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Preface

The discovery of spin in 1925 and, in 1928, Dirac’s derivation of the spinor field
equation for the electron, prompted the theoretical prediction of the existence
and properties of antimatter, only later confirmed experimentally. These suc-
cesses, along with the basis of spinor calculus, developed by Pauli, Weyl and
others, led many of the leading physicists of the time to conjecture that spinors
might provide the clue for understanding the many obscure and apparently un-
correlated phenomena of quantum physics. In fact, in several later discoveries,
including the exclusion principle, Fermi-Dirac statistics, weak interactions and
parity violation, spinors did indeed play a major role, albeit not the revolu-
tionary one expected for the conceptual foundations of physics by some great
scientists such as Heisenberg.

The advent of relativity, gauge field theories and, more recently, of super-
field and super-string theories have enhanced the role of Riemannian geometry
in higher-dimensional spaces — and hence also that of spinors ~ in fundamental
theoretical physics. Spinors may also be conceived from a geometrical point of
view as elementary geometrical objects, as shown by Cartan, who discovered
them and who stressed the equivalence of projective simple spinors of complex
Euclidean spaces with null planes of maximal dimension in these spaces. The
corresponding projective geometry, remarkably rich and elegant, was subse-
quently primarily the subject of mathematical studies. However, the recent
renewed interest of physicists in the geometry of multidimensional spaces may
lead to a revival of former ideas about the possible role of spinors in physics,
in paiticular, exploiting the geometrical properties developed by Cartan and
others.

This book represents a first step towards the study of spinors and simple
spinors in higher-dimensional real pseudoeuclidean spaces that are of possible
interest to physicists. Among useful techniques presented are Clifford algebras
associated with real vector spaces with scalar products (in particular their
representations, grading and periodicities), general properties of spinor spaces,
bilinear forms and conjugations. Special attention is paid to research work in
theoretical physics, where often, besides theorems and propositions, algorithms
are required for explicit calculations.
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1. INTRODUCTION

Spinors — and structures associated with them — are among the geometrical notions whose
importance was recognized as a result of research in physics. For a long time, the interest of
physicists in spinors was restricted to three- and four-dimensional spaces (Euclidean and
Minkowski). Spinors associated with them have two or four components. Recent work on
fundamental interactions and their unification makes essential use of geometries of more than four
dimensions. For this reason, spinor structures in higher dimensions and, in particular, Elie
Cartan's "simple” or "pure” spinors, have now more chance of becoming relevant to physics than
they had at the time of the appearance of the article by Brauer and Weyl (1935) and Cartan’s (1938)
lectures.

This set of notes contains a review of the first stage of our research oriented towards physical
applications of spinors associated with higher-dimensional geometries. It is intended to be
followed by an account of the spinor groups and structures, the geometry of simple spinors and
twistors, and of the associated differential equations.

1.1 A little history

There is a prehistory of spinors: the period of time, before the discovery of the spin of the
electron, when mathematicians considered notions and ideas closely related to those of spin
representations (in the present day terminology). It begins probably with Leonhard Euler (1770)
and Olinde Rodrigues (1840) who discovered new representations of rotations in three-dimensional
space. The latter wrote an equation for a rotation (x, y, z) = (x', y', 2) equivalent to

X' =(1+i@?+n2+p2)lUuxut (1.1)
where
1+%ip -'i(im-!-n) z x-iy
U= , X= , (1.2)
S(m-n) 1-%ip X+iy -z

and similarly for X'. The right hand side of (1.1) is rational in the components of the vector (m, n,
p) parallel to the axis of rotation; the angle of rotation is @ =2 arc tg -;- Vm2+n2+p? and the unitary
unimodular matrices * U cos —;—  cover the rotation in question. This may be interpreted to mean
that Euler and Rodrigues knew that Spin(3) = SU(2). Formulae for rotations similar to (1.1) were

also known to Carl Ludwig Gauss (cf. Cartan 1908).




The discovery of quaternions by William Rowan Hamilton (1844) led to a much simpler,
"spinorial” representation of rotations: if q = ix + jy + kz is a "pure” quaternion and u is a unit
quaternion, then

q—-)uqu‘l

is a rotation and every rotation can be so obtained. This observation, which can be used to establish
the isomorphism Spin(3) = Sp(1), was made by Arthur Cayley (1845) who mentioned, however,
that the result had been known to Hamilton. Cayley discovered also a quaternionic representation of
rotations in four dimensions that was equivalent to the statement Spin(4) = Sp(1) x Sp(1) (Cayley
1855). Quaternions are now an important part of the structure of real Clifford algebras. In this
context, it is instructive to recall the view of Lord Kelvin (quoted after Kline 1972):

"Quaternions came from Hamilton after his really good
work had been done; and though beautifully ingenious,
have been an unmixed evil to those who have touched
them in any way... Vector is a useless survival, or
offshoot from quaternions, and has never been of the
slightest use to any creature.”

The Hamilton-Cayley representation of rotations in 3 and 4 dimensions by quaternions was
generalized to higher-dimensional spaces by Rudolf O. Lipschitz (1886) who used for this purpose
the associative algebras introduced by William K. Clifford (1878). The algebras considered by
Clifford and Lipschitz were generated by n anticommuting "units" e, with squares equal to-1. In
E. Cartan’s "Nombres complexes: Exposé, d'aprés l'article allemand de E. Study (Bonn)" there is
a definition and classification of real Clifford algebras of arbitrary signature (Cartan 1908).

The road to spinors initiated by Euler and essentially completed by Clifford and Lipschitz
may be described as being based on the idea of taking the square root of a quadratic form. Indeed
the matrix X given by (1.2) is linear in x, y, z and has the property

X2=(x2+y2 4291 (1.3)

where 1 is the unit 2 by 2 matrix; Clifford algebras provide a universal method of generalizing (1.3)
to higher dimensions and arbitrary signatures.

Spinors have another parentage, related to the study of representations of Lie groups and
algebras. The Lie algebras of orthogonal groups have representations which do not lift
("integrate") to linear representations of the groups themselves. For example, the Lie algebra of




SO(3) is isomorphic to R3 with the vector product playing the role of the bracket,
[eg. el =eg, etc. (1.4)

The representation of (1.4) given by e, — ©,,/21, where the Pauli matrices are

01 0 - 10
G = , On= , G, = , 1.5)
! (1 0) g (i 0) ; (0 —1) (

does not lift to a representation of SO(3), but integrates to a representation of SU(2), the
simply-connected double cover of SO(3), or, in other words, to a two-valued representation of
SO(3). Cartan (1913) determined all irreducible representations of the Lie algebras of the groups
SO(n) and found that, for every n > 2, there are among them representations which do not lift to
SO(n). This is so because the groups SO(n) are not simply-connected; the double valuedness
comes from

n; SOm) =Z, for n>2 (1.6)

and Spin(n) is the double cover of SO(n) which is simply-connected for n > 2. Cartan's approach
was infinitesimal: he considered representations of Lie algebras only. Brauer and Weyl (1935)
found global, spinorial representations of the groups Spin(n) for all n. This road to spinors may be
called topological: itis related, in an essential way, to the non-triviality of the fundamental groups
7; of the groups of rotations. It has the virtue of allowing a generalization of the notion of
spinorial representations to general linear groups (Ne'eman 1978). As a manifold, the group
GL*(n, R) of n by n real matrices with positive determinant is homeomorphic to the Cartesian
product of manifolds,

SO() x RA(M+1/2, (1.7

Therefore, for n > 2, m; (GL*(n, R)) = Z, and the group has a simply-connected universal cover
GL*(n, B) homeomorphic to

Spin(n) x RAO+D/2, (1.8)

The- group aff(n, ), for n > 2, has no finite-dimensional faithful representations. In other
words, spinors associated with the general linear group have an infinity of components. They have
the virtue of not requiring, for their definition, any quadratic form or scalar product; they can be
contemplated on a "bare" differentiable manifold without metric tensor. The topological approach



to spinors is more general than the one based on the idea of linearization of a quadratic form.

The importance of the two-valued representations of the rotation group for physics became
clear after the discovery of the intrinsic angular momentum — spin — of the electron (Uhlenbeck
and Goudsmit 1925) and through the work of Wolfgang Pauli (1927), Paul A.M. Dirac (1928) and
many other physicists on wave equations describing the behaviour of fermions, i.e. particles with
half-integer spin. According to B.L. van der Waerden (1960), the name spinor is due to Paul
Ehrenfest.

Hermann Weyl (1929) put forward a relativistic wave equation for massless particles
described by a two-component spinor function. Weyl's equation was criticized by Pauli (1933) on
the ground that it was not invariant under reflections. Ettore Majorana (1937) introduced another
equation, closely related to Weyl's, based on a reality condition equivalent to the identification of
the particle and its antiparticle. Two-component equations became accepted in elementary particle
physics after the discovery of parity violation in weak interactions.

At first, spinors baffled physicists who, under the influence of relativity theory and despite

Lord Kelvin's opinion, were becoming accustomed to scalars, vectors and tensors. In the words
of C.G. Darwin (1928):

"The relativity theory is based on nothing but the idea of

invariance and develops from it the conception of tensors

as a matter of necessity; and it is rather disconcerting to

find that apparently something has slipped through the

net, so that physical quantities exist, which it would be,

to say the least, very artificial and inconvenient to

express as tensors'.

What is a spinor? Every physicist uses this notion frequently and knows it well, but
amazingly diverse definitions of spinors are given in the literature. The differences among the
definitions of spinors are more profound than those related to vectors and tensors; for spinors,
there are differences in the substance and not only in the form of the definitions.

Geometry and physics require a scheme to deal with fields of quantities such as vectors,
tensors and spinors. Tensors of various types are first defined in terms of vectors: for example,
they may be described as multilinear maps on Cartesian products of vector spaces and their duals.
This algebraic definition is then extended to differentiable manifolds by taking the tangent bundle
and applying to it the "functor” corresponding to the type of tensors under study. No such
functorial or natural construction can be given for spinors because there are topological obstructions
to their existence on manifolds. Moreover, the "obvious" algebraic definition of a spinor space




may be extended in inequivalent ways to manifolds (Trautman 1987). The algebraic definition,
discussed in Ch. 5 to 7, may be formulated as follows (Chevalley 1954): assume, for simplicity,
that V is a 2m-dimensional real vector space with a scalar product g,. The space of (Dirac) spinors
of (V, gp) is the carrier space Sy of a complex, faithful and irreducible representation of the Clifford
algebra C(gy). Since the algebra (fg) is simple, all such representations are equivalent and the
2™.dimensional space S is determined up to isomorphism.

There are at least two inequivalent extensions of the algebraic definition of spinors to
manifolds. We recall them here for the special case of a 2m-dimensional oriented manifold M with
a positive-definite Riemannian metric tensor g.

() The standard definition (Haefliger 1936, Borel and Hirzebruch 1958-60) of a spinor
structure on M: it is a spin prolongation P of the bundle Fg of orthonormal frames of coherent
orientation on M. There are bundle maps

Zy
d
Spin(2m) > P—-> M 1.9)
d Lo
S0(2m) — Fg —M

(see, for example, Dabrowski and Trautman (1986) for details and references). The bundle X — M
of Dirac spinors is associated with P — M by the standard representation of Spin (2m) in Sy =

=C2" The prolongation P exists if, and only if, the second Stiefel-Whitney class of M vanishes.

(i) If M admits an orthogonal almost complex structure J, then one can define a "Chevalley
bundle"

S=AN C A(C®T™) (1.10)

where N is the totally null subbundle of C ® TM consisting of all complex vectors of the form
u-i J(u), where u € TM. The bundle S — M has S, as its typical fibre and there is a bundle map

chg) xS — S (1.1D

making the fibre of S = M at x € M into the carrier space of a representation of the Clifford
algebra Cf(g,) associated with (T, M, g,), where g, is the restriction of g to the tangent space T,M.



The bundles % and S are inequivalent: among even-dimensional spheres only those of
dimension 2 and 6 admit both Chevalley and Dirac bundles. The Dirac bundles of spheres are all
trivial (Gutt 1986), but the Chevalley bundle of S, is not. All complex manifolds admit Chevalley
bundles defined by their complex structure. In particular, this is true of the even-dimensional
complex projective spaces which have no Dirac bundles.

For most purposes, one assumes the standard definition (i). We have mentioned definition
(ii) to emphasize a certain non-uniqueness in the notion of spinors on manifolds. The latter
definition is closely related to the approach to spinors through differential forms (Ivanenko and
Landau 1928, K#hler 1960, Graf 1978) and to the representations of Clifford bundles considered
by Karrer (1973).

1.2 Null elements and simple spinors

The approach to spinors exposed by Elie Cartan (1938) is based on the use of null D
(light-like, optical) geometrical elements: vectors with vanishing squares and linear spaces
containing non-zero vectors orthogonal to the space. The connection between spinors and null
elements is of fundamental importance for the applications of spinors in the theory of relativity
(Penrose 1960, Penrose and Rindler 1984, 1986). It is at the basis of the Newman-Penrose
(1962) formalism developed to study and solve Einstein's equations. The discovery of twistors by
Penrose (1967) is closely linked to observations concerning a remarkable Robinson congruence of
null lines in Minkowski space (Penrose 1987). Twistors have led to deep results, such as new
methods for solving both linear and non-linear equations (Penrose and Mac Callum 1972, Ward
1977).

A connection between spinors and null vectors can be illustrated on the old problem of
Pythagorean triples, i.e. triples x, y, z of positive integers such that

x%+y2 =52 (1.12)

Equation (1.12) means that the vector (%, y, z) is null with respect to a scalar product of signature
(2.1). Itis equivalent to the statement that the symmetric matrix

1) In pure mathematics the adjective "isotropic” is used to denote vectors with vanishing square and
also vector spaces consisting of such vectors (Porteous 1981). Physicists refer to such objects as
"null”. The former choice is somewhat misleading since the word "isotropy" is often used in a
different context: there is the isotropy subgroup defined by the action of a group in a space.




z+y X
X=1 ( ) (1.13)
X z-y

is of rank 1: det X = 0 and X # 0. There thus exists a two-component real "spinor” (p, q) such that

p
X=( )(P, Q (1.14)
q

x=2pq, y=p?-q% z=p*+q’. (1.15)

or

Not only does (1.15) give a solution of (1.12), but every Pythagorean triple of relatively prime
integers (X, ¥, z) can be represented as in (1.15) by choosing a suitable couple of relatively prime
integers p and q.

As an example closer to physics, consider the vectors E and B of a non-zero electromagnetic
field, the complex vector

F=E +iB = (F;, Fy, F3), (1.16)
and the symmetric matrix
Fy +iF, iF5
b= . 117
iF3 F;-iF,
Its determinant,
dﬁt q) = F12 -+ F22 + F32
vanishes if, and only if, the electromagnetic field is simple or null, i.e. when

E-B=0 andE?=B2 (1.18)

%
If this is so, then there is « complex two-component spinor ¢ =( ) such that
¢



)
¢ = ( )(q)p 07).
)

The spinor ¢ € C2 is determined by F up to a sign and can be also used to form the Hermitean

1)
Y= ( ) (94, 99 (1.19)
)

matrix

Equation (1.19) can be abbreviated to read y = ¢ ¢ and the matrix y represented as a linear
combination of the three Pauli matrices and the unit matrix 6, = I,

yv=kt ¢

M (summation over u =0, ..., 3) (1.20)

The real vector k € R* with components given by (1.20) is null with respect to the Minkowski
scalar product of signature (1,3). Moreover,

k°=IE!={B! and k°k=ExB,
where (k1, k2, k3) = -k. Simple electromagnetic fields characterized by (1.18) and (1.20) play a
major role in the theory of shear free congruences of null geodesics in Lorentzian manifolds; they
give rise to an "optical geometry” and a Cauchy-Riemann structure on the space of null geodesics

(Robinson 1961, Penrose 1983a, Trautman 1985, Robinson and Trautman 1986).

To put in perspective these examples, consider the complex vector space V = C2™ with a
scalar product g and a faithful irreducible representation

¥: Ch2m) — CE™) (1.21)

of its Clifford algebra (these notions are defined and studied in detail in Chapter 6). Letoe S=
=[2™ be a non-zero Dirac spinor. Its direction dir ¢ defines a vector subspace of V,

N(dir¢) = {ue Viywuw) ¢=0}. (1.22)
From the basic property of the representation (1.21),

1(w) Y(v) +¥(v) Yw) = 2g (u, v), (1.23)




it follows that N = N (dir ¢) is totally null, i.e. every vector in N is null. The dimension of N is not
larger than m. A necessary condition for N to be of the maximal dimension m s that ¢ be a Weyl
spinor, i.e. an eigenvector of the helicity operator

F=i"y % .. Yo (1.24)

where ¥, = Y&, and e, (o = 1, ..., 2m) are the vectors of an orthonormal basis in V embedded in
¢l(2m). This condition is also sufficient for m = 1, 2, and 3: there is a natural, bijective
correspondence between the projective space of Weyl spinors and the set of maximal, totally null
planes of the corresponding helicity (§ 5.4). For m 2 4 the complex dimension 2m-1.1 of the
projective space of Weyl spinors is larger than the dimension m(m-1)/2 of the manifold

SO2m)/U(m) (1.25)
of maximal totally null planes. Elie Cartan calls a spinor simple (in the French edition, Cartan

1938; in the English translation, the adjective pure is used) if it defines by (1.22) a totally null
plane of maximal dimension. Cartan shows that a Weyl spinor ¢ is simple if, and only if,

<B ¢, yal y% -, ¢>=0 (1.26)
P

for all sequences of integers o such that
15a1<oc2<...<ap$2m and O0<p<m-l. .27

Here B : S — S* is such that by, = By, B! and it is understood that for p = O condition (1.26)
reduces to

<Bo, ¢>=0. (1.28)

The m-form with components given by (1.26) for p = m characterizes the m-dimensional totally
null plane associated with the simple spinor ¢.

In eight dimensions (m = 4) equation (1.28) is the only condition for ¢ to be simple. Here
simple spinors lie on a "null cone" in the eight-dimensional space of Weyl spinors; an interesting
triality; or symmetry between the three eight-dimensional spaces (vector space and two spaces of
Weyl spinors), appears in this case (Study 1903, Cartan 1925, Weiss 1933, Chevalley 1954, Tits
1959, Porteous 1981, Penrose and Rindler 1986).
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Simple spinors can be defined in a similar manner for real vector spaces with a neutral scalar
product. For other signatures, if one insists on staying within the domain of real numbers, the
situation is much more complicated and subtle. For example, if the scalar product is
positive-definite, then there are no null directions whatsoever and the group SO(n) of rotations acts
transitively on the projective space RP,_; of vector directions. For sufficiently high n, however,
the action of Spin(n) on the projective spinor space is not transitive. The "simplicity" of a spinor
can be measured by the dimension of its orbit under the action of the spin group: the lower the
dimension; the simpler the spinor. Only partial results have been so far obtained on the
classification of orbits of Spin (k, £) and the geometrical interpretation of simple spinors in those
cases (Porteous 1981, Igusa 1970, Popov 1977, Benn and Tucker 1988, Budinich 1986b,
Budinich and Trautman 1986).

1.3 About the present work

In this paper, we describe in considerable detail the spinorial representations of the Clifford
algebras associated with complex and real vector spaces. We give explicit methods to find the
representations for arbitrary dimension and signature. We also present all the essential information
about the invariant bilinear and Hermitean forms on the carrier spaces of the representations.
Special attention is devoted to the appearance of Weyl and Majorana spinors (of two kinds), to
charge conjugation and to the symmetry and signature of the invariant forms. Our main tool is the
classical theorem about representations of simple algebras (§ 4.2).

To obtain an overall picture of the representations of Clifford algebras it is convenient to
divide the study into several steps in such a way that at each step a new structure is introduced.

()  Atfirst, one forgets about the Clifford algebra everything but its structure of algebra A. For
any algebra B, we denote by 2B the direct sum B @ B, cf. § 4.5. There are two types of
complex algebras,

CE™ and2C2™),
and five types of real algebras,
REM), 2RE™), HR™), 2HEC™) and C2™).
The integer m is simply related to the dimension of the underlying vector space. For

example, considered as abstract algebras, the three algebras Cf{4), C(4,1) and C42.3) are all
isomorphic to C(4).




(i

(i)

@)
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If the Clifford algebra is considered together with its Z,-grading given by the main
automorphism ., then there are still two types of complex algebras, but already eight classes
of real algebras, cf. Table IV in § 7.1. This provides a classification finer than at the
previous step, but one cannot determine the signature of the underlying vector space from the
sole knowledge of its graded Clifford algebra 4, — 4. For example, the graded algebra

2R(8) — R(16)

is isomorphic to Cfy(8,0) — CA8,0), Cfy(4,4) — CK4,4) and C(0,8) — CA0,8). The class
of the real algebra Cf(k, 2) depends on

k-2 mod8. (1.28)

Y:4—>End S

is a faithful irreducible representation of a simple algebra 4 with an involutive
antiantomorphism f, then the contragredient representation

YA EndS* where () =Y (B(@),

v
is equivalent to 'y and there exists an isomorphism B : S — S* intertwining yand vy. If 4is
central simple, then B is either symmetric or skew; it defines an inner product on S. The
symmetry of B depends on the dimension n of the underlying vector space

B forn=0,1,2,7 mod8
B - (1.29)
-B forn=3,4,5 6 mod8

The double periodicity mod 8 given by (1.28) and (1.29) gives rise to a chessboard
arrangement of real Clifford algebras alluded to in the title of this work and presented in
detail in § 7.5 and Tables VI-IX.

There is a great wealth of structure in a Clifford algebra 4 taken together with the vector
space V that generates it:
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1. The natural linear isomorphisms

A=xAV=AV* (1.30)
allow an interpretation of elements of the Clifford algebra as multivectors or forms.

2. The grading, 4= 4, ® 4, may be used to define an associated graded or "super"” Lie
algebra. Its underlying vector space coincides with 4 and the graded bracket is

{a,bl]=ab-(-1)Pdba, whereae Ay, be Ay

and p, q =0 or 1. Of particular interest is the graded Lie subalgebra

L=K ®V® A%V, . (1.31)
Ifu,ve V,then
[u, vi=uv+vu=2g(u,v) (1.32)
so that
K, £]1=0, [V,VICK, [V,A2V]CV (1.33)
and
[A2V,A2V]C AZV. (1.34)

The last inclusion means that A2 V is an (ungraded) Lie subalgebra: it is the Lie algebra of the
orthogonal and spin groups. These groups are also submanifolds of 4; we defer their
detailed description to subsequent work.

3. If Bis a minimal left ideal of a simple algebra with unity 4, then
v:4->End 8, where y(a)b=ab,
for every a € 4 and b e B, is a faithful irreducible representation of 4. This gives

Chevalley's (1954) interpretation of spinors as elements of a minimal (left) ideal of a Clifford
algebra.
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All Clifford algebras are "supercentral” (§ 5.3). If (e,) is an orthonormal basis for a scalar
product of signature (k, £), then the square of the volume element

n =€ 62 s ek+Q
is
12 = (- 1)&9) &-2-1)/2,

For k-2 = 2 or 3 mod 4 the square is negative and T belongs to the centre of 4; or 4, respectively.
It may, therefore, be represented by i times the unit endomorphism of the space of Weyl or Dirac
spinors.

There are at least two other "independent” ways of introducing complex numbers in quantum
theory. The first comes from the observation that energy and momentum are related to translations.
Infinitesimal translations are represented by first-order differential operators. To make them
(formally) self-adjoint one has to multiply them by i. A related observation is that the Laplacian on
compact Riemannian spaces ia a negative operator.

Another reason for considering complex wave functions and, in particular, spinor fields, has
to do with electromagnetic interactions. According to the gauge, or "minimal interaction" principle,
wave equations for charged particles contain the gradient operator d always in the combination
d-ieA, where e is the charge and A the potential of the (external) electromagnetic field. The i comes
from the fact that the Lie algebra of the group U(1) — the gauge group of electrodynamics —
consists of pure imaginary numbers. It is not a trivial or obvious matter that the three i's (spinorial,
guantum-mechanical and electromagnetic) are one and the same; but they are as indicated by the
successes of the Dirac equation. Similar remarks have recently been made by Chen Ning Yang
(1987).

1.4  Motivation and outlook

Every physicist will agree that spinors are a necessary and important tool in the description of -
fundamental interactions. The success of the Dirac equation is one of the most beautiful chapters of
theoretical physics. Spinors play a major role in essentially all recent attempts at building new
models (grand unification, supersymmetry, strings and membranes). They are also very useful in
the classical, relativistic theory of gravitation (Penrose and Rindler, 1986). An impressive example
of the usefulness of spinor analysis in a new domain has been provided by Edward Witten (1981)
who proved the "positive energy theorem" in Einstein's theory in a manner which is more
transparent than the earlier proof due to Schoen and Yau. Thirring (1972) showed that by spinors
in'a five-dimensional space one can obtain CP violation in a geometrical way. Recent renewal of
interest in generalized Kaluza-Klein theories (cf., for example, the papers by Witten (1981), Abdus
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Salam and . Strathdee (1982), and Steven Weinberg (1983)) has led to considering spinors in
spaces of dimension greater than four. In a somewhat different context, one of us (Budinich 1979,
1986b) proposed to consider fields of simple (pure) spinors in suitable higher-dimensional spaces
and to relate them to wave-functions of physical particles. There are indications that in this manner
a "natural” way of deriving interaction terms of Lagrangians of particles with internal symmetry
may be obtained. Attempts have been made to write a differential equation for simple spinors,
consistent with the quadratic constraints (1.26). For example, the method of Lagrange multipliers,
applied to a variational principle in 7 space-time dimensions, leads to a Weyl equation for simple
spinors with a "mass term" induced by the constraint (1.28) {cf. Budinich and Trautman 1986 and
the references given there). Remarks on the possible physical relevance of simple spinors have
also been made by Benn and Tucker (1984) and by A.D. Helfer (1983).

There are some "unexpected” applications of spinors: spinor connections on low-dimensional
spheres coincide with simple, topologically non-trivial gauge configurations (Budinich and
Trautman 1985). Spinors provide a fine tool for the study of topological properties of manifolds
(Atiyah, Bott and Shapiro 1964, Atiyah and Singer 1968). Thereis a remarkable "spinorial” form
of the Enneper-Weierstrass formula for solutions of the equation for minimal surfaces and of its
extension to strings (Budinich 1986, Budinich and Rigoli 1987, and the references given there). It
is based on a representation of complex and real null vectors in terms of spinors, analogous to
those described in § 1.2,

Considerations such as these convince us that there may be something more to spinors than
has been said and seen so far. This view has been put forward, quite a long time ago, by Roger
Penrose who pursued the most comprehensive and farthest reaching programme of applying
spinors — and their close relatives, twistors — in fundamental physics. We share his view "that
we have still not yet seen the full significance of spinors — particularly the 2-component ones — in
the basis structure of physical laws" (Penrose 1983b). We are inclined, however, to extend the
belief in the significance of spinors to those associated with higher-dimensional geometries and
replace the phrase about the 2-component spinors by one referring to simple spinors and the
homogeneous spaces mentioned in § 1.2. (Note that, in four-dimensions, simple spinors have two .
components. More generally, Weyl spinors are simple in neutral spaces of dimension £ 6. In
particular, twistors are simple).

Our work is an attempt to follow this road. The present article is a preparation for a
systematic study of the spin and pin groups and of their representations in relation to simple
spinors. We intend to make more precise the idea that the dimension of the orbit is a measure of the
simplicity of spinors it contains, use our Proposition 4.2 to-derive the biquadratic spinor identities
(Case 1955), study (sirnple) spinor fields on homogeneous spaces — such as the ones arising from
conformal compactification — and consider the possibilities offered by various schemes of
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dimensional reduction. As many before us, we draw encouragement from the Great Masters.

Some of them have already been mentioned. We conclude this introduction with a quotation from

Hermann Weyl (1946):

"The orthogonal transformations are the automorphisms of
Euclidean vector space. Only with the spinors do we strike
that level in the theory of its representations on which
Euclid himself, flourishing ruler and compass, so deftly
moves in the realm of geometric figures".



2. NOTATION AND TERMINOLOGY

In this work we essentially adhere to the standard notation prevalent in mathematical physics.
In a few cases, where the customs of mathematicians and physicists diverge, we have had to make
painful decisions to achieve a consistent and clear notation. Most of our conventions are
summarized below; some of them are explained as they appear in subsequent chapters.

We use the customary set-theoretical notation: the symbols M, U and < denote the
intersection, union and inclusion of sets, respectively; @ is the empty set and x € X reads: X
belongs to X. If X is a set, then

{xe X1P (X))}

is the subset of X consisting of all those elements which have the property P. The Cartesian
product X x Y of the sets X and Y consists of all pairs (x, y)such thatx € X andy e Y. A finite
set may be described by enumerating its elements; if there are n of them, then the set may be
represented as {X;, X3, .., X,}. A subset R of X x X is an equivalence relation in X if, for every

x, v, z€ X the following are true

(x,Xx)e R; if (x,y)€ R, then(y,x) € R;
if(x,y)e R and(y.,2) € R, then(x,z) € R.

If R is an equivalence relation in X, then the quotient set of X by R is
X/R ={YcX!YxYc R and (xe Yand (x,y)eR)=>ye Y}.
The canonical map
k:X—>X/R

assignstox € X the set Y € X /R containing x.

The letters Z, B, € and H denote the sets of integers, real numbers, complex numbers and
quaternions, respectively. Addition and multiplication of numbers define in the set Z the structure
of aring. f mand n € Z and m-n is divisible by p € Z,p >0, then we say that m and n are

congruent modulo p and write

m=n mod p.
The relation Rp in Z, where
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Rp= {(m,n)e Z xZ Im=n mod p},
is an equivalence relation and the quotient Zp =2 /Rp is also aring; if p is a prime - and only in
this case - it is a field, i.e. a commutative ring with all non-zero elements invertible. The sets B and
{C are also fields and H is a "non-commutative field": it is an associative, but non-Abelian, ring with

all non-zero elements invertible. »

If X and Y are sets, then
f:X->Y

means "f is a map (function) from X to Y" and

X3xmfx)e Y
means "f(x) € Y is the value of f at x € X". The composition of mapsf: X— Yand g: Y— Zis
the map g °f : X— Z. For every set X, there is the identity map idy : X— X such that id,(x) = x
for every x € X. One often writes id instead of id,.

Most of the time, we shall work in this article with finite-dimensional vector spaces over the
field K of real or complex numbers. If V is a vector space, then the identity map idy; is usually
denoted by 1. If V and W are vector spaces over K, then the map

f:Vvow
is said to be K-linear, or a homomorphism of vector spaces, if
f(Au + pv) = Af(u) + W f(v)
foreveryu,ve V and A, pe K. The set
Homg (V, W) = (f: V — W [{ is K-linear) @.1n
is also a vector space over K. Homomorphisms of V into V are called endomorphisms of V, and

Endg V = Homyg (V, V).

The symbol of the field is omitted whenever this does not lead to misunderstandings. If f
Hom(V, W) and v e V, then one often writes
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<f, v> instead of f(v) 2.2)

This convenient notation is similar to, but not identical with, the one introduced by Dirac (1958) for
Hilbert spaces: the evaluation map

Homg (V,W)x V> W
given by
(£, V)i <f, v>
is bilinear. The dual of V is the vector space
V* = Homg (V, K); (2.3)

its elements are called linear forms or 1-forms on V. If £ : V — W is a homomorphism, then its
transpose

U W* — V*
is defined by
<oy, v> = <a, f(v)> (2.4)

for every oo € W* and v € V. The symbol o is often omitted when composition of
homomorphisms is considered. If g : U — V is another homomorphism, then to . V* — U* and

fg) ="'g'f. 2.3)

The tensor product of two finite-dimensional vector spaces V and W over K may be defined .
by

V ®, W = Homg (V*, W). (2.6)

Ifve Vand we W, then their tensor product v ® w is an element of Hom(V*, W) such that

<V@w, 0> = <0, V>W Q7
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forevery oo e V*. The spaces U ® (V ® W) and (U ® V) ® W are isomorphic in a natural way;
therefore U ® V ® W is meaningful.

If (ey), =1, ..., n, is a linear basis in an n-dimensional vector space V, then every vector
ue V can be written as

-1
u=u%e,

The Einstein summation convention over repeated indices is assumed to hold in the last formula.
With any linear basis (e,,) in V there is associated the dual basis (%) in V* such that

<e?, ep> = S“B (o, B=1,..,n) 2.8)
where
80‘3 =1 for oo = and 8‘1‘3 = () otherwise.
The components of u with respect to (e,,) are given by u% = <e%, u>. If (e,), @ =1, ..., n, and
(fu , U =1, ..., m, are linear bases in the vector spaces V and W, respectively, then the set of mn

elements of the form

®f

€0 Py

o
isalinear basisin V@® W, LetFe End V, then
Fley) =FoPeg
and then n? numbers Fmﬁ (o, B =1, ..., n) are the components of F with respect to (ey). The trace

Tr F=F % 2.9
does not depend on the choice of the basis and
Tr FG=Tr GF (2.10)

forevery F,G e End V.

If f € Hom (V, W) is invertible, then f is said to be an isomorphism. An automorphism of
V is an invertible endomorphism of V. The set of all automorphisms of V forms the general linear
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group GL(V) of the vector space V. In particular,
GL(n, K)=GLK™M for K=RorC.

The direct sum of vector spaces V and W is the vector space V @ W consisting of all pairs
(v, w), where v e V and w € W, The operations are defined by (v, w) + (v', w') = (v+V', w+w')
and A(v, w) = (Av, Aw) for every A € K; v,v' € V and w, w' € W. There are natural
identifications such as

Vi@V)@W=(V, W) B (V,®W),
(VOW)*=V*® W* etc.
The notation of a direct sum can be extended to the case of several summands.
If V is a vector subspace of W, then there is the equivalence relation R in W
R={@u,v)e WxWluve V}
and the quotient set W/R can be given the structure of a vector space in a natural manner; this
quotient vector space is denoted by W/V. If f € Hom (W, U) and f(v) = 0 for everyve V, thenf
passes to the quotient: there is homomorphism F: W/V — U such thatf = Fox where x: W —
W/V is the canonical map.

There is a point where our notation and terminology differ from those accepted by the
majority of physicists: it concerns complex conjugation and "antilinear” maps. If it is a complex
number, then [l is the conjugate number. If V and W are complex vector spaces, i.e. vector spaces
over L, then a map

f:V->W
is said to be semi-linear (by physicists: "antilinear") if
fu+v)=f)+f(v) and f(uu)=p )

forevery e Candu,ve V. If U, V, W are complex vector spaces, then a map

f:UxV->W
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is said to be sesquilinear if
u— f(u, v)
is semi-linear in u for every ve V and
v — f(u, v)

is linear in v for every u € U. For example, the Hermitean scalar product in a complex Hilbert
space V is a sesquilinearmap VxV — C.

The tensor algebra of a vector space V over K

k
oV 2.11)

D3

V) =

L
I}

is defined by putting
[ k
®V=K, @V=V®.®V (kfactors)

and giving an associative multiplication which can be described as follows. An element t of Z(V) is
a sequence t = (ty, ty, ...) such that

k
4. € ®Y and ¢t =0foralmostallk.

If s is another such sequence, then their tensor product is t ® s, where

(1®s), =), t®s

p+a=k

is a finite sum. Let S(V) be the two-sided ideal in V) generated by all elements of the form v®v,
where v € V. The quotient algebra

AV =T9V)/SV) (2.12)
is called the Grassmann algebra of V. Let
K: VY= AV

be the canonical map; the multiplication (exterior or wedge product) in A 'V is defined by
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K AKE)=x(t®s)

for every t, s € V). Since xis injective when restricted to K @ V, one can identify this space
with its image in A V so that

vav=0 foreveryve V.

Moreover,
2ok
AV=® AV 2.13)
k=0
where
k
AkV=x(®V)

and it is clear that the latter space reduces to the zero vector fork > n = dim, V. If (eg) is a basis of
V, then the set of () sequences

e A€ A..AE (2.14)

where 1 S0 <0ty < ... <oy < n, is a basis of A¥ V. Therefore, the Grassmann algebra of an
n-dimensional vector space is 2™-dimensional.




3. VECTOR SPACES AND INNER PRODUCTS

Clifford algebras and spinor spaces occurring in physics are vector spaces over the real or
complex numbers. Quaternions also appear, in a natural manner, as was alluded to in the
Introduction. There are subtle relations between these number fields and the signature of the
quadratic form under consideration. In some cases, there is a "charge conjugation" which allows
the definition of real spinors. To prepare ground for a systematic presentation of such matters, we
summarize here some elementary notions related to the introduction of real, complex and
quaternionic structures in vector spaces. We also review the definitions and basic properties of
inner products and Hermitean forms needed in the sequel.

3.1 Complex structure in a real vector space
Let W be a 2n-dimensional real vector space. A linear map J : W — W such that J2 = -id is

said to define a complex structure in W. Given such a J one can make W into an n-dimensional
complex vector space by defining

(a +-1b)v=av+bJ(v)
foranya,be B andve W.

For example, if V is an n-dimensional real vector space, then the direct sum W =V @ V can
be given a complex structure by putting

J(u,v) =(-v,u) forany u,ve V.

The n-dimensional complex vector space W is then said to be the complexification of V; instead of
(u, v) and V @ V one often writes u + V-1vand V++-1 V, respectively. Alternatively — and
equivalently — one can view the complexification of V as consisting in taking the tensor
product C ®g V.

Let W; and W, be two real, even-dimensional vector spaces with complex structures J; and
5, respectively. An R-linear map

is also C-linear if, and only if,

£I,=1,f.
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In particular, let Wy = W, =W be real 2n-dimensional with complex structure J. If (e4,....e,) isa
basis in W considered as a complex space, then

CITRY I (3) ey (W)

is a basis in W considered as a real space. With respect to this basis, the endomorphism J is

(7)

where T denotes the n x n unit matrix. An R-linear endomorphism f of W is also C-linear iff it

represented by the matrix

commutes with J, i.e. iff its components are represented by a matrix of the form

a -b

b a
where a, b € R (n). With respect to the complex basis (g4, ..., €,), the same endomorphism is
represented by the matrix

a+V-1be C (n).
Here R(n) and C(n) denote the sets of all n by n matrices with real and complex entries,
respectively.
3.2 Quaternionic structure in a real vector space

Consider a 4n-dimensional real vector space V and a couple (J,K) of endomorphisms of V
such that

JK+KJ=0 and J2=K%=-id. (3.1)

Such a couple defines a quaternionic structure in V by making this setinto a right H-module in
the following sense: for every quaternion

g=t+ix+jy+kz (,xy,2€R)
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and vector v € V there is defined their product vq by
vq =t + xJK(WV) + vJ(v) + zK(v) (3.2)
so that
v(q; +49) =Vvqp + vy,  (vHW)q=vq + wq

and
v(tq) = (tv)q,  (vqy)gy = v(qy9p)

forevery v,we V; q.qp€ H and te R,

A quaternionic endomorphism of V is an R-linear endomorphism f of V commuting with
both J and K. The latter condition is equivalent to

f(vq) =f(v)q foreveryve V andqe H. (3.3)
Note that the endomorphisms J and K are not quaternionic.

Let (eq, ..., &) be a basis in V considered as a right H-module; the components vH =1,
..., n) of a vector

=e, vi
VCuV

are quaternions. Let f and g be quaternionic endomorphisms of V and put
fley) =¢ey f"u and gle) =ey g"u.
Then the composition g f is also a quaternionic endomorphism and
—a gV
(&) e =ey g’ Py

The assignment

fs (Y W

is an isomorphism of the algebra of quaternionic endomorphisms of V on the matrix algebra H(n).
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3.3 Complex conjugation and Hermitean forms

Recall that a complex vector space S consists of a set (of vectors), usually denoted by the
same letter S, and two maps (operations): addition of vectors and multiplication of vectors by
complex numbers. Let us denote — for a short while — the result of multiplication of ¢ € S by A
e € as

prod (¢, A, S)

to be read as "product of ¢ by A in S". The two operations satisfy a number of well-known
axioms. We now define the complex conjugate vector space S to consist of the same set of
vectors as that of S, to have the same addition of vectors as in § and to be given the conjugate

multiplication law:
prod (¢, A, S) = prod (¢, A, 5) (3.4)

The ax1oms of a complex vector space are easily seen to be saitsfied in S. Let us now agree to
denote by ¢ the vector ¢ when it is considered as an element of the complex conjugate space S.
Then (3.4) is equivalent to

prod (9, A, S) = prod (¢, , §) 335
We can now revert to the traditional notation for products of vectors by numbers and write
Ad=2r o 3.6)

instead of (3.5); there can be no confusion because the bar over ¢ on the left-hand-side forces us to
consider the vector as belonging to S and use the corresponding multiplication law. On the
right-hand-side, on the contrary, one first multiplies ¢ by A in S and then puts the resulting vector
in the barred basket. Eq.(3.6) means that the bar map ¢ ¢ is semi-linear: it is in fact a
semi-linear isomorphism of S on S. Ttisclear that S may be identified with S and ¢ with ¢. '

Iff: S — Tis a linear map of complex vector spaces, then the linear map

£:SoT
is defined by

£6) = £0) 3.7)
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If g : T — U is another such map, then

gof=gof (3.83)

Note that if f is linear, then ;is also linear, but the correspondence f+> f is semi-linear, 3& =3»f:
Ae €. The bar map is a universal semi-linear map in the sense that if f : S — T is semi-linear, then
o ffq?) and 5#—9 f(¢) are linear maps: every semi-linear map is the composition of a linear one
with the bar map.

For every complex vector space S, the spaces

(S)* = {&e: S — C | o is linear} (3.9)
and

(S*)={BIB:S — C is linear} (3.10)

are, in a natural manner, isomorphic to each other and to the space of semi-linear forms on S. The
isomorphism 1 : (§)* — (§%) is given by

(o) = E, where <B, ¢>=<o, 6> and e S.

o :§ —» C is linear, then ¢+ <, (5> is semi-linear. The existence of the isomorphism 1
justifies identifying the space (S)* with (S*) and denoting it S*,

Iff:S — Tis a linear map of complex vector spaces, then similar considerations allow the
identification of (f) with (). This Hermitean conjugate map

t?: T* — S*
is sometimes denoted by ff. If g : T — U is another linear map, then
Ot =flgh. (3.11)

In particular, a linear map
f:8->S8*

is said to be Hermitean if
ff=f, (3.12)
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If f is Hermitean, then the sesquilinear form

f:85x8S-»C
defined by )
£, ¥)=<f (), y> (3.13)
is Hermitean in the classical sense,
£y, =10, (3.14)

forevery ¢, y € S.

Given a basis (eu), =1, .., n, in the n-dimensional complex vector space S, one can
express any vector d € S as ¢ = oH € where the complex numbers ¢ are the components of ¢
with respect to (eu). The correspondence

o ot =<k, >
is linear and defines a basis (eM) in S*, called the dual basis. Similarly, by virtue of (3.6)
o=gte,

where (Eu) is the basis in S consisting of the same vectors as (eu). The linear correspondence

G O
defines a basis (¢*) in §*; e
q)u =< eu, o> .
If f is an endomorphism of S, then
f (eu) =fv Gy

where {4, v = 1, ..., n and the components f"u of f with respect to (eu) are complex numbers. For
the barred endomorphism f of S we have, on the basis of (3.6) and (3.7),
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In the spinor calculus originated by B.L. van der Waerden (1929) it is customary to replace
the bars over the basis vectors and the components of geometric objects by dots put above the
indices. For typographical reasons, R. Penrose (1960) replaces the dots by primes. Thus a
generic element of Sis represented as oM ey This notation is particularly convenient when one
considers — as one often does — spinors that are elements of tensor products of the four spaces S,
S*, S and S*. For example, the components of an element of S ® S may be denoted by uf”‘;.

3.4 Real and quaternionic structures in a complex vector space

In § 3.1 we recalled how a complex structure can be introduced in a real vector space. Let us
now consider the problem of building a real space from a complex one; this question is relevant to
the construction of Majorana spinors.

Let us first note that every complex vector space S has a real form obtained by taking the
same vectors as in the original space and restricting the scalars to be real. If ¢ € S and ¢ # 0 then
the vectors ¢ and V-1 ¢ are linearly independent in the real form of S; therefore

Another problem is to represent S as the direct sum of two real spaces, the "real and
imaginary parts of $". There is no canonical way of doing this: such a splitting is an additional real
structure in S. Tt may be introduced as follows. Let

o

C:8§-8 (3.15)
be a linear map such that
CC=id (3.16)
Any vector ¢ € S can be written as
O=0"+¢~
where
+

¢*= 20+ Ch)
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Therefore, there is a direct sum decomposition,
§S=S*® S 317

where
St={pe SI1P=% Co}.

Both S* and S~ are real vector spaces and K : St — 8, where K(¢) = V-1 ¢, is an isomorphism.
Therefore,

dim g S$* =dim g S"=dim - S.

Given an "abstract”" complex vector space S, there is no "natural” decomposition of S into a
direct sum (3.17). This has interesting "global” consequences. Consider, as an example, the
tangent bundle of a 2-dimensional, oriented sphere. Each of the tangent spaces is real
o_dimensional and has a "natural” complex structure, defined by J = rotation of vectors by 90° in
agreement with the preferred orientation. The tangent bundle is thus a complex line bundle, but it
does not admit a smooth real structure. Such a structure would be equivalent to giving a smooth
field of directions in the tangent spaces to the sphere.

Consider now a complex vector space S with a linear map (3.15) such that
CC=-id (3.18)
By taking the determinant of both sides of (3.18) one sees that S is even-dimensional. Every
2n-dimensional complex vector space admits such a map C which allows S to be given a

quaternionic_structure of a right H-module as follows. Take the real form of S — this a real
4n-dimensional space — and define the real endomorphisms J and K by

J®=Co (3.19)
and
K@=V-1¢ (3.20)

It follows from (3.18) that the conditions (3.1) are satisfied. A complex endomorphismf:S - S
isa quaternionic endomorphism if, and only if,

fCc=Cf. (321
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Example 3.1, Let T be a complex vector space. The complex space

has a natural real structure given by (3.15), where

CO®y)=y®¢ forevery ¢, ye S.
The real space S, consists of Hermitean tensors and is spanned by elements of the form ¢ ® 6 In

the notation of spinor calculus, the components of a generic element of S, constitute a Hermitean
matrix (¢HV),

QMY = Vit
Example 3.2, Let T be a complex vector space. The complex space
S=T®T
has a natural real structure given by
CO, =W 9

and a natural quaternionic structure given by

C' (6, V) = (¥, ~9).

3.5 Inner products in vector spaces
Consider a vector space V over the field K = R or C and a bilinear form
g:VxV-K
One says that g is symmetric if

glu,v)=g(v,u) foreveryu,ve V,

g(u, v) =-g(v,u) foreveryu,ve V
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then g is said to be skew. With any such form one associates a linear map from V to V¥, also
denoted by g,
g:V—V*

where
<g(u), v>=g(u,v) foreveryu,ve V (3.22)

so that g is symmetric (resp., skew) if and only if, g = g (resp. 'g = -g). The form g is said to be
non-degenerate if the map g : V — V* is bijective . If this is so, then the inverse map

gl:v¥o Vv (3.23)
defines a bilinear, non-degenerate form on V*
gl(ap)=<a, g B)> (3.24)
where ¢, B € V*. The forms g and g'! are simultaneously symmetric or skew.

A bilinear form g on V which is non-degenerate and either symmetric or skew is said to
define an inner product on V; the pair (V, g) is an inner product space. A scalar product onVisa
symmetric inner product. Two inner product spaces (V, g) and (W, h) are isomorphic if there isa
linear map f : V — W such that

h (f(w), f(v)) = g (u, V) (3.25)

for every u, ve V. Clearly, g and h are then of the same symmetry type. If they are both
symmetric, then f is called an isometry. An isometry of V onto itself is an orthogonal
transformation.

The set O(g) of all isometries of (V, g) is the orthogonal group of (V, g). The special
orthogonal group SO(g) consists of all isometries of (V, g) of determinant 1. If h is a skew
product in W, then W is even-dimensional . The symplectic group Sp(h) is the group of all
automorphisms of the inner product space (W, h). The following Proposition provides the
classification of all finite-dimensional inner product spaces over K =R or C:

Proposition 3.1, Every finite-dimensional inner product space of positive dimension is
isomorphic to one of the following, where k,1€ Z and mis a positive integer:




33

@ (C™, g,), where g is the scalar product
g, V) =0y vi+ . tup vy (g, vge €, a=1,.., m). (3.26)
Notation: O(g,) = O(m, C).

(i1) (C2m, h,), where hy is the skew inner product
hy (0, V) =g Vg - Ugyg Vi + o+ Uy Vo - Uy Vi (3.27)
(uy vee €, a=1, .. 2m),
Notation:  Sp(h,,) = Sp(2m, T).

@iy (Rm, 8k, p)» Wherek +2 =m and gy o is the scalar product of signature (k, 2),

g, o0, V) =0y vy R U Ve - U Vieg e " Uy p Vieg (3.28)
Uy, vg € R, a=1,., m).
Notation: O(gk,Q) = 0(k,2).

@dv) (R2m, h'), where h' is as in (3.27) with ug, v, € R.
Notation:  Sp (') = Sp (2m, R).

The proof of the Proposition is classical and may be found in Bourbaki, Algebre, Ch. 9 (1959), for
example.

If (V, g) and (W, h) are inner product spaces over K, then one can form their tensor product
(V®W, g ®h) by putting

(g ®h) (vi ® wy, vy @ wy) = g(vq, Vo) b (wy, wy) (3.29)

where vy, vo € V and wy, W, € W, and extending (3.29) bilinearly. It is clear that the tensor
product of inner products has the following property

symmetric ® symmetric = symmetric, (3.30)
skew ® symmetric = skew, (3.31)
skew ® skew = symmetric. (3.32)

o

The properties of the tensor product may be stated more precisely in terms of the signature
and index, defined by
index g ,=k-2e Z forreal spaces
and
index g, =m (mod 2) € Z, for complex spaces



34
with a scalar product. Then (3.30) may be sharpened to
Em® 1= 8mn k0 ® Epq = Bkptoq, katp (3.33)
so that for both K =R and C
index (g ® g') = (index g). (index g") (3.34)
and (3.32) may be replaced by the more precise statement
index (skew ® skew) = 0. (3.35)

If (V, g) and (W, h) are inner product spaces over K and g and h are of the same symmetry
type, then one can form their direct sum (V @ W, g @ h) by defining

(g @ h) (vi ®wy, vy ®wy)=glvy, vp) +h(wy, wy)
where vy, vo € Vand wy, wp € W. Clearly,

Em® 8 =8min B2 D Bpgq= Bkup, 04q
and

index (g ® h) = index g + index h. (3.36)

A space with a scalar product g of zero index is called neutral. Such a space is
even-dimensional and can be characterized by the property of having totally null subspaces of half
the dimension. Neutral spaces play an important role in the theory of Clifford algebras.

Let (V, g) be neutral of dimension 2m. It follows from Proposition 3.1. that there then -
exists a null basis in 'V such that the quadratic form g(u, u) is

Uy Uy H Uy Upyo + o+ U Uppy (3.37)
where uy € K (o = 1, ..., 2m) are the components of the vector u with respect to the null basis. If
W;={ue Vluyg=0forim+1<a<im+m}, i=01,

then
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V=W,®W,

and the m-dimensional spaces W and W are totally null. (In the mathematical literature, the
adjective isotropic is often used instead of null; we find that this can be somewhat confusing since
isotropy has other connotations; incidentally, Cartan (1922) referred to null directions in a

Lorentzian space-time as optical, but this name has not been accepted; see also Trautman (1985)).
The scalar product g in a real vector space V is said to be positive-definite if (V, g) is
isomorphic to (R™, g, ,) for some n; the scalar product g is negative-definite if -g is
positive-definite; it is said to be definite if it is either positive- or negative-definite. Otherwise it is

said to be indefinite.

If (V, g) is a real inner product space, then its complexification is the complex inner product
space (W, h) such that W =C ® V and

h(u + iv, u' + iv) = g(u, v') - gv, v") +1i (g(u, v) + g(v, u)). (3.38)
The symmetry of h is the same as that of g; one sometime writes
h=C®g
and refers to h as the complexification of g. The complexification of g | is equivalent to g ;.

Let g be a definite scalar product in an even-dimensional space V. The complexificationh =
= ® g is neutral. Let N be a complex, totally null subspace of W = C ® V of maximal
dimension. The complex conjugate subspace

P={u+iviu-ive N; u,ve V}
is also totally null of maximal dimension. If u+ive NN P,thenu-ive N, and
hu+iv,u-iv)=gu,u) +gv,v)=0.
Since g is definite this implies u = v =0 so that N 11 P = {0} and there is the decomposition

W=N®P.

Let n and p be the components of u € V in N and P, respectively. Since u is real, the vectors n and
p are complex conjugate one to another. The vector i(n - p) is also real and
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J(n+p)=i(n-p)

defines a linear map J : V — V such that 72 =-id and J € O(g). Conversely, if J is an orthogonal
complex structure in V, then

N={u-iJu)lue V}
is a maximal, totally null subspace of W. We have thus proved

Proposition 3.2. There is a natural one-to-one corespondence between the set of all orthogonal
complex structures in an even-dimensional real space V with a definite scalar product and the set of
all maximal totally null subspaces of C ® V.

This has interesting global consequences. Consider, for example, the spheres Sy, of
dimension 2m (m = 1, 2, ...). Itis known (Steenrod 1951) that among them only S, and S¢ admit
an almost complex structure. Therefore, for m # 1 and 3, the complexified tangent bundle of S
does not admit a smooth subbundle whose fibres are totally null of complex dimension m.




4. ALGEBRAS AND THEIR REPRESENTATIONS
4.1. Definitions

Our approach to spinors is based on Clifford algebras and their representations. It is
convenient to present first the relevant notions in the general context of associative algebras. In
particular, we show how the existence of a preferred inner product in the representation space of a
simple algebra is related to that of an involutive antiautomorphism of the algebra.

An algebra over K is a vector space 4 over the field X, together with a composition law
(product), i.e. amap 4 x 4 — 4, (a, b) — ab which is bilinear and distributive with respect to
addition. The algebra is said to be associative if a(bc) = (ab) c forevery a,b,c € 4. Anelement 1
of Aisthe unity if la=al =aforeveryae 4 ThemapK —> 4, givenby A — A1, Ae K, is
injective and one identifies K with its image in 2, we write A € Ainstead of A.1. A subset Gof 4
is said to generate the algebra if every element of 4 can be expressed as a linear combination of
products of elements of G. For example, if Gis a (linear) basis of 4, considered as vector space,
then G generates 4.

Example 4.1, The set € of complex numbers, with standard multiplication, is a two-dimensional
algebra over R. This algebra is associative, commutative, has the unity 1 and is generated by the
imaginary unit V-1. The pair (1,V-1) is a basis of C.

Example 4,2, The set H of quaternions is a 4-dimensional associative algebra over R. It is
generated by G = {i, j}, where i2=j2=-1and ij = -ji. Any element of H is of the form

t+xi+yj+zk, wherek=ijandt, x,y,z€ R.

Example 4.3, Let S be a right module over the ring L = B, € or H. The set End; S of all
endomorphisms of S (cf. § 3.2) is an algebra over B (the product is defined as the composition of
endomorphisms). If § = L then one writes

L(n) instead of End; L™,
The algebra L(n) may be identified with the algebra of all n by n matrices with entries in L. Its
dimension over R is n2, 2n2, and 4n? for L =R, C, and H, respectively. All these algebras are

associative and with unity, but only B(1) =R and C(1) = C among themn are commutative.

If 2 and ‘B are algebras over K, then their direct sum 4 @ Bis the algebra defined as follows:
its underlying vector space is the direct sum of the underlying vector spaces and multiplication in
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A @ Bis given by

(a,b). (a', b") =(aa’, bb")
where a, a2’ € Aand b, b' € B. Similarly, the tensor product A ® Bis the algebra obtained by
taking the tensor product of the underlying vector spaces and endowing it with the multiplication
obtained by extending bilinearly the formula

(a®b).(a ®b)=aa ®bb.
If 4 and B are algebras over K, then the map
f:4->3

is said to be a homomorphism of algebras if it is K-linear and

f(ab) =1f(a) f(b) foreverya,be A

If, moreover, both 4 and ‘8 are with unity and f(1) = 1, then f is said to be a homomorphism of
algebras with unity. An invertible homomorphism is called an isomorphism.

The algebra R(2) is generated by the pair of matrices {0, T}, where

01 10
G=( ),t=( ) 4.1
10 0 -1

These matrices, together with the unit matrix I and

0 -1
e=m:=( ) 4.2)
1 0

For any positive integers m and n, the algebras

form a linear basis of R(2).

R(m) ® B(n) and R(mn) 4.3)
as well as




39
L(n) and L® R(n), whereL=R, C or H, l 4.4)
are isomorphic to each other.
It is useful also to know the tensor products L, ®g L,, where Lyand L, are € or H:

(i) thereis an isomorphism C ® C -+ € @ T obtained by extending the following map between
the generators of these algebras:

V=-1®1 - ( -1,V-1), 1®V-1— (-1, =~=1);
(if)  there is an isomorphism C ® H — €(2) which on generators is
V-1®1 V=11,
1®i—-V-10,
I®j—> ¢

(iti) the isomorphism H ® H — R(4) is obtained from

1®i—e®0, 1Q®k —e®n,
i®l>0®e, k®l—1®c¢.

The centre of an algebra 4 is the subalgebra Z(4) consisting of all those elements which
commute with all elements of 4. If 2 has a unit element, then K < Z (A). If Z(4) = K then 4is
called a central algebra. The algebras R(n) and H(n) are central, but C(n), considered as an algebra
over R, is not: its centre is isomorphic to €.

A representation of Ain a vector space S over K is a homomorphism

Y: A EndgS.
A representation 1y is said to be faithful if vis injective.

A subspace T of S is called an invariant space of the representation vy if, for every a & 4, one
has y(a) T < T. If T is an invariant space, then Yy can be reduced to T, i.e. there is the
representation

’YT:.Q—-)EndKT

defined by yr{a)t =y(a)t forte Tandae 4.
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Consider now two representations of 4,
Y  A-Endg §; - (=1,2) 4.5)
and assume that there is an intertwining transformation, i.e. a linear map
F:5, -85, (4.6)
such that

Fy(@=v(@ F foreveryae 4. “.mn

The subspaces ker F = F‘I(O) 8 and F(§;) < S, are invariant spaces of v, and ,, respectively.
This observation leads to

Schur's Lemma : Let F#0 intertwine the representations y; and y,. If y; is irreducible, then Fis
injective. If 7, is irreducible, then F is surjective. If both y; and Y, are irreducible, then F is an
isomorphism.
In the latter case, the representations ¥, and Y, are said to be equivalent,
1~ Y
In particular, if y: 2 — Endy 8 is irreducible, then the commutant of vy,

{Fe Endg SIF y(a)=v(a) F foreveryae 4}

is a division algebra : all its elements other than 0 are invertible. In particular, if K= C and S is
finite-dimensional, then every F € End S has an eigenvalue, say

Fd=A¢ whereAe € and O02¢e S.

If F belongs to the commutant of the finite-dimensional, irreducible representation
y:4 — EndgS, then F - Alalso belongsto the commutantand ¢ € ker (F - A,  therefore

F - Al = 0; this Corollary of Schur's Lemma is of frequent use.

Given two representations (4.1) of 4, one constructs their direct sum

y, ®Y,: A—>Endg S; ®Endg S, (4.8)
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and tensor product
Y1®Y,:A - Endg (5§, ®3)) (4.9)

as follows: forevery ¢; € S;, ¢, € S;andae 4one puts
(Y1 @ vy (@) (91, §p) = (v; @) 91, 1o (2) §)
(Y1 ©7) (@) 91 B¢ =7, () 9, B Y, (a) §,.
If the space S of a representation 'y decomposes into the direct sum, S; @ §,, of two invariant
spaces of v, then 7y is equivalent to the direct sum of the reductions v, andy, of ¥ to S; and S,,

respectively. One says thatydecomposes into the direct sum (4.8). It is clear that this notion
generalizes to the case of more than two summands in a direct sum decomposition of S.

4.2 Simple algebras
Every algebra 4 over K admits the (left) regular representation

p: A —Endga 4.10)

defined by
p(a)b=ab, wherea,be 4

The regular representation of an algebra with unity is faithful. An invariant space of the (left)
regular representation is called a (left) ideal of the algebra. If B Zis an ideal then there is the
reduced representation

pg: A — Endg B (4.11)

which is irreducible if, and only if, the ideal Bis minimal, i.e. such that B contains no ideal other
then {0} and Bitself.

Definition. An algebra over K is called simple if it admits a faithful and irreducible representation
in a vector space over K. (An equivalent definition is: an algebra A4 is simple if {0} and A are its
only two-sided ideals).

For example, a division algebra is simple because its regular representation is faithful and

irreducible.
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Theorem 4.1. If an algebra is finite-dimensional and simple, then all its faithful irreducible
representations are equivalent.

The importance of this theorem justifies sketching its proof. A non-zero finite-dimensional algebra
4 contains a non-zero minimal left ideal B. Let v be a faithful irreducible representation of Ain a
vector space S. Since  is faithful, there exist elements ¢, € S and by € B such that ¥(b,)¢, # 0.
Let F: B — S be defined by F(b) = ¥(b)¢,.  The linear map F intertwines the irreducible
representations Yy and pg. Since F(B) contains non-zero elements, the map F is an isomorphism.
Therefore, the representation Y— and thus every faithful irreducible representation of A— is
equivalent to P

It follows from the Theorem that the faithful irreducible representation of a finite-dimensional
simple algebra can be realized by left multiplication on a left minimal ideal. In other words, such
an ideal is the carrier space of the representation. This observation is at the basis of the "algebraic
theory of spinors” (Chevalley 1954).

The tensor product of simple algebras need not be simple (example: C is simple, but C ®g C
is not). However, if 4 is central simple and ' is simple, then A ® &' is simple; for a proof, see
J.P. Serre (1955). If an algebra is the direct sum of simple algebras, then it is said to be
semi-simple.

The commutant of a faithful irreducible representation of a central simple algebra over i need
not be trivial. For example, the algebra H admits a representation ¥ in R4 = RZ® R? such that
¥(i) =€ ® o and (k) = € ® t. This representation is faithful irreducible and its commutant is the
division algebra isomorphic to H, generated by the pair {c ® €, T ® ¢}. From now on, through

the end of this chapter, we consider only finite-dimensional associative algebras with unity and
their representations in finite-dimensional vector spaces. )

4.3. Antiautomorphisms and inner products
A linear invertible map B : A —> Ais saidto be an antiautomorphism of the algebra Aif
B(1)=1and B(ab) = B(b) B(a) (4.12)
for every a, be 4 Itis said to be involutive if

B2 =id. (4.13)
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If B is an antiautomorphism of 4 and yis a representation in S, then there is another representation
v
Y: 4->End §*

defined by
Y (@) ="y (B@)).

If yis a faithful irreducible representation of a simple algebra 4 with an antiautomorphism f, then y
is equivalent to 7y : there thus exists an isomorphism

B:S§S— 8%
such that
Y(B@)B=By() (4.14)

for every a € 4. The isomorphism B defines an inner product on S, also denoted by B,

B(9, y) = <B(9), y>

where ¢, ¥ € S. For every a € 4, by virtue of (4.14), one has

B((a) ¢, Y(2) ¥) = B(0, ¥(B(a) 2) ¥) (4.15)

and also
() B~ (1B) =B~1 ('B) v (B (a)).

Therefore, if P is iﬁvolutive, then B-1 (!B) belongs to the commutant of y. If Zand S are over €
then, by the Corollary of Schur's Lemma, 'B is proportional to B and, since UB = B,

either 'B=B or 'B =-B. 4.16)
If B is an antiautomorphism of the algebra 4, then one can associate with the pair (4, B) the
group of all elements of the algebra such that the norm N(a) = B(a) a is an invertible element of K.
Since the regular representation is faithful, one has B(a) a = a B(a) for any element a of the group;
the unity of 4 is the neutral element of the group. If A € K® =K - {0} and a belongs to the group,
then so does Aa and N(A a) = A? N(a). We define the Wall group G of the pair (4, B) as

G={ae 4:N(@) e K°/K*?} 4.17)

where K°2 is the subgroup of squares of K°, i.e.
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{1} forK=C
K°/K*2 =
{1,-1} forK=R

The group
Go=f{ae A:N(@) =1} (4.18)

coincides with g for K = C, but may be a proper subgroup of G for K =R. We can now formulate

Proposition 4.1, Lety: 4—> Endg S be a faithful irreducible representation of a finite-dimensional
associative simple algebra endowed with an antiautomorphism (. There then exists an inner
product B on S which satisfies

B(¥(2) ¢, Y(a) W) = N(2) B (¢, ¥) (4.19)

for every ¢, ¥ € S and a in the Wall group G. Moreover, if the group G generates 4 and B' is
another inner product with the property (4.19), then Bl B'is in the commutant of .

In particular if both Zand S are over T, then the last part of the Proposition implies that the
inner product on S, invariant with respect to G, is essentially unique: it is defined up to a numerical
factor.

Example 44 Let A=L(n), where L=R,C orHandn=1, 2, ... For any matrix a € L(n), let
B(a) = a' be its Hermitean conjugate matrix; for L = R the matrix a' is the transpose of a. The map
B : L(n) — L(n) is an involutive antiautomorphism of the algebra L(n) over R and

O(n) R
Gy = Uy for L= C
Sp(n) H

Let S;(n) = R", B2 ® A" or R2 ® R2 ® R™ depending on whether L = R, C or H. The algebra
L(n) has a faithful irreducible representation ¥ in §; (n) which can be described as follows:

@) if L =R, then y(a) = a;

(i) ifL=C,thenyp+-1q)=I®p+e®q, where p, qe R(n);

i) fL=H, thenyp)=I1®1®p, i) =e ® o ®Iand yk) =¢ ® 1 ®I, where I denotes the
unit matrix of appropriate dimension.

The standard, positive-definite scalar product on S; (n) is invariant with respect to G, in every case.
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The standard, positive-definite scalar product on §; (n) is invariant with respect to G, in every case.
An involutive antiautomorphism  of a simple algebra 4 defines a bilinear symmetric
function
h:4xa4—- K

given by
hab)=Try(B (@) b) (4.20)

where s a faithful irreducible representation of 4in S. Indeed, by virtue of (4.14) one has

Try (B @) =Try (@)
. and therefore

Try(B ® a)=Try (@ (2) B> (b)) =Try(B () b)

so that h is indeed symmetric.

Proposition 4.2. Let the simple algebra 4 be endowed with the bilinear form h defined by (4.20),
where P is an involutive antiautomorphism. A faithful irreducible representation y : 4 — EndS is
an isometry of (4, h) on the image Y () < EndgS equipped with the restriction of the scalar

product B @ B'L,

To prove the Proposition, recall (§ 3.5) that if S is a vector space with an inner product B, then
S ® $* can be given the scalar product B ® B! in such a way that

BB B¢,y ®y)=<B (¢), y><¢, B (y)> (4.21)

where ¢, y € S and ¢', y'e S*. The identification of End S with S ® §* defined by

© ® ¢) (W) =<', y>0, where p, y € S and ¢' € S*, 4.22)

leads to

Tr (0 ®¢)=<¢,¢> and (HY®¢)=¢'® ¢. (4.23)

For every a e A4 there exist sequences (¢y, ..., §,) and (¢, ..., ¢',) of elements of S and S*,
respectively, such that

Yay =2 ¢;®¢; (4.24)
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To evaluate h(a, b) by means of (4.20) we can write Y(a) = T 6 ® ¢ and y(b) =X y @ ', where

we have neglected the indices labelling the vectors in the decomposition (4.24) and in a similar
decomposition of ¥(b). Since, by virtue of (4.14) and (4.22),

(B (2)) =By (@ B1=ZB(¢) ®B ()

we obtain

]

TriyB @ b) = ZTr (v @) (B() ® B! (¢))
T 2 <B (¢), v> <¢', B (y)>

h(a, b)

By comparing this with (4.20) one gets
h=B®BhHoy (4.25)
as asserted in the Proposition.
It is sometimes of interest to know how the inner product behaves under a change of
representation. Let B and B, be the inner products in the carrier spaces S; and S, of two faithful

irreducible representations (4.5) of 4. If F intertwines the representations, then

Bl =tFB2 F.

4.4 Real algebras
We have so far considered algebras over the field K of either real or complex numbers and
their representations in vector spaces over the same field K. If Zis a real algebra, i.e. an algebra
over R, then, besides its representations in real vector spaces, one can consider complex
representations of 4. i.e. representations of 4in complex vector spaces. More precisely
vY: A EndpS
is a complex representation of the real algebra 4 in the complex vector space Sif

vy@ A+uy)=Ay@¢+py@VY

forevery A,pe Cand ¢, ye S, as well as
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Y(pa+ob)=py(@)+oy(b)
Y (ab) = y(a) ¥(b)

forevery p,c € Rand a,be 4 Since a complex vector space may be considered also as a real
vector space (of double real dimension), any complex representation y defines a real one, called the
real form ofy. For example, the real algebra H has a complex representation yin S = C?
determined by

Y@ =-V-10 and yK) =-V-11. (4.26)
Its real form ' is a representation in R* obtained from
YO =e®0, Yk =£®T, (4.27)
in agreement with Example 4.4.

Let
Y : A= EndcS; ((=1,2)

be two complex representations of a real algebra 4. They are said to be complex-equivalent if there
is a C-linear isomorphism F : §; — S, intertwining y; and ¥, i.e. such that (4.7) holds. ‘

Complex equivalence is a stronger relation than the equivalence of the real forms of complex
representations. For example, the algebra of complex numbers, considered as a real algebra,
admits two complex-inequivalent representations Y; and ¥, in 8 = C,

T X +iy) =x+iy, v, (x +iy) =x -1y, wherex,y € Randi=v-1.

Their real forms are representations in 2 which are equivalent because T is simple; explicitly,
since
Y K+iy)y=xI+ye, Y E+iy)=xl-ye,

we have
Y X +iy)t=Tv (X +iy).

If v is a complex representation of the real algebra 4in S, then the complex conjugate
representation ¥is a complex rerpresentation of the same algebra in the space S, complex conjugate
to S,
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¥:4->EndS
given by
Y@ =v(@.
If 4is a real algebra, then its complexification € ® 4 has the structure of an algebra over C.

A complex representation Y of 4 extends to a representation of the complexification in the same
vector space. We use the same letter ¥ to denote the extended representation, thus

y(@+ib) =7y (a) + 1y (b)
wherei=V-1anda,be 4

Theorem 4.2, Lety: A— EndcSbea complex, faithful and irreducible representation of a central
simple algebra A over R. There then exists a C-linear isomorphism

C:S—>S (4.28)
which intertwines the representations Y and :f

Y@ C=Cy(), ae 4, (4.29)

and is such that B
either CC=id or CC=-id. (4.30)

Moreover, if 4 has an involutive antiautomorphism B, then the isomorphism B: § — §*
L4
intertwining y and y can be chosen so that the linear map

A=BC:S—S* (4.31)
is Hermitean, i.e.,
tc Bt =B C. (4.32)
Proof. Since 4 is central simple over R, the complexification C ® A4 is central simple over C and
the complex extension of vy is a faithful irreducible representatlon of C ® 4in S. The same is true

of ¥ v, therefore, the complex extensions of y and ’y are equlvalent 1et C be the 1ntertw1mng
isomorphism. By complex conjugation of (4.29) we obtain y(a) C=C y (a); therefore ‘CCisin the
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commutant of ¥, and also of its complex extension. By the Corollary of Schur's Lemma, the
endomorphism CCofSisa multiple of the identity. If C is replaced by AC, where A € C°, then
CC is replaced by | A 12 CC. By choosing A appropriately, one achieves (4.30).

From (4.14) and (4.29) it follows that B C (!C BT)! is in the commutant of ¥,
therefore 'B C = p'CBY for some p € C. By Hermitean conjugation of the last equation
one obtains 'C B = 1 B C; therefore | 1 = 1 and one can satisfy (4.32) by replacing B with V1 B.

The linear map A defines a Hermitean form on S, also denoted by A,

AW, W) =<A @), y>, where o, ye S. (4.33)

For every element a of the Wall group G we have

A (Y(2) ¢, 7@ ¥) =N@) A, ) (4.34)

Example 4.5. Lety:H — End C2 be the complex representation of the algebra of quaternions

defined by (4.26). The conjugation of quaternions defines an involutive antiautomorphism J of H.
The algebra H is central simple and, therefore, Y~y ~ YJ One easily sees that C = € = B provide the
intertwining isomorphisms. On the other hand, the simple algebra C(2) is not central (as an

algebra over R), and its complexification C ®g C(2) = 2C(2) is not simple. The identity

representation y of C(2) in S = €2 is faithful irreducible, but ¥ is not complex equivalent to y. (In
the calculus of two-component spinors these observations correspond to the following statement:
"dotted” and "undotted” spinors provide inequivalent representations of SL(2, T); these
representations become equivalent when the group is restricted to SU(2) = Sp(1)).

Assume now that the conditions stated in Proposition 4.3 are satisfied and
CC=id.

There is then the direct sum decomposition (3.17) of S into two real vector spaces S*and §" such
that
-®
de St iff ¢p=+Co.

The map K : S* — S~ given by K(¢) = V-1 ¢ is a real isomorphism. The subspaces S* and S are
invariant with respect to y and the complex representation y réduces to two real ones

¥ : 24— Endp S*.
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The representations y* and ¥~ are equivalent,
v K=Kv"
By an abuse of language one often says that y is a real representation.

Similarly, if _
CC = -id,

then S has the structure of a right H-module, defined by (3.19,20) and the representation Y is
quaternionic in the sense of consisting of endomorphisms of the quaternionic structure of S.

4.5. Graded algebras

An algebra 4 over K is said to be Z,-graded or simply graded, if there is a decomposition
of Ainto a direct sum of two vector spaces

ﬂ=ﬂ0@ﬂ1

such that

A 24 Aprq

where the sum p+q is taken mod 2,ie. 1 +1=0. The elements of 4, (resp., 4,) are said to be
even (resp., odd). Sometimes one writesdega=p ifae Ay To describe a graded algebra, it is
often sufficient to indicate the embedding

4, A. (4.35)
A graded derivation of degree p € Z, is a linear map d : 4 — A such that
dAy < Apig

and
d (ab) = (da)b + (-1)Pd a db

foreveryae A, andbe 4 A graded derivation of degree 0 is called simply a derivation; a graded
derivation of degree 1 is an antiderivation. A graded Lie algebra (or super Lie algebra) is a graded
algebra ‘
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L=L,®L;
with a product [, ] which is "superanticommutative",
[a,b] =-(-1)P4[b, a] foreveryae 2, andbe Ay
and such that the map
ad(a) : £L—> L, where <ad (a), b>=[a, b],

is a graded derivation of degree p = deg a. With any graded algebra 4 one associates the graded
Lie algebra Der 4 of derivations by defining

[y dg) = dpodg - (DM dgody,

where dp and dq are graded derivations of degree p and g, respectively. If the graded algebra 4is
associative, then one can form the graded Lie algebra £(4) : its underlying vector space and grading
are those of 4 and the product is given by the graded (super) commutator,

[a, b] = ab - (-1)Pdba, wherca e ﬂlp andbe ﬂlq (4.36)
The supercentre SZ(A) of a graded associative algebra 41is the set
{ae 21{a,b]=0 foreverybe 4}

where the bracket is defined by (4.36). If SZ(A4) = A4 then A4 is said to be supercommutative. If 4
has a unity 1, then 1 € A4; in this case, A is said to be supercentral if its supercentre coincides
with the number field K < 4,

Example 4.6, The algebra € is a graded associative algebra over B. The grading is defined by
declaring pure imaginary numbers to be odd. This algebra is supercentral, but not
supercommutative, [V-1,V-1] = -2. Itis not central over R.

Example 4.7, The simple algebra R(2) can be given two essentially different gradings:

(a) by declaring the matrices ¢ and T to be odd, one obtains an even subalgebra isomorphic to C,
thus (4.35) is now € — R(2);

(b) if the matrices & and € are odd, then the even subalgebra is spanned by I and 7: it is isomorphic
to 2R.
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In either of the gradings the algebra is supercentral.

There is a number of standard constructions that lead to graded algebras. In the sequel, 2
and B denote a graded and an ungraded algebra, respectively,

1. The double of Bis the graded algebra
B> 2B (4.37)
where
2B=8® B
and elements of the form (b, -b), b € B, are odd.
II.  The tensor product A ® B has a standard grading,
(A®B),=4,83, p=0,1 (4.38)
III. If both 4 and A" are graded, then their graded tensor product A® 4 has 2® 4 as its
underlying vector space,
deg(a®a)= dega+dega (mod?2)
and
(a®ay). (by ®b) =(-1)P4 aby ® a'pb’ ' (4.39)
for‘every ae 4 bq € ﬂq, a'p [= ﬂ’p andb' e 4.

Example 4.8. Let C be the graded algebra over R described in Example 4.6. The graded tensor
product

C ® i C is isomorphic to H (4.40)

where the algebra H is graded by declaring j and k to be odd. Indeed, a (graded) isomorphism is
obtained by extending the map V-1® 1 j, 1®+V-1 k.

IV. If ais graded, then the opposite algebra Z°PP has the same underlying vector space structure
and grading as 4, and an opposite product x defined by
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axb=(-1)Pba

forae A,andbe Ay Therefore, 4 is supercommutative iff the identity map 4 - 4°PP is an
isomorphism of graded algebras.

Example 4.9, Consider the double of R, i.e. the graded algebra 4, =R — 2R =4  The algebra
R — C is opposite to B — 2/: since the odd part of 4 is generated by (1, -1) and (1, -1) x (1, -1)=
=-(1, 1), the linear map

w3 A+p+V-1 -, where A, pe R,

is a graded isomorphism of 2°PP on C.

Example 4.10. Let A, =2R — R(2) = 4 be the graded algebra of Example 4.7(b). The linear
map f : 42— 2°PP defined by f(I) = I, f(t) = -1, f(€) = ¢ and f(0) = ¢ is an isomorphism of graded
algebras.

Example4.11. Let 4, = C - R(2) = A be the graded algebra of Example 4.7(a) and let B, =
=L — H = B be the graded algebra described in Example 4.8. The linear map f : B — 4°PP
defined by f(1) = L, f(i) = -¢, f(j) = ¢ and (k) = 7 is an isomorphism of graded algebras.




5. GENERAL PROPERTIES OF CLIFFORD ALGEBRAS

Much of mathematics and physics involves the idea of linearization. For example, the tensor
product of vector spaces is introduced in order to represent any bilinear map as a linear map
composed with the canonical bilinear map. The derivative of a differentiable map is, in a
well-known sense, its linear part. Clifford algebras can also be so viewed: they allow a
linearization of quadratic forms. Preceded by the discovery of quaternions by Hamilton, these
algebras were defined by Clifford who found their general structure. An anonymous
correspondent, signing in 1959 his letter with the name of R. Lipschitz, reminds the scientific
community that it was Lipschitz who for the first time used Clifford algebras and groups to
represent orthogonal transformations in an n-dimensional space. In a sense, Lipschitz's memoir
(1886) is the first publication on the relation between spinor and orthogonal groups.

There are many excellent and exhaustive descriptions of Clifford algebras (Chevalley 1954,
Artin 1957, Bourbaki 1959, Atiyah, Bott and Shapiro 1964, Porteous 1981). In this chapter, we
only collect the basic definitions and results. More emphasis is put here than elsewhere on the
invariant bilinear forms on spinor spaces.

All vector spaces and algebras considered here are over the field X of real or complex
numbers. The vector spaces are finite-dimensional and algebras are associative with unity.

5.1. Definition and general properties of Clifford algebras

Let g denote a scalar product in a vector space V over K and let 4 be an algebra over the
same field. A Clifford map of (V, g) into 4 is a linear map

f:V—24
such that, foranyu e V,
f(u)? = g(u, v). (5.1)

For example, if K =R, V =R?2 with the standard scalar product g=g,o and A=MR(2), then
f: V— 4given by
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Xy
fx,y) =
y =X
is a Clifford map.
Let < i
aV) = & @V, (5.2)
{=c

be the tensor algebra of V and let I(g) be its two-sided ideal generated by all elements of the form
u®u-g(u,u), whereue V.,

The factor algebra
V) / Kg)

is called the Clifford algebra of (V, g) and denoted by ¢fg). The canonical map
K: AV) - chg) (5.3)

restricted to the subspace V of I(V) is a Clifford map. Indeed, x is linear and, if multiplication in’
CAg) is denoted by a dot (often neglected), so that

k(@®b)=x().x() foreverya, be WV),
then

K. x@=x®uw=x(g,u)=g{uu 5.4)

Theorem 5.1,  The Clifford map x : V — Cf(g) is universal, i.e. iff : V— Aisa C,Iifford map of
(V, g) into 4, then there exists exactly one homomorphism of algebras with unity f : Cfg) — 4
suchthatf=fox.

A A
This is easily proved by extending f to a homomorphism f of AV) into 4 and noting that f
vanishes on Kg).

Our definitions follow the terminology accepted in mathematics. It should be noted,
however, that the interesting object is not the algebra Cfg) by itself, but the Clifford map
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x:V = Cclg). (5.5

It contains information not only about the algebra, but also on how the vector space is embedded in
the algebra and what is the scalar product. As we shall see in the sequel, non-isometric vector
spaces may have isomorphic Clifford algebras. In the following, we shall often speak of a Clifford
algebra, but it will be understood that we consider it together with its underlying vector space and
the“ Clifford embedding (5.5).

The subspace K @ V of 7(V) contains no element of I(g) other than 0. Therefore, x

restricted to that subspace is injective and K @V may be identified with its image in Cfg) under x.
If this is done, then, as a consequence of (5.4), one can write

uv +vu =2 g(u, v) (5.6)
for every u, v € V. Observe that two vectors anticommute if, and only if, they are orthogonal.

Theorem 5.2. (fis a functor). Let (V;, g;), 1= 1, 2, be two vector spaces with scalar products.
Iff: V{ — V,is linear and

go(f(u), f(v)) = g4(u, v) foreveryu,ve V,
then there exists a homomorphism of algebras with unity

ChS) : Chgy) — CRgy)
such that

Cl(f) o Kl = K20 f (5.7)
where

K:V,> g ,i=1,2,
is the restriction to V, of the canonical map.
This is a simple consequence of Theorem 5.1. In particular, to any orthogonal
transformation f € O(g) there corresponds an automorphism Cf) of the algebra Cg) and there is

the homomorphism of groups

Cl: O(g) — Aut CKg). (5.8)




57
If £ is the reflection, f(v) = -v, v € V, then & = CAf) is called the main automorphism of the
Clifford algebra. Sometimes it is necessary to specify the vector space V underlying the Clifford

algebra where the main automorphism is defined; it is then denoted by o(V). 1t is involutive and
defines the basic Z,-grading of the Clifford algebra,

Chg) = Cl(®) ® i (g)

where the decomposition of a € Cfg) into its even a,€ Ch(g) and odd a; € CY(g) parts is given
by

8,= + (a+ (@), 8= = (a- oa).

The subalgebra £ (g) is called the even Clifford algebra.
Let 4 be the transposed (opposite) algebra of CAg) : its underlying vector space is the same
as that of Cg) and the product of a and b in 4is equal to the product of b and a in CKg). The map

f:V — 4 given by f(u) = u is a Clifford map and?: CAg) — Ais an isomorphism of algebras
with unity which may be represented as an antiisomorphism

B:clig) > chg)
It is characterized as a linear isomorphism such that
B()=1, P)=u and P(ab)=P(b)p(a), 5.9

foreveryue Vanda, be ¢fg). The map P will be called the main antiautomorphism of CAg).
Sometimes it will be written as B(V) to indicate the underlying vector space of the algebra.
5.2. The vector space structure of Clifford algebras

The following construction, summarized in Theorem 5.3., shows that, as vector spaces, the
Clifford algebra of (V,g) and the Grassmann algebra AV are isomorphic. Foreveryue V, let Ja

be the endomorphism of AV given by

juW)=u Aw, wherewe AV.
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If @ € V*, then the interior product i, is an odd derivation (antiderivation) of AV characterized by
i) =<w,u> foreveryue V
ip(v A W) =igg(V) AW+ (-Dfv Aigg(w) forve AV andwe AV.
Since
iy 0y iy 0 i =<w, u>id,

the map

u— fu) =iy +Jy (5.10)
is a Clifford map from V to End AV. It extends, therefore, to a homomorphism

ﬂf‘: Clg) — End AV
of algebras with unity.

Theorem 5.3, The map

Fg 1 CAg) - AV
given by
Fy(s) = <k(s), 1> (5.11)

is an isomorphism of vector spaces which preserves the Z,-grading and is natural with respect to
isometries.

Note thatrf—, occurring in (5.11), is obtained by extending the Clifford map (5.10) according
to Theorem 5.1. The right-hand side of (5.11) denotes the value of the endomorphism £(s) of AV
on the scalar 1 € AV. Therefore, in particular

Fg(l) =1, Fg(u) =u, (5.12)
Fg(u v=uAv+gl,v)
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for every u;ve V. The property of "being natural with respect to isometries” means that, if
£+ V = W is an isometry from (V, g) to (W, h), then (Af) o Fg =F}, o CKf), where Af: AV — AW
is the extension of f,

fH=1, ADF AA VY =1V ALA vy (5.13)
‘We refer to Bourbaki (1959) for a proof of the Theorem.
Let (e),i=1,...,nbean orthogonal basis in (V, g), i.e. a linear basis such that
gle;, ej) =0 fori #].

The isomorphism Fy, maps the element of CAg)

e e ..e, wherel<i <i,<..<i;€n and 1</(<n, 5.14)
i iy i 1 72

into &, A AN € e AV. Therefore, the set (5.14), supplemented with 1 (= product of an
P

empty sequence of ba51s vectors), constitutes a linear basis of C{g) consisting of 2" elements. The

set {ey, ..., €,) generates CAg) as an algebra.

The isomorphism Fg allows us to refer to the elements of the Clifford algebra by the names
of their images in AV. Thus uv - vu, where u, v e V, is a "bivector” and

n=e; e ...¢ (5.15)
is'a "volume element”.
It is often convenient to refer to elements such as ¢; ... €; as being of degree p. It should be
i

remembered, however, that whereas the exterior product of two elements of degrees p and q is of
degree p+q, their Clifford product is, in general, a sum of elements of degrees

Ip-ql, Ip-ql+2,..,ptq.
The main antiautomorphism B is linear and involutive,

B2 =id.
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Therefore it defines a decomposition of Cg) into a direct sum of vector spaces

Clg) = Ct, (8) ® CL.(g) (5.16)
corresponding to the decomposition

a=a, +a , ae g
where

a, =2 (a£B(@)

so that
Blay) =*ay.

If the dimension of V is larger than 1, then C£ (g) is not a subalgebra. It is clear from the defining
properties (5.9) of B that

— (. 1\P(-1)/2
B (eil eip) =(-1) & - eip. .17
The dimension of Cf,(g) depends only on the dimension n of V. Since
n
dim ¢f,(g) - dim CL(g) = X (-HPED2 (T
we can write i
dim L (g) - dim CL(g) =2 d(n)
where
d(n) = 20272 (cos 2+ sin %) (5.18)
is, forn 2 1, an integer-valued function with the property
d(n + 8) =16 d(n) (5.19)
Tts first eight values are as follows
S 2[3’4!5'6] 7]8
(5.20)




.
.
.

61
5.3 The graded structure of Clifford algebras

The importance of the grading of Clifford algebras becomes apparent when one considers
their centres and the construction of a Clifford algebra of a direct sum of two vector spaces.

Consider an n-dimensional vector space V over K and its Clifford algebra cfg). If (e;) is an
orthogonal basis in V, then the volume element (5.15) satisfies

nu+¢CDfun=0 (5.21)

for every u € V. Therefore, for n odd, K @ KM is contained in the centre of Cf(g). More
precisely, we have the following

Lemma, Let
Z.(g)={ze chg)lzu ¥ uz=0 foreveryue V}. (5.22)
If n is even, then
Z(g=K and Z(g)=Kn (5.23)
If nis odd, then
Z(g)=K®Kn and Z(g)={0]). (5.24)

To prove the Lemma, we first note that if z € (fg) is decomposed into its even and odd
parts, z =z + z;, then

zu¥fuz=0, ueV, (5.25)
is equivalent to
zzu¥uz;=0 forboth i=0 and i=1.
1t suffices, therefore, to consider (5.25) for z homogeneous of degreei =0 or 1. Let
z=¢,2 +2"

where z' and z" do not contain e; when decomposed into the basis vectors (5.14). Puttingu=¢;
in (5.25) we obtain
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AxEDHz=0 and (A7 DY z'=0 (5.26)
Whenever the signs are such that (5.26) implies z' = 0 we can repeat the reasoning for
u = e, ... ¢, and infer that z is an element of K. Similarly, if (5.26) implies z" = 0, then z is
proportionalton. Ifze Z, (g) N Cf(g), thenz" =0 and z may be any multiple of 1 if n is odd;
z=0ifniseven. Ifze Z,(g) N Cfylg), thenz' =0 and z € K. This completes the proof the
statement concerning Z,(g). Ifze Z(g) N Cfy(g) thenz" = 0 and z may be a multiple of 1} o1
z = 0 depending on whether n is even or odd. If z € Z.(g) N Cf(g), then z' = 0 and z = 0 is the

only number anticommuting with all vectors. This completes the proof of the Lemma.

It is clear that the centre of Cfg) coincides with Z_(g) and the supercentre of CAg) is
SZ(chg) =Z,(8) N Ci(x) D Z() N C1(g)
The Lemma leads to
Theorem 5.4, Every Clifford algebra is supercentral. The Clifford algebra of an even-dimensional
space is central. The centre of a Clifford algebra of an odd-dimensional space is generated by the

volume element.

Consider now the direct sum (V @ W, g @ h) of two spaces with scalar products, (V, g) and
(W, h). The map

A

f:VOW - chg) ® chh) 5.27)
given by

fv,w)=v®1 + 1 ®w (5.28)
is linear and has the Clifford property.

£(v, )% = g(v, v) + h(w, w)
because, by the definition (4.39) of the graded tensor product, we have

RD.UA®W) + (1®wW).v®1)=0

By Theorem 5.1, there is a homomorphism

F: (g ® h) — Cg) ® clth) (5.29)
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of algebras with unity which extends (5.27). By considering the action of f on an orthogonal
basis; one infers that f is an isomorphism. This establishes the fundamental

Theorem 5.5 (Chevalley (1954). There is a natural, grading-preserving isomorphism (5.29) of
algebras with unity resulting from extending the Clifford map (5.28).

If g is a scalar product in V, then -g is the opposite scalar product in V,
(-g) (w,v) = -g(u,v), where u,ve V.

The injection
V - CAg)°PP

is a Clifford map of (V, -g) into ¢fg)°PP. This observation leads at once to
Theorem 5.6. The algebras

CA-g) and CAg)°PP (5.30)
are isomorphic as graded algebras with unity.
Assume now that g is neutral; therefore, V is even-dimensional and admits a decomposition:
V=N@P (5.31)
into a direct sum of two totally null subspaces. Let
u=n+p

be the decomposition of a vector u € V corresponding to (5.31). If we AN C AV, then (cf. §
5.2)

i, (W) and j(w) € AN
where
o=2gp)e V"

Since both n and p are null, g(u,u) = 2g(n,p) = <, n>, and

i 0 Jp + Iy o iy = gluw)id
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Therefore, the linear map
V — End AN
defined by
u =iy +i,

has the Clifford property. It extends, therefore, to a homomorphism [: Cffg) —» End AN of
algebras with unity. By inspecting the image by (of a basis of Cfg) generated by a null basis of V
adapted to the decomposition (5.31) one proves that [is an isomorphism. Finally, let End AN be
given a grading such that a € End AN is even (resp., odd) if it preserves (resp., changes) the parity
of the degree of a homogeneous element of AN. Clearly, both i and j, are odd. Therefore, h

preserves the grading. If V is 2m-dimensional over K, then AN is 2™-dimensional over K and End
AN is isomorphic to the matrix algebra K(2™). Its even subalgebra is isomorphic to 2K(2M-1,

This can be summarized in

Theorem 5.7. Let V be a 2m-dimensional vector space over K with a neutral scalar product g. Its
Clifford algebra

Cly(g) — Chg)
is graded isomorphic to the matrix algebra
2K(2™ 1) — K(@2™) (5.32)
graded by taking the tensor product of the graded algebra
;; 2R — MR(2), where ¢ and € are odd, (5.33)
with the ungraded algebra K(2™1).
The beautiful Chevalley Theorem 5.5 is not always convenient for practical computations: the
graded tensor product is less easy to use than the ordinary tensor product. For this reason, we state.

and prove another theorem on Clifford algebras of direct sums of vector spaces.

Let (V, g) and (W, h) be two vector spaces over K with scalar products. The tensor product
of their Clifford algebras admits a natural grading such that

deg(@a®b)=dega + degb mod?2
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where a e CAg) and b e Cfh). Assnme that W is even-dimensional and let 1} be a volume element
in that space so that Mw + wn =0 forevery we Wand A = 12 is a number, A # 0. The linear map
f defined by

fv,w)=v®O®n + 10w (5.34)

is a Clifford map of (V @ W, Ag @ h) into ¢g) ® Cl(h). By inspection of its action on a suitable
basis one obtains

Theorem 5.8, Let A denote the square of a volume element 1) in a 2m-dimensional space with a
scalar product h. There is a graded isomorphism of algebras with unity

Clihg @ h) — Chg) ® Clh) (5.35)
obtained by extending the Clifford map
f:VOW - Cfg) ® chh)

defined by (5.34). Moreover,

(V@ W) = (V) ® (W) (5.36)
and
B(V) ® B(W) even
BV O W)= form (5.37)
B(V) ® (o (W) B(W)) odd

The last part of the Theorem follows from
BWm = (-1)™n,
¢f. (5.17). Another general result is contained in

Theorem 5.9, Let V be areal vector space with a scalar product g. There is a graded isomorphism
of complex algebras with unity.

CIC®g - C Oy
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obtained by extending the obvious Clifford map
C®V-Cecy).

The proof is a straightforward application of the definition (3.38) of the complexified scalar
product € ® g, followed by inspection of a suitable basis.

5.4 The volume element and Hodge duality

By a suitable choice of the orthogonal basis (e;) in V, the volume element (5.15) can be
normalized in such a way that its square is either 1 or -1. More precisely, if V is complex, then
one can always achieve 2 = 1. If V is real of signature (k, 1), then, by taking an orthonormal
frame (g;) one obtains

1 ifk-f=0 orlmod4
n2 = (-1)&D &-£1)2 - (5.38)
-1 ifk-f=2 or3mod4

The normalization condition determines 1 only up to a sign: choosing one of the two normalized
volume elements is equivalent to introducing an orientation in the space V. From now on, all
volume elements will be assumed to be normalized.

Whenever 1 belongs to the centre of an algebra 4 and 12 = 1, there is a decomposition of 2
into a direct sum of subalgebras,

A=1+ma @& (1-1m)Aa (5.39)

Therefore, the decomposition (5.39) holds, with 1} being a volume element

1) for the full Clifford algebra of an odd-dimensional complex vector space;

i) for the full Clifford algebra of a real vector space of signature (k, /) such thatk-£= 1 mod 4;
iii) ~ for the even Clifford algebra of an even-dimensional complex vector space;

iv)  for the even Clifford algebra of a real vector space of signature (k, £ such that k-f= 0 mod 4.

The map
ar>na

is an automorphism of the vector space structure of CAg). The element 1ja is sometimes called the
(Hodge) dual of a. If V is complex, then the dual of the dual, n2a is equal to a. If Vis real then
N%a=+a or -a, depending on the signature, cf.(5.38). The isomorphism Fg described in §5.2 can
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be used to define duals of elements of AV. It is customary in differential geometry to denote the
Hodge dual by a star and to define it by

* Fgla) =Fy(n B(a)), where ae CAg).

The dual of the dual is now
** Fy(a) = Fy(n a ()

Therefore, if V is a real space of signature (k, §) and ® € AP V, then

*hgy = (_1)(k+[+1)p+[ ® (5.40)

Let W be an m-dimensional subspace of V. Consider a basis (e;) of V adapted to W in the
sense that the vectors ey, ..., €, form an orthogonal basis of W. The full basis (¢;) of V need not
be orthogonal; in fact, if W is null in the sense of containing a null direction orthogonal to W, then
there is no orthogonal basis in V adapted to W. Let

L=¢e;e .6y
and consider the vector space
Wi = (ue Vi[u,u]=0} (5.41)‘
where [ , ] denotes the graded commutator defined by (4.36). Since

[wpl=[u,ele) . e - e [0, e e+ oo+ DM leje, o [u, 0]
and
[u,v]=2g(,v) forevery u,veV,

the space W+ consists of all vectors orthogonal to all elements of W. If W is null, then one can
take €, to be in the null direction orthogonal to W. Therefore, if W is null, and only in this case,

p?=0.

If W is not null, then the vectors €4, ..., &, spanning W can be chosen to be orthonormal and [t
becomes a normalized volume element for W,

pl=+1.
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Let u be a vector and consider the graded commutator
o, Ml = 1™ (upt + (D™ o)

where n is the dimension of V. Ifue W, then

u U+CDT pu=0. (5.42)
Conversely, condition (5.42) implies u € W because, if u ¢ W then one can take €me1 = U and

Hu+ (D™ up=2e, ..eyepn,  +terms of lower degree

is different from 0. This leads to the following characterization of the subspace W in terms of M,

W={ue VI[unul=0}. (5.43)

A subspace W is null i
W N WL = (0],
Tt is totally null if W = {0} and
wcwt,

If (V, g) is neutral, and, therefore, of even dimension 2m, then it admits totally null subspaces of
(maximal) dimension m. If W is such a subspace, then

wW=wt
and the dual Ny is proportional to y1. Sincen)? = 1 for a neutral space, we have
either MU =+p or NU = -Y. (5.44)

Depending on the sign in (5.44), the totally null subspace W is said to be of positive or negative
helicity with respect to the orientation of V defined by 1.

Example 5.1, As an illustration, consider the totally null subspaces Wy and Wy of K2 defined in
§3.5. The vectors (e), i = 1, ..., 2m, of the null basis, considered as elements of the

corresponding Clifford algebra, satisfy
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€ Cmsp * Cmep o= Oops
ey €3 + € €5 =0,
where o, § =1, ..., m. The vectors

Cl - em+1, veey em - ezm, Cl + em+1, veay em + e2m

constitute an orthonormal basis in K*™ and their product, which may be written as
N = (81 €me1 ~ Cms1 €1) - ©m Com - Som )

is a normalized volume element, N2 = 1. The space W (resp., W) is spanned by the vectors
€iy1s -+ €2 (T€SP., €4, ..., €). Putting

uo = e2m « Cm+l and u’l = CI e €y

we see that

NMe=CDM Yy and My =y,

The totally null subspaces Wyand W, of V = K2Mm are of the same helicity when m is even and of
the opposite helicity when m is odd. In particular, for m = 2, the pairs (eq, €,) and (e3, e4) span
null 2-spaces of the same helicity which is opposite to that of the null 2-spaces spanned by the pairs
(1, €4) and (e,, €3).

Note also that the product v = [, i, of the 2m vectors of a null basis in K2M js not a volume
element; it is an idempotent, v2 = v, and the left ideal CKg)v is minimal (Chevalley 1954, Lounesto
1981).

5.5 Relation between the Clifford algebras of vector spaces of adjacent dimension

The strategy to find Clifford algebras of high dimensional spaces is to begin with low
dimensions and to use theorems 5.5 and 5.8 relating the Clifford algebra of a direct sum to tensor
products of the algebras. Theorem 5.8, which is of much use, is restricted by the assumption that
one of the summands is even-dimensional. It is convenient to have at hand a scheme for relating to
cach other Clifford algebras of vector spaces differing in dimension by one. It turns out that there
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is an (ungraded) isomorphism between the full Clifford algebra of a vector space and the even
Clifford algebra of a space of dimension larger by one; if the vector spaces are real, there is a
relation between the signatures of the two spaces in question, as we now proceed to show.

Let V be a vector space over K, with a scalar product g, and let W be a one-dimensional
space over the same field; its scalar product is denoted by h. Letey e W be a unit vector, ie.
A = h(eg, ey) is either 1 (if K =C or K= and h is positive) or -1 (if h is negative). The linear
map

f:V-ah(E@®h)
given by
flu)=eyu, where ueV, (5.45)

has the Clifford property,
f(u)? = -Ag(u, v).

It extends, therefore, to a homomorphism of algebras. By inspection of its action on a suitable
basis, one arrives at

Theorem 5.10. Consider the spaces (V, g) and (W, h) over K, where W is one-dimensional and
letA = h(eg, eg) be the square of a volume element in W; there is then an isomorphism

CE-Ag) > Cly(g ® h) (5.46)

of algebras with unity, obtained by extending the Clifford map f given by (5.45). The image of the
even subalgebra Cy(-Ag) is generated in Cly(g ® h) by all elements of the form uv, whereu e V.




6. COMPLEX CLIFFORD ALGEBRAS

In this chapter we describe in detail the structure of complex Clifford algebras, i.e. of
Clifford algebras associated with finite dimensional complex vector spaces with a scalar product.
Considerable attention is given to the relations between representations of Clifford algebras

associated with vector spaces of adjacent dimension. We exhibit three types of extensions of
representations and the recurrence properties of the associated inner products. The groups of
automorphisms of the inner products are also derived.

6.1 Dirac and Weyl spinors

An n-dimensional complex vector space with a scalar product is isomorphic to (C", g.), cf.
§3.5. Therefore, it is enough to find the Clifford algebras

Cin) = cfg,) forn=1,2,..

Since gy, is neutral, it follows from Theorem 5.7 that the structure of the Clifford algebra of
a complex, even-dimensional space is given by

C,(2m) = 2CQ2™ Y » CE™ = c2m), m=1,2, .. (6.1)

According to Theorem 5.10,

. Cin) =l (n+1) 6.2)

: and the structure of the Clifford algebra of a complex, (2m+1)-dimensional space is given by the
double of C(2™),

CL2m+1) =CR™ —-»2CC2™ = c2m+]), m=0,1,.. . (6.3)

The algebras ¢{2m) and C,(2m+1) are simple. Each of them admits, up to equivalence,
only one faithful irreducible representation (Theorem 4.1). The elements of the complex carrier
space of such a representation are called Dirac spinors. According to this definition, the space of
Dirac spinors associated with both (C2™, g, ) and (C?™+1, g, .} is complex 2™-dimensional.
This terminology seems to have been accepted in the physics literature, cf.,, for example,
Coquereaux (1985) and the references given there. Note, however, that — as defined here — the
Dirac spinors for (T3, g£3) are complex 2-component: they are what one often calls Pauli spinors.
Since there are important differences in the structure of the Clifford algebras of even- and
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odd-dimensional spaces, one could make a case for using a different name (e.g. Pauli's), for
spinors associated with odd dimensions.

Let
¥: C{2m) > End S (6.4)

be a faithful irreducible representation of ¢f2m) in the space S of Dirac spinors. Let 1 be the
volume element and

=)
the corresponding endomorphism of S. Since 1| is normalized, 12 =1, we have
I2=1
and there is the direct sum decomposition

$S=85,@8. (6.5)
where

S;={0e S|Top=%0).

Since 1 is in the centre of C/,(2m), the restriction ¥, of 'y to Cf,(2m) decomposes,

Yo=Y DY,
where

Y,(a) = %(Ii I)ya) for every ae Cf (2m).

The algebra Cf,(2m) has two representations
Y4 1 C4,(2m) — End S, (6.6)

which are 2™ L-dimensional, irreducible and inequivalent, but not faithful. The elements of S, and
S are called Weyl spinors of positive and negative helicities, respectively. Physicists often refer to
them as right and left Weyl spinors. Cartan (1938) and Bourbaki (1959) use the expression semi
spineurs. Chevalley (1954) calls them half-spinors. Penrose and Rindler (1986) describe S, and
S. as the reduced spin spaces.

Note that when the orientation is changed, i.e. when 7 is replaced by -1, the roles of right
and left spinors are interchanged.




73
Given the representation (6.4) of Cf{2m), one can construct a faithful representatién ¥'of

CR2m+1) as follows. Let e, ,; be a vector in C2™+1 = C2™ @ C orthogonal to C2™ and such that
eZZm +1=1. We define two irreducible representations y', and y'_ of C{2m+1) in S by

YiMWM =2y and vy (eypyy) =21, (6.7)
where v e 2™, The volume element associated with C2™+1 ig
n' =M €myi
and, since y'.(n) =T, we have
Ve =21
so that none of the representations y', and <y’ is faithful. Their direct sum,
Y'=y',@®y".:CA2m+1) — End S ® End S, (6.8)
is a faithful representation of C{2m+1) in S @ S. The representations y', and y'_ are equal when
restricted to Cf(2m+1). These restrictions provide a faithful irreducible representation which, with
a slight abuse of notation, we denote also by . This representation
Y:C(2m+1) - End S (6.9)
coincides with (6.4) on Cl(2m) and is given by

Ve D =Tv(@) forae CH(2m). (6.10)

6.2 The inner products
Since the complex algebra CA2m) is simple and endowed with the main antiautomorphism §,

one can apply to it the results of § 4.3 to construct an inner product B on the space of Dirac
spinors. It follows from (4.14) that

{By@) = BBHBYEP@)
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for every a € Cf{2m). Therefore, if P(a) = a, i.e. a € CL(2m), then the symmetry of B ¥ (a) is the
same as that of B. Since 7y is faithful and B non-degenerate, the map a — By (a) is a linear
isomorphism of C{2m) on the vector space

Hom (S, $*) = A28 @ VZ§™.

The dimension of the space v2$* of symmetric tensors is larger than that of the space A2 s% of
2-forms. Therefore

18B-! = sgn (dim ¢f, (2m) - dim ¢£ 2m)) I

and, by inspection of (5.18) or (5.20), we obtain

B = (6.11)

{B for m=0,1 mod4
B form=23 mod4

Is there an inner product on the space of Weyl spinors? The transpose I of I can be used
to define a direct sum decomposition of the dual spinor space,

s*=s @s”,
analogous to (6.5).
From (4.14) and
Bm) =(-1™n (6.12)
we obtain
T B = (-1)™ BI. (6.13)

Therefore, for m even (resp., odd) B preserves (resp., changes) the helicity of the Weyl spinors.

More formally, if B is the restriction of B to S, then the range of B is Si* formeven and Sy *
for m odd. This implies an equivalence of representations of Cl,(2my),
v
Y o~ Ya for m even,
and 6.14)
'\yfi ~ Yy formodd.

The spaces of Weyl spinors have an inner product for m even; each of the two products B, and B_
is symmetric or skew depending on whether m = 0 or 2 mod 4. If m is odd, then there is no inner
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product in the space of Weyl spinors and
B. form=1 mod4

B, = (6.15)
-B. form=3 mod4

For every Clifford algebra Cig) of a vector space V over K, in addition to the map B
intertwining the representations ¥ and %/, one can also consider the map

E:S—8§"
such that
Yy (B(a)) E = E y(au(a)) (6.16)
where a'€ CAg) and « is the main autqmorphism; equivalently,
Y (= -Ey()E!
foreveryu e V. If Vis even-dimensional and I' = y(1), then?)
E=8I. (6.17)

In particular, for the algebra C{2m), it follows from (6.11) and (6.13) that

E for m=0,3 mod4,

g0 'E = (6.18)
z A -E for m=1,2 mod 4.
% Since the algebra Cf{2m-+1) is not simple, one cannot directly apply to it the general results
| of §4.3. For even m, however, it follows from (6.7) and (6.13) that

%, (B@) B =By, forae c2m+l), (6.19)

and, therefore, B provides an inner product on the space of Dirac spinors. If m is odd, then the
representation ¥, is equivalent to Y,

1 Brauer and Weyl (1935) and Cartan (1938) used the linearmap C:S ~» S™ such that
Yay=CHmCy@) CL, where y: cf(2m) or Cf(2m+1) — End S and u is a vector. Therefore,
their C coincides with our BI™ = ET™+1,  We prefer to reserve the letter C for a semi-linear map
S =3 § associated with charge conjugation.
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Wy, (B()) Br =BI'yY.(a) forae C(2m+1), (6.20)

therefore
Y (B(@)) BT =BI'y(a) forae C[(2m+1),

and we have an inner product BI” on the carrier space of the representation (6.9). It can be
extended, "antidiagonally"”, to the carrier space S @ S of the representation (6.8) of C{2m+1).
6.3 Extensions of representations

There are several "natural" extensions to C{2m+2) of the representations of ¢/2m) and »
C{2m+1) described above. Even though all faithful irreducible representations of a simple algebra
are equivalent, for specific applications one may prefer one representation or another. These
extensions allow a simple, inductive construction of the (generalized) Dirac matrices for
higher-dimensional spaces and of the inner products on the spaces of Dirac spinors. Before giving
a description of the extensions, we recall a few facts about the algebra C(2). It contains two
matrices N and P such that

NP+PN=0 and P2=-N2=1.

The matrix M = NP anticommutes with both N and P, and M2 = 1. Anymatrix X e C(2)isa lincér
combination of I, M, N and P; moreover, the matrices M, N, P are traceless and

TrX =0 iff X =-eXel (6.21)
where € is as in (4.2).
Given a representation (6.4), we construct its extension
vY':C2m+2) > End (S D S) (6.22)
by requiring, firstly, that there should be a matrix X € C(2) such that
¥'(a) =X ® y(a) (6.23)

for every a € CA2m); we have identified here the algebras End (S @ 8) and C(2) ® End S.
Consider now the subalgebra 2 of C{2m+2) generated by the vector space C2, which is being
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added to C2M, and the subalgebra B of End (S @ S) generated by all elements of the form N® I,
P®IandI®I € C(2) ® End S. The algebras A and B are isomorphic to C(2) and 2C(2),

respectively. The extension is completed by specifying a suitable homomorphism of Ainto 3.

Such simple extensions may be classified according to the dimension of the intersection of y' (C?)
with the vector subspace of B spanned by all elements of the form Y ® I", where Y € T(2). There
are three types of extensions, corresponding to the dimensions 0, 1 and 2. They will be called here
extensions of type 0, 1 and 2, respectively.

To describe explicitly the extensions it is convenient to use an orthogonal basis (e,) in C"
such that

em2 =D o=1,..,n,

so that the fundamental quadratic form is

2 2 2
U - uy - ChH%as

For every of the representations Y we introduce the "Dirac matrices"

Yo =Y
Their product
= 'Yl sae 'Yn
satisfies
=1

Consider first an extension of type 0. Since, in this case, Y'(u) = U ® Iforu=x ey,
+Y€ym4n, Where U € C(2) anticommutes with X of (6.23), we are led to the form of the extension
presented in the first column of Table I. From P ®7y,) = -ePe’l ® By, Bl, {M®D=
=-eMel ® Tand (N ® I) = - eNe'! ® 1, we obtain that

¥
B'=¢eP ®B intertwines y' and y' of type 0.

Similarly, for type 1, we may choose ey, .1 and ey,.» sothat Y'(epp,) = M®T
and ¥ ‘(€9 49) = N ® I; the matrix X must then commute with M and anticommute with N; this
leads to the Dirac matrices presented in the second column. By virtue of (6.13), the intertwining
isomorphisms B' and E' depend now on the parity of m. The extension of type 2 is obtained in a
similar manner.
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In all three cases, there is still freedom to choose the anticommuting matrices M, N and P.
Of special interest is type I which we discuss in some detail:
@iy - The choice M = 1, N = ¢ made by Brauer and Weyl (1935) has the property that y'
restricted to C{2m+1) coincides with the representation (6.8).

(il) The Cartan extension is obtained by taking M = ¢ and N=¢so that I =t ® I and the two
subspaces occurring in the direct sum S @ S coincide with the two spaces of Weyl spinors
associated with Cf,(2m+2).

(iii) Another possibility is to take M =i ¢ and N =1 1; we call it the Dirac extension because, if it
is applied to the representation y: CA2) — C(2) withy; =6 (=0 ) and ¥, =-i ¢ (=<5y), it
leads, up to factors of i, to the standard representation of the gamma matrices used in
low-energy quantum mechanics of the electron (Dirac (1928).

For each of the three types, there is a choice of the matrices M and N such that the
representation Y ' restricted to C{2m) splits into a direct sum of representations in the two
subspaces S of S @ S. (One chooses P =1 for type 0, M =1 for type 1; in type 2 this holds for
every choice of the matrices). This being so, one can say that the Dirac spinor of C{2m+2) is the
sum of two Dirac spinors of C{2m); such a splitting is convenient for the discussion of spinors in
higher-dimensional extensions of space-time. On the other hand, essentially only the Cartan
extension allows the interpretation of elements of S as Weyl spinors; for this reason it is convenient
for considerations of high-energy physics.

Lety'andy" be any two representations chosen among the extended representations of type
0, 1 and 2. There is then a simple isomorphism

F:C2®S—>C2®S (6.24)
intertwining y'andy",
Y"@F =Fy'(a.
Indeed, the isomorphism
F=lI®@I+D+) N®(I-I) (6.252)
intertwines the representations of type 0 and 1, and the isomorphism

F'=) 1®I+D)+, M®(-I) (6.25b)
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intertwines the representations of type 1 and 2. Within each type, there are intertwining
isomorphisms (6.24) of a rather special form, with F=G ® 1 and Ge GL(Q2, C).. For
example if ¥ ' is the Brauer-Weyl extension, then G =1- ¢ andI - ic connect it to the Cartan and

Dirac extensions y ", respectively.

Table I
Simple extensions of a representation y: C{2m) —» End S to representations
v C2m+2) - C(2) ® End S

a=1,..2m Type O Type 1 Type 2
Y'a P®y, M®y, I®y,
Y 9met M®I1 Mer M®T
Y '9mez N®I N®I N®T
N P®T P®I P®T
B! eP®E eP®B m even eP®B m even
EM®E m odd e®B m odd
E’ e®B e®B m even €E®E m even
eN®E modd eP®E m odd

Notation: M, N,Pe C(2), NP+PN=0, PZ=1=-N2, M = NP,
LYa =B Y, Bl=-E Yo, ELl = Y1 Yo @nd similarly for the primed quantities.
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The convenience of the Cartan extension justifies giving an explicit form of the gamma
matrices and inner products which can be obtained by induction from

Ya=0®Yp Vom1=0®L, Yopp=e®L
For m = 1 we can choose
Y;=6 and Y,=¢€

and then obtain the explicit form of the gamma matrices in the Cartan representation for the vector
space C2m:

Yp1=0®.B0®IRI®.BI
(6.26)
Ve =0®..00Re®I[®..®1I

where o =1, ..., m and each of the tensor products contains m-¢¢ matrices ¢ and o-1 unit 2 by 2
matrices I. The corresponding product of the Dirac matrices is

I'=1®I1I®..®1 (m-1 unit matrices).

Since, in this case,

‘Ya = ('1)a+1 Yoo

we can take
B = 'Yz 'Y4 “es 'Yzm l'm,
E=%% . Yom1 I™
Explicitly,
2 for meven,
B= (6.27)
o®Z, for modd,
where

L) =(t1®e)®..8(1®¢)

is the tensor product of p factors, each equal to Tt ® €.
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The symmetries of B, given by (6.11), exhibit a periodicity of period 8 in the dimension n =
2m of the underlying vector space. It is convenient to collect in a table the symmetry properties of
B and E; as well as their properties related to helicity. This is presented in Table II in a notation
influenced by the usage of computer programming: starting in any dimension (line of the
programme), one constructs the matrices B and E in subsequent dimensions, according to the rules
given in the Table, remembering that, as soon as an equality such as B = F(E) appears, the B's in
the following lines should be replaced by F(E), until a new formula for B is reached, which then
becomes operative, etc. One can start the programme at any line, by inserting the appropriate B and
E: Forexample, the choice B = ¢ and E = ¢ in line 3 leads to (6.27).

Note that for n odd, there is a preference touse Bform=0,2mod4and Eform=1,3
mod 4: these inner products commute with I" and, as a result of this are defined within each of the
two spaces of Dirac spinors. The other inner products are represented by "antidiagonal " matrices.

6.4 The Wall groups

In § 4.3 we defined the Wall group G of the pair (4, B) where B is an involutive
antiautomorphism of the algebra 4. For a Clifford algebra, we may take B to be the main
antiautomorphism and then G is the group of automorphisms of the inner product B. But we may
also replace P by oo P and then G becomes the group of automorphisms of E, cf. (6.16). For
simplicity, we consider here, in every dimension, only one of the two groups which can be so
defined; a complete list of the automorphism groups of B and E has been given by Lounesto
(1981).

We define the Wall group G(n) to be the set of all elements a of the complex Clifford algebra
CAn) such that

B@a=1 for m even
and
aoB@a=1 for m odd,




82

Table IT
Inner products on the spaces of Dirac spinors associated with the Cartan representations of the
Clifford algebras Cf(n), n = 2m or 2m+1

n m ,
line mod 8 {mod 4 B E

E O E O

1 0 0 B= sym. sym.
O -E 0O E
B O O B

2 1 0 sym. sym.
O B B O
O B O -B

3 2 1 sym. E= skew
B O B O
O E E O

4 3 1 skew skew
E O O E
E O [ E O

5 4 2 B= skew skew
O -E C E
B O O B

6 5 2 skew skew
O B B O
OB O -B

7 6 3 skew E= sym.
B O B O
O E E O

8 7 3 sym. sym.
E O O E

GO TO LINE 1
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where n = 2m or 2m+1. By reference to Table II it can be seen that this particular definition leads

to all the groups G(2m+1) being direct products of two isomorphic factors operating, via the
representation (6.8), in the two spaces of Dirac spinors associated with C{2m+1). Writing 2G
instead of G x G, denoting by p an integer divisible by 4 and q = 2P, we can derive from Table II
the following list of Wall groups of complex Clifford algebras:

Table IIT

The Wall groups of complex Clifford algebras

n G(n)
2p 0@, ©)
2p+1 20(q, ©)
2p+2 Sp(2q, €)
2p+3 2 Sp(2q, ©)
2p+4 Sp(4q, C)
2p+5 2 Sp(4q, ©)
2p+6 0(8q, 0)
2p+7 2 0(8q, L)

p=0mod4, q=2P

If m is even, then the representation 7y restricted to G(n) coincides with the representation
contragredient to the restriction of y to G(n),

\'4
For m odd, v corresponds to a twisted contragredient representation with respect to .

\y/(a) =Y@l), ae gn).



7. REAL CLIFFORD ALGEBRAS
7.1 The index periodicity

The Clifford algebras of real vector spaces can be easily determined by finding the algebras
of low-dimensional spaces and then applying an inductive procedure based on Theorems 5.5-10.

Let Cfk,?) denote the Clifford algebra of the vector space R¥+2 with the scalar product 8k.0
(83.5). The vectors e, (o= 1, ..., k+?) of an orthonormal basis for 8k 0 satisfy

eqcgt+egey =0 foro=p,

eaz =1fora=1,.,k and em2 =-1 fora=k+l,.., k+2. Sometimes a different labelling of
the vectors will be used.

If n is the volume element, N = €;... €4, then its square,
2= (kA Gt (7.1)
depends only on the index k-2 of the scalar product.
A statement such as "the algebras Cf(k,) —» Cfk,?) and 4, — A are isomorphic as gradéd
algebras with unity" will be shortened to "Cfk,?) is isomorphic to 4, — 4" and sometimes even

to "Cfik,?) and 4 are isomorphic”.

Since the scalar product opposite to gy , is 8y, from Theorem 5.6 applied to real Clifford
algebras one obtains

Clk,®) and CK2k)°PP are isomorphic. (7.2)

We first recognize that the graded algebras described in Examples 4.6-8 are isomorphic to
some of the real Clifford algebras:

(i)  The algebra Cf0,1) is isomorphic to the algebra B — € described in Example 4.6. An
isomorphism is obtained by sending ¢; to V-1.

(i) Example 4.9 together with (7.1) provides an isomorphism between €£1,0) and R — 2R.
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(iii)  The algebra C2,0) is isomorphic to € — R(2) described in Example 4.7a. An isomorphism
is obtained by extending ¢, +> ¢ and ey > 1.

@iv) Similarly, the algebra ¢f(1,1) is isomorphic to 2R - R(2) described in Example 4.7b. This
result can be also obtained from Theorem 5.7 (the scalar product 811 is neutral).

(v)- The algebra (f0,2) is isomorphic to € — H. This may be checked either directly from
€1+ }, e3> k, or by appealing to Example 4.8 and Theorem 5.5. Example 4.11 may now
be interpreted as providing the isomorphism between ¢£0,2) and ¢£2,0)°PP,

Let us now apply Theorem 5.10 to real Clifford algebras by taking g = 8o Ifh=g; gthen
A = 1 and one obtains the (ungraded) isomorphism

ChR, k) = Chk+1, #) (71.3)
The other possibility, h = g; ; leads to A = -1 and
ik, 2) = Chylk, £+1). (7.4)
By comparing (7.2) and (7.3) one obtains the isomorphism of the algebras,
Ciyk, #) = (2, k)

even though the algebras Cfk, 2) and CA#, k) are not, in general, isomorphic. There is a graded
version of the isomorphism (7.4):

Theorem 7.1 If k and £ are integers such that k 2 0 and 2 2 1, then there is an isomorphism f of
graded algebras

Clylk, ) = Cfk, 2)
d lf (7.5
ik, 2-1) = ik, 2+1)
h
obtained by extending the Clifford map

£ K2 5 ok, 0+1)

where
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fw)=uep,,,; and u=Zuge,.
The injection (monomorphism of algebras) h is an extension of the Clifford map
b REFEL o op(k, 2+1)
where
h(w=ue,, and u=Zuge,.
It is understood that £0,0) = R and RO = {0}.

The grading of the algebra C{y(k, 2+1) implied by (7.5) is such that an element of the algebra
is odd if, and only if, it contains e, ;, | as a factor when decomposed into a sum of products of the
basis vectors.  The isomorphism (7.3) leads to an analogous theorem covering the case k = 1 and
£20. One obtains it by replacing in the lower left-hand corner of (7.5) the algebra ¢fk, ¢-1) by
CK ¢, k-1) and suitably modifying f and h.

According to Theorem 5.7, the neutral algebra

Cly(m, m) — Cm, m)
is isomorphic to
2RE™ 1) — RE™). (7.6)
Since, in this case, N2 = 1, Theorem 5.8 appliedto g = ggoandh= 8m m &ives the isomorphism
Clk+m, 2+m) = CAk,Q) ® R(2™M). (1.7)
As at least one of the two numbers k and ¢ is 2 1, we can use (7.3) or (7.4) to obtain

Clk-+m, 0 +m) = Chy(k,0) ® R(2M), (782)

Let us now apply Theorem 5.8 to g =gy sand h = 8200r 89o. In both cases L =-1. By
referring to the examples (iii) and (v) described above, we obtain

CRR+2, k) = Chk,2) ®RQ) (7.8b)
and
AR, k+2) = Clk,R)® H. 7.9)
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By arepeated application of (7.7) form = 1, of (7.8b) and (7.9) one arrives at the isomorphism
Clk+4, 2) = CAk,? + 4) (7.10)

and similarly for the even subalgebras. Computing Cfk+4, 2+4), using (7.7) and (7.10) one
arrives at the periodicity property of real Clifford algebras,

Chk+8, 2) = Chk, #+8) = Chk,R) ® R(16) (7.11)
and similarly for the even subalgebras.
We can now extend the list (i)-(v) to include a few more algebras:

(vi) From (7.8) we obtain C{3,0) = c(0,1) ® R(2) = C ® R(2) = C(2) and (7.3) leads to
Ch(3,0) = CA0,2) = H.

(vii) - Similarly, from (7.9) we have ¢f0,3) = C(1,0) ® H = 2H and C[(0,3) = C(3,0) = H.
Therefore ¢(5,0) = ¢A1,4) = c£0,3) ® R(2) = 2H(2).

(viii) From (7.3), (7.8) and (7.10) we obtain ¢£4,0) = C£0,4) = H(2) and C{(4,0) = Cf(0,4) =
=2H.

(ix)  Finally, from (7.10) and (i)-(vii) we obtain the isomorphism

C(5,0) = 2H(2), CR0,5) = C(4).
CKG)O) = H(4)a CKO,G) = fR(S).
Cc7,0) = C(8), CAO,T) = 2R(8).

Consider now the following list of eight graded real algebras?

1) This list may be found, in a rather different notation, in E. Cartan's (1908) article in the
Encyclopédie des Sciences Mathématiques.
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Table IV

Ay RE@) | 2R RQ)| CQ)| H2) | 2H | H C

4,2 |R | C | H |2H |H |C |R

where n, is such that the (real) dimension of 4, is 2™vand the gradings are as described in Ch4.
The list is arranged in such a way that there are graded isomorphisms

cr1,) = 4,
Cv, 0) = 4, ® R (270"1) (7.12)

and
CR0,8-v) = 4, ® R (2472(V+1)) (7.13)

where v = 1, ..., 7. They follow from (i)-(ix).

Theorem 7.2 Let k and ? be non-negative integers such that n = k+2 > 0. There is an isomorphism
f of graded algebras

Cly(k,2) — CRK,Q)
I Jf (7.14)
a,, ® R(2P) — 4, ® R (2P)

where the integers v and p are given by

k-2=8q+v, 0<5v<7, qe Z,
k+2=2p+mn,

and n,, 4, and 4, are as in Table IV.
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The proof is a straightforward application of previous results: if v=0and m2 0 thenp =
=0+4m-1 and

Clik,0) = CA2+8m, ) = R (27+4m) = A, ® R (2P)
as asserted; the case m < 0 is treated similarly. If v # 0 and k >2, then
Ck,9) = CAv, 0) ® R 2¥HM) = 2. @ R (2P)
by virtue of (7.12). Ik < £, then one uses (7.13).
Referring to Theorem 5.5 one obtains
A

2,®4,=4,® R (2% @40, -0 )y (7.15)

where p is the reduction of p+v mod 8,ie. 0 <p<7andeitherp+v=p or p+v=8 +p.

Consider now the set of all graded algebras of the form 4, ® R (2P) where 0 S v <7 and p
is an integer. They form eight classes corresponding to the eight values of v. The graded tensor
product induces a multiplication in the set of these eight classes which makes it into a group, the
Brauer-Wall group of the reals (Wall 1964, Lounesto 1981). This group is isomorphic to Zg and
the class of 4, is its neutral element. If [4] denotes the class of the algebra 4 so that

(4] (4] =14, & 4]
and
[CkIO) = [4] = 1
then
[CMk,)] =[R2 ]!

because gy , ® gy is neutral. The formula for the graded tensor product (4.40) may be now
interpreted as 4, ® A = A¢. Conversely, from (7.15) one can read off the graded tensor products
of all algebras occurring in Table IV. For example, taking the square of A4, one gets
A
H®H=H(2) (7.16)

This should be contrasted with the ungraded product formula

H®H=R#) (7.17)
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established in §4.1.
Two real Clifford algebras belong to the same class,
[cik, )] = [cAk', 29)],
if, and only if, their indices are congruent mod 8,
k-2 = k'- 2" mod8.
Note also that in our notation formula (7.1) can be written as

.n2= (_1)v(v~1)/2 (7.19

7.2 Charge conjugation and Majorana spinors

Essentially all relevant information about the real Clifford algebras and their representations
is contained in Table IV. It is useful, however, to present this information in a different form,
adapted to the needs of theoretical physics, where complex representations are of primary
significance.

Let us first note that, since the complexification of the real algebra Cf{k,?) is isomorphic to
the complex algebra CKk+%), there is an injection

Clk,2) — Clk+2)

which can be used to construct a complex representation of ¢f(k,?) from a representation of
Cik+2). If the latter representation is faithful and irreducible, then so is its restriction to Cik, Q).
Assume now that k+¢ =2mis even and let

¥: CAk,2) — End S (7.18)

be a representation obtained in this manner from one of the representations described in Chapter 6.
The vector space S is therefore, of complex dimension 2™. The algebra CAk,?) is isomorphic to a
matrix algebra L(N) with a suitable Nand L = R or H. It is, therefore, central simple over R and,
by Theorem 4.2, there exists a C-linear isomorphism C: 8§ — S intertwining the representations Y
and v,
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¥a) C=Cya) foreveryae Cik,2). (7.19)
and such that
either CC=I or CC=-I

In the first case the representation ¥ is real and in the second it is quaternionic. By inspection of
Table IV we obtain

I for v=0,2 (realcase),
-1 for v=4,6 (quaternionic case).

Inthe real case, the real form of ydecomposes,

Y=Y @,
where
¥ clk,9) — Endg S*, k- £2=0,2mod 8,
are two real equivalent representations in the real vector spaces S* and 8-, defined as in §3.4 and
§4.4. In the quaternionic case, the real form of vis irreducible and its commutant is isomorphic to
H.
The restriction ¥ of (7.18) to the even algebra Cf;(k,?) decomposes

Y=Y O

where ¥, and y_ are the representations in the spaces S, and S_ of Weyl spinors defined as the
two eigenspaces of the helicity endomorphism

I=i{v0-D2 ym) (7.20)

defined so that 2 = I. The complex conjugate space S also decomposes,

t

Wi
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+
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Since (7.19) and (7.20) imply
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FC=(¢IVvv-DRer (121)

we see that C preserves or changes helicity depending on whether v = 0, 4 or 2, 6, respectively. In
other words, there is a complex equivalence of representations of Cf(k,?)

Yo ~ Y+ for v=0,4,

and

£

Ye ~ Yz for v=2,6.

The representations y, and Y_ are never complex-equivalent to each other because
vy ) =iVO-DRL (7.22)
However, for v = 2 and 6 their real forms are equivalent (cf. §4.4): in this case the algebra Cfy(k,2)

is a simple — though not central — real algebra and, as such, has only one, up to equivalence,
irreducible faithful real representation.

For k + £ odd, Theorem 7.1 can be used to reduce the problem of determining the properties
of representations of Cf{k,2) to that for even dimensions. Ifk+ £ = 2m + 1, then the even algebra
Cly(k,2) is central simple and its faithful irreducible representation y in the complex 2M._dimensional
space S is real for v = 1, 7 and quaternionic for v = 3, 5. The full algebra CAk,2) is a direct surh of
two simple algebras for v = 1, 5; it is simple — but not central — for v = 3, 7. The representation

¥: Clytk,#) — End S
can be extended to two representations of Cfk,?) in S, also denoted by v, and v, by setting

v (M) =£V0-D2Y, (1.232)
where 1 is now the normalized volume element in Cf(k,0), k + £ = 2m + 1. Note that, with our
notational conventions, we have the three representations v, v, and y._ for every signature (k, 2).

Their meaning, however, is rather different in even- and odd-dimensional spaces.

An alternative and equivalent way of constructing the representations of Cfk,?) fork + ¢ =
=2m+1 is to start with a representation

¥ Clk,2+1) > End (S@ S)
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of the simple algebra Ck,#-+1) in a 2™*+1_dimensional space and to consider the decomposition
Yo=Y ,@7.: hkL+]) > End S®End S
of the restriction ¥ 'y of ¥ ' to the even subalgebra.
Let £: CAk,R) — Chy(k,R+1) be the isomorphism defined in Theorem 7.1. The composed maps
Y'pof:CAk,2)—>EndS

are irreducible representations of the algebra such that, by virtue of (7.22),

¥y of M =2iVOVD2Y (7.23b)
wherenow v'=v-1=k-2-1mod8. Sincev=1mod2and Vv -v=1mod 8, we have v(v-1)
+ V' (v'- 1) = 0 mod 8; therefore the righthand sides of (7.23a) and (7.23b) are equal and there is

an equivalence of representations, ¥, ~Y ', o f.

Let
Yo=Y @Y. CikL)->EndS@®EndS

be the direct sum of representations so obtained. Since Cfy(k,2) is central simple, the
representations y and vy are equivalent,

Y@ C=Cy(a) for ae Cfyk,?)
and, by virtue of (7.23a) there is a complex equivalence of representations
Yp~Ye for v=1,5
and (7.242)
Yy ~Ys for v=3,7.

Therefore, there is also a complex equivalence Yy ~ Y,

Yo @ Cy=Coyg(@ for ae Chk,9), (7.24b)
where
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I®C forv=1,35,
Cy= J (7.24¢)
2, oc®C forv=3,7.

The representations ¥, and y. are inequivalent for v=1and 5. In these cases 7y, provides a
faithful representation of the full algebra. For v = 3 and 7 the representations y, and . are
equivalent over R, but not over C. They both provide faithful irreducible representations of the full
algebra in the 2™-dimensional complex vector space S.

To establish a relation between C and the notion of charge conjugation of a wave function,
we consider the generalized Dirac equation in a space-time R2™ with a flat metric g of signature
(k,2) with k+2 =2m, m =1, 2, .... Let (e,) be the vectors of an orthonormal basis, op = gleg,
eB) and 7y, = Y(e,), where v is a representation (7.18) of cfk,), in S. We put y* = g“ByB, where
(go‘B) is the inverse of (gﬂB)’ and consider a particle of mass k and charge e moving in an
electromagnetic field derived from a potential A ;. The wave function of the particle

y:RIM 5§
is assumed to be a solution of the Dirac equation which can be written as either

(Y @y -ieAy) - K)y=0 (7.25)

or
(Y™ @ - ieAg) - K) W =0. (7.251)

For a free particle (A, = 0) one derives the Klein-Gordon equations:

P9y 95 - KHy=0 from (7.25)
and
(B 3, 9+ KD Y=0 from (7.25i).

The choice between (7.25) and (7.251) depends on the signature and involves a decision conceming
the signs in the equation g“B PaPp = + k2 : which of them corresponds to real particles of
momentum p, rather than tachyons. In particular, in Minkowski space-time B* one chooses (7.25)
or (7.251) depending on whether the signature is (3,1) or (1,3).

By complex conjugation, using

Yy=C¥%C! and Ty, +y,I=0,
one derives
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(W @g+ie Ay -K)CIY=0 from (7.25)
{y* @y +ie Ay) - K) (CDY1y=0 from (7.250).
Therefore, if Y is a solution of (7.25), then the charge conjugate wave function
v, =Cy (7.26)

is'a solution of the same equation with opposite charge. Similarly, if v is a solution of (7.251),
then the charge conjugate wave function is

v =Cy, where C;=CT. (7.260)

When EC =], i.e. for v = 0 and 2, there is the decomposition (3.17), where the spaces S*
and S” may be now characterized by

St={¢e Sl¢, =10} (7.27)

The spaces St and S are each real 2™-dimensional and the representation ¥ of the full Clifford
algebra is real (§4.4): when restricted to S* or §7, and expressed with respect to a basis, it is given
by real 2™ by 2™ matrices. Moreover, for v = 2, the spaces S* and S~ have a natural complex
structure given by the endomorphism (n). The C-linear isomorphisms

F,:S, - 8% (7.28)
where
Fu®)=01¢, andF,ly)=% (xDy (7.29)

intertwine the representations y, and 'yi' restricted to Cy(k,2). Since in this case f‘C = -CT’, there
are no.common eigenvectors of C and I" and, therefore, no real Weyl spinors, S,. M §* = {0} for
every combination of the signs.

When C T CT =1, ie. for v=0 and 6, there is another decomposition of the space of Dirac
spinors,

S=§' &S,
where
S¥={0e Slp,=*0) (7.279)
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are real spaces which, however, are not invariant with respect to the representation y: since 7y, and
I" anticommute, the endomorphisms Y, map S,” into 8.”. Moreover, if ¢ S thenipe S .
Therefore, the endomorphisms iy, map S;* into S.* and are represented by real matrices with
respect to a basis in S;’ . The endomorphisms 7, are thus represented by pure imaginary 2™ by
2™ matrices. The replacement of v, by ;Y,, = 1Y, is equivalent to going from a representation ¥ of
Clk,2) in S to a representation

{Y: CARk) — End S (7.30)

of the opposite algebra CA¢,k) and it is worth recalling in this context that the classes [4,] and [ 4]
are opposite elements of the Brauer-Wall group. The elements of S* and S;" are sometimes called
Majorana spinors of the first and second kind, respectively (Regge 1984). We follow this
terminology even though the remarks made above show that the Majorana spinors of the second
kind, associated with Cfk,?), k-2 = 6 mod 8§, are equivalent to those of the first kind associated
with ¢f,k). For this reason, it is legitimate to refer, as is done in most of the literature, only and
simply to Majorana spinors.

By comparing equations (7.25 and 25i) with their complex conjugate, one sees that
Majorana wave functions correspond to particles without electric charge.

For v=6 there is a complex structure in both S; and S, given by y(n). The C-linear
isomorphisms

Fy: Sy — St (7.281)
where
Fi®=0t¢, and Fyl@y=Y% (+CDy (7.29i)

intertwine v, and the reductions Y7 of y| Cfy(k,) to S*.

The intertwining isomorphisms (7.28) and (7.28i) provide an equivalence of the Weyl to the
Majorana spinors of the first and second kind, respectively (Pauli 1957, Giirsey 1958). We should
also note the equivalence of ¥" and ¥~ and of the associated spaces of Majorana spinors of both
kinds. Let K : $* — §- be the "multiplication by i" map intertwining y* and ¥~ (§4.4), then

F oL=KoF,
where

L:S,—S, L©®) =i,

is an isomorphism intertwining the representations ¥, and y_ of the even algebra.
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The algebras with v = 2 and 6 are of special interest in physics because they correspond to
the Minkowski signatures (3,1) and (1,3), respectively, as well as to their extensions (k+2, k) and
k, k+2), k = 2,3, ..., appearing in conformal geometry and twistor theory (Penrose 1967,
Budinich 1979).

For v = 0 all three representations ¥, ¥, and y_ are real and there are Weyl-Majorana spinors
- of both kinds. Defining

stn §r=87, s*ns~=s!
NS’ =S;, §NS'=S_ .
we obtain a decomposition of the real form of S into four real 2™1-dimensional spaces:
S=S;®S’®S; &S~ .
Since N2 = 1, there is no natural complex structure in this case.

For v = 4 there are no Majorana spinors of any kind and the two Weyl representations vy, and
Y. are inequivalent. All three representations ¥, ¥, and ¥, are quaternionic.

Example 7.1 Lety: cf1,1) — End S, where S = !E2, be the representation (cf. Example 4.7b)
defined by

Y1=0, Yo=¢€ sothat I'=1 andC=1L
The space
$*=(peSI10=0)

is simply R2 ¢ €2, Majorana spinors of the first kind are elements of C2 with both components
real. On the other hand, the space of Majorana spinors of the second kind,

S7={0eSITo=0)

consists of all pairs (A, ilt), where A, i € R. As a linear basis in S;" one can take the vectors ¢;
and i¢;, where

0;=(5) and ¢,=(?)




98

The endomorphisms y; and Y, are represented, with respect to the new basis, by pure imaginary
matrices i€ and iG, respectively.

Example 7.2 (Clifford algebras of Minkowski space).
@) Consider the algebra CA3,1) represented in S = C* by

1,=1®0, Y,=1t®T, Y3=0® y=e®I

Here v = 2, C = I and Majorana spinors (of the first kind) are real elements of C4. However, I =
=it ® ¢ is complex and so are Weyl spinors:

Si={7&¢1®¢a;+u¢2®¢¢'l,ue C},

where ¢, = ¢1 £ i), and ¢y, ¢, are the canonical basis vectors of C2 defined in the preceding
Example. We can also make explicit the action of F, : §, — St=R4‘c C4=8,

F,(Ap; ® 9, + 1, ® 0.)=Re h ¢; ® 0 +ImA ¢ ® Py +Re 0, ® ¢y - Imp ¢y ® ).
(i) The algebra C{1,3) can be represented in S = C* by the Dirac matrices
Y=1®L v,=¢®g0, Y,=-ie®e, Y3=e®T.

Herev=6, C=-t1®¢ I'=0®], CI'=¢ ® ¢ and there are Majorana spinors of the second
kind,

S;=(A0,®0, A0.®¢ +n6,®0 +L0.®¢,IA pe C}.

The map F,; transforms a Weyl spinor (01 +9y) ® v, where y € C2, into a Majorana spinor of
the second kind.




Table V
Number and dimensions of irreducible complex and real representations of
Cfk,2) and Cly(k,2)
0 v 0 1 2 3 4 5 6 7
1 C 1 2 1 2 1 2 1 2
ct
2 R 1 2 1 1+ 1+ 2+ 1+ 1+
3 C 2- 1 2- 1 2- 1 2- 1
o
4 R 2- 1 1 1+ 2 1+ 1 1
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Explanation: k+2 =2m or 2m+1 and k-2 = 8q + v, where 0 £ v £7. The figure 1 or 2 appearing

inrows from 1 to 4 is the number of complex-inequivalent (rows 1 and 3) or real-inequivalent

(rows 2 and 4) representations of Cfk,?) and Cy(k,#). If there is no sign after that figure, then the
representations in question are each of dimension 2™ over € (rows 1 and 3) or R (rows 2 and 4)..

The signs + and - indicate that those dimensions are 2™*! and 2™-1, respectively.
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7.3 The Dirac forms
Clifford algebras of real, even -dimensional vector spaces satisfy the assumptions of
Theorem 4.2 and their faithful irreducible representations are equivalent to their Hermitean
conjugates. If k+¢ = 2m, then the faithful irreducible representation (7.18) is equivalent to the
Hermitean conjugate representation
' : Cf,8) — Endp S*,  where yi(a) = ¥(B(2))’ and ae cik,2). (7.31a)
According to Theorem 4.2,
YB@YT A=A (@), (7.31b)
where the isomorphism

A=BC (7.32)

can be made Hermitean, A = AT, by a choice of B and C. If, in the definition of yT, the
antiautomorphism B is replaced by o o B, then one obtains another representation equivalent toy,

Yo oB@) D =D ¥a), (7.33)
where
D=i’EC (7.34)
is also Hermitean by virtue of (4.32), (6.13), (7.21) and the congruence
2=m+} v(v-1)mod2 (7.35)

valid for all integers k and ¢, with k+2 = 2m or 2m+1.

Let ;y be the representation (7.30) of the opposite algebra C{2,k). Denoting with a subscript
i the intertwining isomorphisms associated with ;y, we have

[;=(-)™, A;=D, B;=i*B, C;=CI, D;=A, E;=i‘E. (7.36)
where the phase factor in B, is chosen so that B;C; be Hermitean.

The isomorphisms A and D are used to define the Dirac Hermitean forms on the space S of
spinors,
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A, W) =<A @), y> and D, ) =<D ), y>, (7.37)

where ¢, y € S. By virtue of (7.32) and (7.34) the Dirac forms can also be written as

A0, ¥) =B (0,y) and D@,y =i*B @, V). (7.38)

These forms have been introduced by Dirac (1928) in connection with the equation of the
electron. To establish the relation between our notation and the one in current usage in the physics
literature, let us consider, for example, the Dirac form D and introduce a basis () in the spinor
space S. In agreement with the conventions of spinor calculus (§3.3), the corresponding bases in
S*, S and S* are (e, (eﬁ) and (e;,), respectively, where |1 = 1, ..., 2™, Since D is Hermitean, the

V!
matrix (DLW) of its components with respect to such a basis

Dﬂv =D (e, ey)s
is also Hermitean,

D Dy

v = Mo
The value of D on the pair (¢, y) of spinors is
D9, y) = ¢ Dy, ¥, where of = ¢, (7.39)

The spinor
D) =" Dy, Ve S*
is often called the Dirac adjoint of ¢ with respect to D and denoted by ¢; we cannot follow this

notational tradition because bar has been reserved here for complex conjugation; instead, we use a
tilde, and write

¢=D(0) or ¢y= " Dy .
Since D is Hermitean, D = 'D, and (7.39) can be written as

<$7 Yy> = <$’ Dy>
or simply

dy=¢"Dy
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in a notation which is as close as it can be to that of the majority of physicists under the provision
that, for us, bar denotes complex conjugation.

In signature (3,1), the Lagrangian for (7.25) is proportional to
Re D(y, Dir y), (7.40)
where ¥ : R4 — T4 is the wave function and
Diry = (f* @y - ieAg) - ) ¥

is the left hand side of the Dirac equation. The correctness of (7.40) is based on (Dya)T = -DY,, an
equation which leads to

D(¢, Dir ) - DDir ¢, ) = 95, D¢, Y W), (7.41)
i.e. to the formal self-adjointness of Dir, so that the first variation of the real function (7.40) is
Re (2 DSy, Diry) + 9, D(y, ¥* 8y)).
Similarly, in signature (1,3), the Lagrangian for (7.251) is
Re A (y, Dir; y) (7.42)

where Dir)y is the left hand side of (7.251). If ;yis the representation used in that equation, then A
in (7.42) is identified with A; = D and the Lagrangian (7.42) becomes identical to (7.40).

The following properties of the matrices A, D and vy, are of frequent use: let 1 S0ty <@y ...
<0ty < 2m, then

T _ P02
(A Y"l ...yap) =(-1) Aym1 'ymp (7.43)
and
t_ o qyple+ D2
D Y, ya) =(-1) Dya Yy (7.44)

1 P 1 P
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What happens to the Dirac forms on restriction to the spaces of Wey! and Majorana spinors,
if any? From (6.13), (7.21) and (7.35) one derives

AT =(-DKTTA (7.45)

and a similar equation for D. Let ¢ = ¢, + ¢_ be the decomposition of ¢ € S into Weyl spinors

+ A(o,vy,) for k even,
A, y,) = { (7.46)
A@,y,) for k odd,
and similarly for D. Therefore, for even k, the Dirac forms restrict to Hermitean and non-singular
forms on the spaces of Weyl spinors. For odd k, these restrictions are zero: the maps A and D

change helicity of Weyl spinors; such is the case of Minkowski space.

The hermicity of A and D, together with (7.21) and

B = (-1)m(m-1)/2 g, (7.47)
implies _

AC = (-1)mm-1/2 tcp (7.48)
and

DC= (-1)mm+1)/2 tcp, (7.49)

Letv =0 or 2, so that CC =1 and there is the decomposition (3.17) of S into spaces of Majorana
spinors of the first kind S* and S™. From (7.38) or (7.48) we obtain that the form

imm-1/2 A restricted to S* is real. (7.50)

This bilinear form is proportional to BIS* and, therefore, is symmetric for m = 0,1 mod 4 and skew
for m = 2,3 mod 4. There are similar statements concerning D and Majorana spinors of the second
kind.

The definition of Dirac forms on spinor spaces associated with real odd-dimensional vector
spaces requires special attention because the algebra Cfk,?) is not central simple for k+2 = 2m+1.
Let v, and 7. be the representations of the full algebra defined by the extension (7.23a) of the
representation 7y of the even subalgebra. By virtue of (6.19) and (6.20), there is the equivalence of
representations,
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'\yi ~¥; for m even,
';i ~Yy for m odd.

By comparing this with (7.24a) and using the congruence (7.35) we recognize that for £ even there
exists a Hermitean map A such that

LPB@) A=Ay, ae k). 7.51)
Similarly, for  odd there is a Hermitean D such that

Yl o B@)D =Dy, (), ae Clk9). (7.52)

7.4 Clifford algebras of Euclidean spaces

A real vector space is said to be Euclidean if it is given a definite scalar product.
Theorem 7.3, Let Abe either Cfk,2) or Cfy(k,?) depending on whether k+£ =2m or 2m+1 and
let v be a faithful irreducible representation of Ain a complex space S of dimension 2™, The scalar
products h and h' on 4,

h(a, b) = 2™ Tr y(B(a)b) (1.53)

h'(a, b) = 2™ Tr (ot 0 $(a)b), where a,be 4, (7.54)

arereal and |

h is positive-definite for k > 0 and 2 = 0; it is neutral otherwise;

h' is positive-definite for k = 0 and # > 0; it is neutral otherwise.

?,

* Proof. Inview of the isomorphisms(7:3-and 4)-it is'énough to-consider thcﬁuc/:aseﬁof k+ Q even.
 Let (e be an orthonormal basis for 80 (cf. §7.1). A generic element of the basis of Chk,Q) is

c=¢ ..e €& ..€ (71.55)

(7.56)
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and it is understood that ¢ = 1 for an empty sequence (7.56), i.e. for p=q=0. Therefore, if
p+q > 0, then

Try(c) =0 (7.57)

because, for p+q even, Y(c) = Yo, 'ya yﬁ =Yy, - yﬁ Yo, » and Tr MN = Tr NM for every M,
N e End S; for p+q odd y(c) = -’ y(c) Fl also 1eads to (7 57). The basis consisting of 2k*+#
elements (7.55) is orthogonal with respect to both h and h'. To compute the signature of h and b’
we note that

h(c,0) = (-1)4 and h'(ce) =(-1)P

so that h is positive definite for # = 0 and h' is positive-definite for k = 0. Given p and g, there are
(:) { f ) different elements of the form (7.55). Therefore, putting

e )= (ot ey = Y, 2( )(2) <5

p—0 q=0

we see that

i .

bere K
This completes the proof.

By reference to Proposition 4.2 and (7.38) one could now prove

Theorem 7.4 The Hermitean forms A and D defined on the carrier space S of an irreducible
representation 'y of Cfk,?) are such that '

A is definite fork>0 and 2 =0,

(7.59)
D is definite fork=0 and 2> 0,

s

and they are neutral otherwise whenever defined.
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The importance of this theorem justifies giving it another, direct proof. This can be done by
making appeal to concrete representations of the algebras. We choose the Cartan representation
described in §6.3 and adapt it to real algebras as follows.

Letk+¢=2mandy (@ =1, .., 2m) be the matrices (6.26). If k > £ then we put

Y901 = Yol foroo=1,..,m
Y20 =1 %0 fora=1,..,(k-2)/2 (7.60)
Y'20.= Y20 foro=1+(k-2)/2,..,m

so that the matrices Yo (@ =1, ..., 2m) generate a representation of Clik,?). The intertwining
matrices A and D,

v, =AY, Al=-DyD!
are given, up to phase factors, by
Yie042 Viod - Yom ~ A (for # even) and D (for ¢ odd),
Yeg+2 Yigsd - Yam I ~ A (for 2 odd) and D (for £ even),
with the understanding that the product of an empty sequence of matrices is the unit matrix. Only
in the latter case is the corresponding Hermitean form definite. For k = 2 this can happen only for
k=2mand ¢ =0:then A=Tand D~T. Thecase k<% is considered in a similar manner,only D

can then be definite and this happens for k=0 and ¢ = 2m.

The matrices Y ', given by (7.60) are all Hermitian for =0, the matrix

Yo Y4 - Yom for m even,
C=
Y3 Yomq form odd,
isreal and
Cl=tC = (-pmm-D2c, (7.61)
If
1T, =1 T=C¥' C1, 'c=C=C=C"
then the matrices

Yo=Uly'e U (7.62)
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where U is the unitary matrix
U=4% (+)I+%(1-1)C

are real,"?a =Y, and also Hermitean, therefore symmetric. By virtue of (7.61), these conditions
are satisfied in signature (2m,0) where m=0 or 1 mod 4. If m=0 mod 4, then the product Yy .."Vop
is also real symmetric and its square is L.

In signature (0,2m), the matrices 7 ', given by (7.60) are all anti-Hermitean. A similar
reasoning, with C replaced by CT’, shows that for m=0 or 3 mod 4 one can transform Y'g into
matrices 'Y, which are real and skew. For m=3 mod 4 the product 'Yy ..o is also real skew and
its square is -1 If M is an anti-Hermitean N by N matrix, Me CN), MT = _M, then its real form is
skew; explicitly, if M = P+iQ, where P,Qe R(N), then the real form of M is the skew, 2N by 2N
matrix

( P-Q)
Qp)

Therefore, the algebras ¢£0,2m) for m = 1 and 2 mod 4 and the algebras C{0,2m+1) for m = 0,1
and 2 mod 4 admit real representations of dimension 2™+! such that the corresponding Dirac
matrices are skew. This can be summarized in

Theorem 7.5 For every integer n>0, the Clifford algebra C/(0,n) admits an irreducible
representation in a real spinor space of dimension 2 where y is the Radon-Hurwitz sequence
defined by

n=12 3 4 5 6 7 8

=1 2 2 3 3 3 3 4
and

x(n+8) = y(n) +4.

The representation can be chosen is such a way that the real Dirac matrices are skew. For n even

and n=1 mod 4, the rerpesentation is faithful; for n=3 mod 4, the restriction of the representation to
the even subalgebra is faithful and irreducible.

Let
¥: CRO,n) — RQX®) (7.63)

be a representation described in Theorem 7.5. Let te B and u=(u®)e R™ be a vector, then the matrix
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W) = I+ uy,
is invertible unless t=0 and u=0: indeed, we have

erunen) =+ ), @)L

a=1
Let ¢ be a real, 2X(W_-component spinor; the representation y defines an orthogonal
multiplication

n 2K
B xR - R , (7.64a)

(t+u) - ¢ =y(t+u)o. (7.64b)
For n=1, 3 and 7— and only for these positive integeres — we have
n+1 = 2X0
so that (7.64) is a multiplication in the vector space R™*1 which makes it into a division algebra; the
cases n = 1,3 and 7 correspond to complex numbers, quaternions and octonions (Cayley numbers),
respectively. In the last case the multiplication is non-associative.

The representation (7.63) can be also used to construct sets of vector fields on spheres which
are, at each point of the sphere, linearly independent and orthogonal. It is well-known that
even-dimensional spheres do not admit any nowhere vanishing vector fields. Let N be an even
integer and n the largest integer such that

N = 2x(@m) P
where p is odd. Consider the unit, (N-1)-dimensional sphere
Snop = (e RN | top =1},
Let v’ be the (decomposable) representation
¥': Ch0,n) - RIN) = RX™) @ R(p)

defined by

v '(a) = Wa)®I, where ae C{0,n).
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Since the matrices y(u), ue R®, are skew, so are the N by N matrices ¥ '(u). Therefore, for every
ue MM and @e Sy_; the vector ¥ ()@ is orthogonal to @, i.e. tangent to Sy ;. Taking for u the
VECtors €y, ..., e, of an orthonormal basis in R® we obtain a set y ()@ (a=1,..;,n) of n
orthonormal vector fields tangent to Syy_;. Adams (1962) showed that no more everywhere linearly
independent vector fields can be constructed on any sphere: the Clifford construction provides the
best one can do. Moreover, since n+1 < 2%®) ynless n=1, 3 or 7, the spheres Sy, 85 and S are the
only ones admitting "teleparallelism”: their tangent bundles are trivial.

7.5 The spinorial chessboard

There are several "periodicity properties" of real Clifford algebras and their representations.
The class [Clk,?)] of the algebra, cf. § 7.1, depends only on k-2 mod 8. But the symmetry
properties of the invariant bilinear forms depend on k+% mod 8. There is a "double periodicity" in
the set of all real Clifford algebras: it is convenient to describe it by referring it to a chessboard.

We define the spinorial chessboard to be the set of 64 real algebras
{ Chk,2) 1 05k 2 <7}

where it is understood that C(0,0) — €£0,0) is the algebra R—R, i.e. ¢(0,0) = {0}.In addition
to the chessboard — and representations of its elements — we consider the two eight-dimensional
Euclidean algebras ¢8,0) and ¢X0,8). According to the periodicity property (7.11), if k' = k+8p
and 2.'= ¢+8q, then

CaK',0") = CAk,2) ® R(16P*9), (7.65)

Therefore, every Clifford algebra can be represented as in (7.65), with Clik,?) on the chessboard.
The significance of this remark goes beyond the mere isomorphism of algebras (7.65): the
representations of CAk',#") and the associated bilinear and Hermitean forms can be easily
constructed from those of Cfk,?). Adding eight dimensions makes larger the Clifford algebra and
the associated spinor spaces, but preserves their essential properties such as the symmetry of B,
type of C, etc.

To make the last statement more precise, consider a vector space v=R8 with a
positive-definite scalar product. The faithful irreducible representation of its Clifford algebra,

Cf8,0) — EndS, (7.66)
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is real so that S can be taken to be a real, 16-dimensional space (of Majorana spinors). Let
(e1,..,€g) be an orthonormal basis in V. The set of 28 products of the form (5.14) is a basis of the

algebra. This basis is orthogonal for the scalar product h on €{8,0) defined by (4.20): if

a=e¢ ..e and b=eB €

oy o, L ﬁq ’
where »
1oy <..<op<8 and 1< <..<B; <8,
then
B(a)b = 1 whenever p = q and oy = By, ..., 0, = B,
and

Tr v(B(a)b) = 0 otherwise.

Therefore, the scalar product h is positive-definite and, by Proposition 4.2, the symmetric bilinear
form B is also positive-definite. We choose a basis in S such that B is represented by a unit matrix
with respect to this basis, and we use the basis to identify S with R16 50 that the representation
(7.66) can be described as

v 0 : Ccf8,0) - R(16) (7.67)
and 0 = 6, i.e. the Dirac matrices '

B, = 0(eg), @=1,..8,

are symmetric,
tg =9

o [0

The image of the volume element by 9,
@ = 91‘.. 98,

is also symmetric and 2 = L. There is the decomposition

6,=68,06_,
where
0, : C,(8,0) = R(8) (7.68)

are the inequivalent Weyl representations of the even algebra. Since ® anticommutes with the Dirac
matrices, one can construct a faithful irreducible representation of the opposite algebra
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%0 1 CA0,8) —R(16) (7.67%)

by putting
0,208, a=1,.,8, (7.69)

so that the Dirac matrices (7.69) are skew and
t
%0, =0 .0, 0L (7.70)
v: Chk,#) — EndS (7.71)
be a representation of the Clifford algebra Cf(k,2). One can extend it to representations

¥ Ck+8,0) — R(16) ® End S

and
¥": Ck,R+8) — R(16) ® End S
by putting
Ya=©00Y, ="y (@=1, .., k+0), (7.723)
Y'arkeo = 0o®1 (@=1,...8), (7.72b)
and
Y ke =0 6,81 (a=1,..8). (7.72¢)

Marking with primes or double primes the quantities corresponding to the extensions ¥ ' or
¥", respectively, we obtain for k+£ even

I'=@el=I"

A'=I®A, A"=08A
B'=1®B, B"=068B
C=I8C=C" (1.73)
D'=8&8®D, D"=18D
E'=0®E, E'=I®E.

Adding 8 "positive" or "negative" dimensions preserves the character of A,B,C or D,E,C,
respectively. If A or D is definite, then so is A' or D", respectively. There are similar results for
k+£ 0dd, see § 7.6.5.
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Table VI

The Spinorial Chessboard

> /////,/ ////// ‘i"b// R
S %// ////7/ "
77, 7R/ e
/0/'7/ :/// /////// //’/, // ___-5_.....;-
o //4/% 43}7//, ////// //% ___J:.__l:
-7 T T .. 77 T
; ,/c/),o/// 10 ;/30/// 3,0 2/2 y 50 | ,% 7,0 ___i____,'_'

Even- and odd-dimensional Clifford algebras Cfk, ), 0 <k, ¢ <7, occupy, respectively, black
and white squares of the board. For example, the algebra ¢3,1) of Minkowski space is at the
square of the white queen’s pawn. Every real Clifford algebra can be reached from one on the
board with rook's moves to the right and upwards, each move being by a multiple of eight
squares, as described by (7.72) and (7.73).




113

Table VII

The structure of the algebras occurring on the chessboard may be determined from

the following data:

sgn ccC

‘White and black dots replace here the squares of the chessboard. The figures on the left and lower

sides are values of the volume element squared. Those on the right and upper sides determine the
type (real if 1, quaternionic if -1) of the full (for k + ¢ even) or even (for k + £ odd) Clifford

algebra.
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Table VIII

The bilinear forms and their symmetries

The isomorphisms B and E defined by by, =B vy, B! and y, = -Ey,, E! are either symmetric or
skew and they either commute or anticommute with the helicity operator I'. These properties are
indicated above by pairs (€, €,) where €; and €, =+ or -. They are defined by 'B = ¢; B and BI'=
=¢, 'I'B; and similarly for E.
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Table IX

The Dirac (Hermitean) forms

Ddefinite ~

(07) 29— 09— o —9
(08) ® AN WD o T W S S
(05) O2—¢——0R ¢ 00 4 &0 )

(04) ¢—02 ¢ o o Of o OF

(03) 02— 4 40 4 AP 4
§ A d
(02)¢—08 ¢ O o 5F ¢ OF
(00) 2—g— 02 o &P 4 0P
A A A A
W D WY ' S W N —
(k,2)=(0,0) (10) (20) (30) (40) (50) (80) (700

A definite

The isomorphisms A and D are defined by yTa =AYy Aland ylf(x =-D vy, D1, They both exist for
even dimensional spaces. In an odd number of dimensions, exactly one of the two exists,
depending on the parity of k; this is indicated by the letter A or D next to the corresponding white
dot. The Hermitean forms A(¢, ¢) are (positive) definite for the algebras Cf{k,0); similarly, the
Hermitean forms D(¢, ¢) are (positive) definite for C£0, £). Otherwise they are neutral.
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7.6 Summary
In this section we give a short summary of the properties of representations of Clifford
algebras of real vector spaces in a language familiar to physicists. The 2M.dimensional spinor space
M
S is identified with C2, the endomorphsims Y, are 2™ by 2™ matrices and the symbols tA, At and
A denote the usual transpose, Hermitean conjugate and complex conjugate of the matrix A,

respectively. Therefore Af= tA.

If (k,9) is the signature, k+# = 2m or 2m-+1, then there are k+% Dirac matrices Y& cEm™
such that

Yo Yo+ ¥p Yo = 0 for a#B, o and P=1, .., k+&, (7.74a)
42 =1 for k values of o and Y5, = - Ifor 2 values of . (7.74b)
We do not insist here that the first k values of the label should correspond to Dirac matrices
with positive squares; only the total numbers of positive and negative squares matter.
1. Th f even-dimensional k+f =2m
Let k-2 = 8p+v, where p is an integer and 0 < v <7. The matrix
[ =i{"VD2y, .y, anticommutes with Yy, (1.75)
and

=1 (1.76)

There exist invertible matrices A, B, C, D, E e C(2™) such that for every o

Yo = Ave AL 7778
by, =By,BY, (1.77B)
Yo =CYC, 1.77C)
v;= -Dy,D, (1.77D)

b, =-EYEL (1.77E)

|
§
|
2
'§,
]
.
;




They satisfy
tR = (“l)m(m-l)IZB
tE = (~1)m(m+1)/2E

tr=(1MBra-!

The defining properties (7.77) determine the matrices A, ...,

factors can be chosen so that
CC = (-1)Vv-28 ]
A=BC=Af
D=EC=Df

E=i’Bl
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(7.78B)

(7.78E)

(7.781)

E up to complex factors. These

(7.79)

(7.80A)

(7.80D)

(7.81)

The remaining freedom is A — AA, B — AuB, C — uC, D — AD, E—»AUE, where A is real # 0

and g is complex of unit modulus.

If U is an invertible matrix, Ue C(2™), then the matrices

Yo = U-IYaU

(7.82)

have the properties (7.74). Marking with primes on the left the matrices associated by (7.77A-E)

with the matrices 'y, we have
'A =UTAU,
'B = 'UBU,
'c=Ulcy,

and similar relations for T,'D and 'E.

(7.83A) -

(7.83B)

(7.83C)

e
The Hermitean forms ¢ A¢ and ¢'De, where ge €2 , are neurral except in the following

cases:
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oTAg is definite for £ =0,k >0, (7.84A)
¢o'Do is definite for k=0, ¢ >0. (7.84D)
These forms restrict to non-degenerate Hermitean forms on the spaces of Weyl spinors if,
and only if, k is even. For odd k, the matrices A and D change the helicity of Weyl spinors.
762 Th f odd-dimensional k+Q =2m+1
Let k-2 = 8p+v, where p is an integer and 1 £ v £7. One can choose the matrices Vy,...,
Yom+1 SO that

Y o Yomer =1VODRL (7.85)

There exist matrices A, B, and C,, such that, for every o

Vo= CDP A Y, AL, (7.86A)
Ly =DM By v, B, (7.86B)
Vo= (VD2 C oy 1) (7.86C)
and )
Ay =B,Co=A, (7.87)
'B, = (1™ B, (7.88)
€.C, = (1Y -DB] (7.89)

The Hermitean form cpJon<p is neutral except in the case when either k = 0 or £ = 0: it is then
definite.
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7.6.3 ~ Adding one dimension to an even-dimensional space

Let k+¢ = 2m and k-2 = 8p+v, as before. The 2m+1 matrices

YiroYom @nd Yo =T (7.90)

are Dirac matrices for a space with signature (k+1,¢) and

A for 2 even,

A, = { (7.91A)
D for £ odd,
B for m even,

B, = (7.91B)
E for m odd,
C for v=0or4,

Cy = (7.91C+)
CI" for v=2or6,

where the matrices I, A, ..., Eare as in § 7.6.1.

Similarly, the 2m+1 matrices

'Yl, vers 'Y2m and 'Yzm+1 =il

are Dirac matrices for a space with signature (k,¢+1). The intertwining matrices A, and B, are as in
(7.91A) and (7.91B), but

C forv=2or6,

G = { v (7.91C-)
CI” forv=0o0r4. ‘

7.6.4 Adding a 2-dimensional neutral space

As an example, we give explicitly all relevant quantities for an extension from signature (k,?)
to (k+1, 2+1). We choose an extension of type O because it is the only one that allows a
simultaneous treatment of even- and odd-dimensional spaces. One can take
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Y= 0®Yg (=1, kt0), Y1 =T®1 and ¥’ p, 4=€®1
(i) Fork+2 =2m we have

I'soge I, C=IsC
A'=t® D, D'=(-D?ie® A
B'=t®E, E=(D"liegsB

(i) For k+2 = 2m+1 we have

{ ie®A, for ¢ even,

A=

° T®A, for? odd,
{ -ie® B, for m even,

B' =

° 1®B, for modd,
{I@CO forv=1ors5,

Cy=

ic®C, forv=3or7,

(7.92)

(7.93)

(7.94A)

(7.94B)

(7.94C)

where k- = 8p+v and the matrices A'j, B, and C'; are in the same relation to v, as the matrices

Ay, By and C are 1o vy, cf. §7.6.2.

.6 Adding an 8-dimensional Euclidean
The eight 16 by 16 real matrices
0;=0@I8I®l, 6,=£8e8I8]
6;=c®0c®e®], 6, =e® 0RO,
0;=e®0®1®E, O =e® T19I®¢E,
0,=£®T®e®0, O3 =£® 1edT,
are symmetric, satisfy

9(1 (')B + OB Oa = 280([3 ((X,B = 1,...,8);

their product
O=1I0Isl

(7.95)-
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is also symmetric and @2 = 1.

From a representation of C(k,?) generated by the Dirac: matrices ¥, (&t=1, ..., k+¢) one can
construct the representation y ' and ¥ " of C(k+8,0) and Cfk,2+8) , respectively. They are given by
(7.72). If k+2 = 2m or 2m+1, then the matricesy ' and y " are 2™+ by 2™+, Marking with primes
or double primes the quantities corresponding to the extensions y' or ¥ ", respectively, for k+2
even we have formulae (7.73) for the intertwining isomorphisms, whereas for k+0 = 2m+1,

A', (for 2 even) and A"  (for £ odd) =1® A, (7.96A)
B', (for meven) and B" (form odd) =1® B, (7.96B)
Cy and C"j (forv=1lor5) =18 C, (7.96C)

A, (for 2 odd) and A" (for £ even) =@ ® A, (7.97A)
B'; (for m odd) and B" (for m even) = @ ® B, (7.97B)

Coand C" (forv=30r7)=08C, (7.97C)
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Table X

R c
e ]
c H
AN j/
.4
'HKL_.—ZIH

The real clock*

may be used to find the Clifford algebra Cl(k, #) and its even subalgebra Cly(k, 2): compute first the
hour W such that 2 -k = 8p + |, where p is an integer and 0 S £ 7. The letters adjacent to the
hour determine the type of the algebras. The dimension of the full algebra is 2k+2 - For example,
C(3,5) — €h3,5) is C(8) — H(8) because, in this case, i =2 and dim H(8) = 28,

* The complex clock is much simpler: it has a two-hour dial.
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