is simply connected and M has a spin structure, then t lifts
to Spin(n).

Proof.

(i) The homomorphism 7 : H — Spin(n) defines the principal Spin(7n)-
bundle P = G x; Spin(n) — M as a bundle associated with the H-bundle G —
G/H = M. Themap o : P — P = G x, SO(n) is well defined by ¢[(a,b)] =
[(a,p(b))], where (a,b) € G x Spin(n). The standard definition of the action
of Spin(n) in P gives o ([(a,b)]c) = o[(a,bc)] = [(a,p(b))]p(c), where
a € G and b,c € Spin(n).

(ii)Let A : P — P’ be an isomorphism of the spin structure ¢ : P — P
onto ¢’ : P’ — P, i.e., a diffeomorphism such that ¢’ o A = ¢ and A(nb) =
A(n)b for every n € P and b € Spin(n). The first of these conditions is equiv-
alent to the existence of a map ¢ : P — Z, C Spin(n) such that A[(a,b)] =
[(a,e[(a,b)]b)]. The second implies that ¢ is constant on the fibres of P —
M and, therefore, defines a continuous function M — Z, which is constant by
virtue of the connectedness of M. Thus A[(a,b)] = A[(a,eb)], where € = 1
or —1. On the other hand, the chain of equalities

[ac.eb) ) —djlac,b)] = illa, s (e)b)]
=[(a,e(c)b)] = [(ac,et’(c™")1(c)b)]
gives 7 = 7.

(iii)Let 0 : P — P = G x,SO(n) & M be a spin structure on M. Since G
is simply connected, by the homotopy lifting theorem for covering spaces [22],
the action of G on P lifts to an action of G on P, (a,n) — an, commuting
with that of Spin(#n) and such that ¢ (an) = ao (), where a € G and n € P.
Let &, € P be the orthonormal frame at 0 € M, occurring in the definition of
the representation 7, cf. the proof of proposition 8. Let 7, be one of the two
elements of P such that o (5,) = &,. Since the action of Spin(n) is transitive
on the fibres of 7 oo : P — M and, for every a € H, the elements 7, and
an, are in the same fibre, there exists an element 7(a) of Spin(n) such that
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an, = n,7(a). By the commutativity of the actions of G and Spin(#n) in P, this
element does not change when 7, is replaced by #,- (—1) and 7 : H — Spin(n)
is a homomorphism of groups. The equivariance condition g (nc) = a(n)p(c)
where n € P and ¢ € Spin(#n), shows that pot =r1. O

Any transitive Lie group of transformations of a manifold can be replaced by
a Lie group acting transitively and effectively: it suffices to quotient the group
by its kernel of inefficiency.

Theorem 2. Let M, G and H be as in theorem 1. Assume furthermore that G is
connected and acts effectively; let G be the universal covering group of G and H
be the subgroup of G covering H. Then

(i) the linear isotropy representation t : H — SO(n) is injective and the prin-
cipal bundle G — M is a restriction of the principal SO (n)-bundle P — M to H;

(1) ifT: H — Spm(n) is a lift of the linear isotropy representation of H, then
the spin structure G x; Spin(n) admits a restriction G = G x4 Z, to the subgroup
H = H x4, of Spin(n), where 0 : n,(G) — Z, is the homomorphism obtained
by restricting T to n,(G) C H;

(iii) conversely, zf there is a spin structure P on M, and G is the restriction of
P to the subgroup H of Spin(n) covering the subgroup H af SO(n) then there
is a homomorphism 6 : 1,(G) — Z, such that G = G xg9Zy, H = H x4 Z,
and the linear isotropy representation of H lifts to 7 : H — Spin(n) obtained by
composing the homomorphisms H — H — Spin(n). The bundle P is isomorphic
to G x; Spin(n).

Proof.

(1) Ifa € H and a.|7,p = id, then a : M — M, being an isometry, preserves
pointwise every geodesic through o; therefore a is ineffective in a neighbourhood
of 0 and, since M is connected and G acts effectively, a is the unit element
of G; this shows that 7 is injective. The map G — P = G x,SO(n) given by
aw— [(a,I,)] is then injective and makes G into a restriction of P to H.

(i1) By restriction, the sequence (5.4) gives the exact sequence

I 7, (G)—~HSH- 1

Let 7 be the (injective) linear isotropy representation of H; the corresponding
representation of / is 7 o 7 and the projection

o:P =G x;Spin(n) - Gx,80(n) =P

is given by

ol(a,b)] = [(t(a),p(b))],
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where (a,b) € GxSpin(n) and ¢ isas in (5.4). Since poT = Tot, the restriction
of 7 to 7, (G) C H takes values in Z, C Spin(#) and defines a homomorphism

0:7(G) — Z,. (5.5)
Let G and H be the groups G xg Z, and H x4 Z», respectively. The map
t: H — Spin(n), 1t[(a,e)] = e(a),
where (a,¢) € H x Z,, is a well-defined homomorphism which is injective,
7[(a,e)] = 1 = e1(a) = a € n,(G), e=0(@a").

The obvious map
G = GX@ZZHG’X;Spin(I’I) =P

is also injective and makes G into a restriction of P to H.

(iii) If P is a spin structure on M and G is its restriction to H, then G is a
double cover of G. According to lemma 2, there exists a homomorphism (5.5)
such that G = G xp Z,. Let 7 : H — Spin(n) be the injection defining H as a
subgroup of Spin (7). The linear isotropy representation of A is the composition
of maps H — H — SO(n) and it lifts to 7, as announced in the theorem. The
bundle P is obtained from G by extending the structure group of the latter bundle
to Spin(n), P = H x;Spin(n). Moreover, an easy check shows that the obvious
map P — G x; Spin(n) is an isomorphism of spin structures. O

Remark. The relations between the various maps and spaces occurring in theo-
rem 2 are summarized in the commutative diagram

H-G
B | L
Spin(n) < H — G — P = G x; Spin(n)
rl i ! !

SO(n) <« H— G — P = Gx:50(n)

where all horizontal arrows are injective. The homomorphism § : G — G =
G xgZy,0(a) = [(a,1)], has the same kernel as 6 and is surjective whenever
6 is. If ker @ = 7;(G), then there is a “trivial spin structure”, G = G x Z,.

6. Spin structures on even-dimensional real quadrics

Theorem 1 will now be used to determine all spin structures on even-
dimensional quadrics. Since the groups Spin (7 ) are simply connected for n > 3,
but Spin(2) is not, we treat separately the quadrics Q »,,—1. We use the notation
of theorem 1.
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(i) Let p + g = 2m and p, q > 2; the group
G = Spin(p + 1) x Spin(g + 1) (6.1)

is simply connected and acts as a transitive group of isometries on Qp ;, endowed
with either of the two metrics g,', and g, ,, defined in section 4. In view of the
homomorphisms (2.9) and (2.10), one can treat simultaneously both signatures

provided that one assumes the generators (fi,..., f;+1) of the Clifford algebra
associated with RI*! to satisfy

Julv + o fu = £20u, (6.2)
where u,v = 1,...,q + 1 and the signs + and — correspond to the signatures

(p + q,0) and (p, q), respectively.
The group G acts in O, 4 according to

(a,0)[(x,¥)] = [(axa™',byb™ )],
where (a,b) € G, (x,y) € S, x S, and Clifford multiplication is understood on
the right. The isotropy subgroup H preserving the point [(e,., f;4+1)] has
H, = Spin(p) x Spin(q)

as its connected component of the unit element and is generated by Hy and the
element (ej€,1, f1 f7+1). The linear isotropy representation 7: H — S(O(p) x
O(q)) follows easily from proposition 7. It is given by

t(a,b) = (pla), p(b)) for (a,b) € Hy, (6.3)

glec i) =B, 1) (6.4)
where E; and F; are the reflections of R? and R? in hyperplanes orthogonal to
e; and f], respectively.

The restriction of 7 to Hy lifts to 7: Hy — Spin(p + ¢q) or Spin(p, q),

to(a,b) = ab for (a,b) € H,. (6.5)

Theelement (—E;,—F;) € S(O(p)xO(q)) is covered by the elements +e, f;vol,
where vol = vol,, or vol,, depending on whether the signature is (p + ¢,0)
or (p,q), respectively, cf. (2.11) and (2.13). The square of (eje,41, fifg+1) 1S
(—=1,—1) € Hy and is sent to 1 by (6.5). Therefore, a necessary and sufficient
condition for the existence of a lift of the linear isotropy representation to Spin is

(e fivol)? = 1. (6.6)
By virtue of (2.12), (2.14) and (6.2), the last condition is equivalent to
1 (mod 2) for signature (p + ¢,0), (6.7)

m
m+ p = 0 (mod 2) for signature (p,q). (6.8)

If either (6.7) or (6.8) is satisfied, then there are two lifts 7. given by

gl = T, tiilerey 11, fify+1) = e fivol. (6.9)
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According to theorem 1, the lifts 7, and 7_ define two inequivalent spin struc-
tures on the quadric and every spin structure is equivalent to one of those two.
This justifies the entries in table 1 corresponding to the first four lines.

(i) Let p = 1,4 = 2m — 1 and m > 2. The simply connected group

G =R x Spin(2m) (6.10)
acts transitively on Q; 2,,—; by

(t,a)[(x,)] = [(xexp2ny/—1t,aya™")],

where (tz,a) € G,x € U(1l), and y € S,,,_;. The connected component of the
unit in the isotropy group H of the point [(1, f3,,)] is

Hy = {0} x Spin(2m — 1).
The isotropy group H is generated, as a subgroup of G, by Hj and the element
(3, f1.fam)- (6.11)

The linear isotropy representation is as in (i), viz.,
t:H— {1} xSO(2m—-1),
where
7(0,a) = (1,p(a)), t(4, fiom) = (1, -11).
The restriction of 7 to Hj lifts to
7o: Hy — Spin(2m) or Spin(1,2m—1), 14(0,a) = a.

The element f;--- f5,,_1 € Spin(2m) or Spin(1,2m — 1) covers (1,—F;). Ir-
respective of whether the quadric Q;,,—; is given a metric of Euclidean or
Lorentzian signature, there are, for every m > 2, two different lifts 7, and 7_
of 7; they are determined by

fol, = To tx(h fifom) = 2o fom—y- (6.12)

There is no condition analogous to (6.6) because the square of the element
(6.11), equal to (1,—1), is not in H,.

(iii) The rather well-known case of the torus Q;; can be treated as follows.
Make G =R xRacton Q;; = (U(1) xU(1))/Z, by

(s,0)[(x,y)] = [(xexp2rnv/—1s,yexp2nv/—1¢)].
The isotropy group of [(1,1)],
H = {(s,t): either (s,t) €ZxZor (s + i,t + i) €Zx 7},

is generated, as a subgroup of G, by Hy = {(0,0)} and the elements (4, 1), (1,0)
and (0, 1), subject to
(4,4)? = (1,0) - (0, 1).
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The representation 7 is trivial and it has four different lifts to Spin(2) or
Spin(1, 1), characterized by the four independent choices of signs,

The choice of positive signs in (6.13) corresponds to a “trivial” spin structure.
Among the proper real quadrics there are three that are group manifolds and
thus have trivial (product) spin structures. They are O11 = U(l)ix U(CL),
Q13 = 031 = U(2) and Q33 = SO(4). The quadrics Q17 = Q7, Q73 = Q37
and Q7 are parallelizable and, therefore, also have a trivial spin structure.

7. The topological conditions

In this section we recall the statement of the topological conditions on the
existence of spin structures and apply them to the proper real quadrics. We use
the results on the mod 2 cohomology groups of the quadrics given by Dieudonné
[13] and compute the relevant Stiefel-Whitney classes [23].

Recall that, if E — M is a real vector bundle of fibre dimension 7, then its
ith Stiefel-Whitney class, i = 0,1,...,n, is an element of the ith cohomology
group H'(M,Z,) such that the following axioms hold: (i) naturality, (ii) the
Whitney product property, and (iii) the first Stiefel-Whitney class of the Mobius
line bundle over the circle is non-zero. Denoting by w; (E) the ith class, and
introducing the total Stiefel-Whitney class of E — M,

W(E) = wo(E) + w1 (E) + -+ + wy(E), wo(E) =1,
one can write axiom (ii) as
W(ESF) =w(E)w(F), (@)

where E @ F is the Whitney sum of the vector bundles E — M and F — M.
The multiplication on the right of (7.1) is the cup product in the cohomology
algebra @;_ H'(M,Z,).

The vanishing of w, (E') is equivalent to the orientability of the vector bundle
E — M. The second Stiefel-Whitney class is related to the existence of spin
structures; for our purposes it is convenient to formulate this relation in the
following proposition, which is a corollary from a general theorem given by
Karoubi [16]:

Proposition 9. Let M be an orientable pseudo-Riemannian manifold with a
metric tensor g of signature (p,q) and let

M =T o T
be a decomposition of its tangent bundle into vector bundles such that g|t: (g|7+)
is positive (negative) definite. There is a Spin(p, q)-structure on (M, g) iff
wy(T') + wL(T") = 0. (1.2)
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Moreover, if this condition is satisfied, then inequivalent spin structures are in a
bijective correspondence with the elements of H' (M, Z,).

Note that orientability of the manifold M is equivalent to
(T sl =0 (7.3)
It follows from (7.1) that
wy(TM) = wy (T') + wa (T") + wi (T")w (T")
and condition (7.2) is equivalent to
wy (TM) + w (T")w (T") = 0. (7.4)
If M is an orientable, proper Riemannian manifold, then w;(7’) =
wy (TM) = 0 and condition (7.4) reduces to
wy(TM) = 0. (7.5)
It is clear that to determine the existence of spin structures on the real quadric
Qpq (p,q > 0and p + g even) it suffices to compute the Stiefel-Whitney classes
Wi d) = w1 ) =anil; ),
wipedl =kl ),  wiipq) = willy,),

where T, = T,,® T,,, as in proposition 3. According to proposition 9, the

quadric Q,4 (p + g even) has a
Spin(p + g)-structure iff w}(p,q) + wh (p,q) + w1 (p,q)* = 0, (7.6)
Spin(p, g)-structure iff w)(p,q) + w3 (p,q) = 0. (TeiTy)

According to §24.39, prob. 10 of ref. [13], the cohomology group H "(Qp.g»Z2)
is

& Ep<qg 0<isp. @g=isp+a

=g, 0<'i=p- L p P TD
I < larslonn — q = 1,

fofonlp <.i.< g.

Recall that, for ¢ odd, the quadric Q, 4 is diffeomorphic to S; x S; and, there-
fore, its Stiefel-Whitney classes w; vanish for i > 0. We need to consider further
only the cases when p and ¢ > 2. Under this assumption, the group H ! (Opg,22)
is Z, generated by w, the class of the cocycle taking value 1 on the one-cycle
defined by the map ¢ : [0, 7] — Q, 4, Where

c(t) = [(ejcost + eysint, ficost + frsint)]. (7.8)

Moreover, the square of w—in the sense of the cup product—is a non-zero
element of H?(Q, 4, Z,) and a generator of the group except when p = g = 2.

-
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To compute the first two Stiefel-Whitney classes of the vector bundle 7, , —
Op.q, we consider the bundle map

T,,— TRP, : [(x,u), (¥,0)] — [(x,u)],

which covers the projection 7, of Q,, onto the real, p-dimensional projective
space RPp, m,[(x,y)] = [x]. From naturality we have

2w (TRP,) = w(T},).

According to theorem 4.5 in ref. [23], the total Stiefel-Whitney class of the real
projective space is
w(TRP,) = (1 + @)+,

where @ is the generator of H'! (RP,,Z,) = Z, characterized by the property of
taking value 1 on the class of the one-cycle 7, o c, where c is given by (7.8). This
shows n;&) = o and proves the formulae

wi(p,q) = (p + 1o,
wy(p,q) = $p(p + e?,  wi(p,q) = 9(q + &?,

where p,q > 2 and the coefficients can be reduced mod 2. For p + g = 2m we
have the congruence

Ipp+1) + Lg(g + 1) = m + p (mod 2).
Therefore, if p and ¢ are odd and larger than 1, then w;(p,q) = 0,
wy(p,q) + wy(p,q) =0 iff misodd, (7.9)

there are two Spin(p + ¢q)-structures and two Spin (p, ¢ )-structures for m odd,
but none for m even.
If p and g are even and > 2, then w; (p,q) = w # 0,

0 for m even ,

wi (p,q)* # 0 for m odd. (7.10)

wy(p,q) +wy (p,q) = {
There are two Spin(p + g)-structures for m odd and two Spin(p, g )-structures
for m even, but not otherwise. These observations, together with earlier remarks
about the case p = 1 and ¢ odd, give a complete topological justification of the
results summarized in section 1 and described in section 6.
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