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ABSTRACT

Having observed that the Bondi-Sachs formulation of the theory of
gravitational radiation from bounded sources does not explicitly include
the Robinson-Trautman fields as a special case, we re-examine the
theory in a coordinate system and with boundary conditions which
ensure that the latter fields are manifestly present. We compare our
results with those of Sachs by analysing the characteristic initial-value
problem. We find that to obtain a solution of the vacuum field equa-
tions we must specify five arbitrary functions of three variables and three
arbitrary functions of two variables, whereas in Sachs’ formulation it is
sufficient to specify four arbitrary functions of three variables and three
arbitrary functions of two variables. In our formulation both shear-free
and shearing gravitational radiation is manifestly present whereas in the
Bondi-Sachs formulation only radiation with shear is explicit. If, in our
formulation, we remove the shear-free radiation, then we can obtain a
“mass-loss” formula of the type derived by Bondi and Sachs. If both
shear-free and shearing radiation is present however, we fail to obtain a

formula of this type.
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1. INTRODUCTION

In the years 1956-60, in a series of lectures given at several British
universities, in Paris, Hamburg and at Leopold Infeld’s seminar in
Warsaw, Ivor Robinson put forward the programme of characterizing
simple electromagnetic and gravitational waves by the properties of ‘null’
(optical, isotropic) rays associated with these waves. He discovered a
new important property of congruences of such rays.

Let (Fj) be the electromagnetic field in a four-dimensional
space-time referred to local coordinates (x), i=1,23,4. The
field is said to be null if there is a non-vanishing vector field

k=L B. such that
a.xl

Fij kj =0 and F[ij kg] = 0. ) (11)
If F; # 0, then k is null,

g; kiki = 0. (1.2)

L. Mariot (*) showed that, if (Fj) satisties Maxwell’s equations, then k
generates a congruence of #ull geodesics,

kij k= p k;,

where u is a function, k; = g; k' and the semicolon followed by an index
denotes covariant differentiation relative to the Levi-Civita connection
associated with g = g; dx'dx!.

Ivor Robinson discovered a subtler property of the congruence:
Maxwell’s equations imply that it is non-shearing. If an affine paramet-
rization of the congruence is chosen, then u =0 and the shearfree
condition, as given by Robinson, reads

K (ki + ki) = (L2, )

Moreover, he proved the converse theorem (3),(%): given, in a conformal
space-time, a congruence of non-shearing, null geodesics generated by k,
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one can find a solution (Fjj) of Maxwell’s equations such that F;j#+ 0 and
conditions (1.1) hold.

Ivor Robinson was also the first to use the notion of non-shearing
null geodesics in the theory of gravitation. He proved that multiple
principal null directions of the Weyl tensor in an empty space-time are
tangent to a congruence of such geodesics and studied the simplest case
when k is covariantly constant (). He called plane-fronted waves solu-

tions of R = 0 such that
Riikt’kfz 0, ki;j =0, kiki=0, Rige*+ 0, k =+ 0,
and showed that the corresponding line-element is
¢ (u, x,y) du® + 2dudz — dx? — dy?,

with

Since these solutions turned out to coincide with a class of metrics
considered, in a purely geometrical context, by Brinkmann (), Robinson
did not publish his results. They had, however, an important influence
on Kundt (¢) and other authors.

In 1959 Ivor Robinson formulated the problem of finding ‘spherical
gravitational waves’ and invited one of us (A.T.) to join him in this
research. Those waves were defined as time-dependent solutions of
Einstein’s equations admitting a shearfree congruence of null geodesics
which is diverging,

ki, 0, (1.4)
and hypersurface-orthogonal,
k[i ki;"] = 0 (15)

It easily follows from egs. (1.2-1.5) and R; k'k! = 0 that (local) coordin-
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ates u, 1, x and y can be chosen in space-time so that

dig= oo, 2. =

2 (1.6)
x® o

and the Robinson-Trautman (RT) line-element is
cdu? + 2 dudr — 2 p~2 {(dx + adu)? + (dy + b du?}, %p. 0. (17)
r

Moreover, the remaining field equations lead to the possibility of elimi-
nating, by a charge of coordinates, both a and b and, after this has been
achieved, they reduce to '

g e T R BB C18)
I

and
e ol e K =" (1.9)
3 12 i

where m is a function of u only, p depends on u, x and y, K is the
Gaussian curvature of the 2-surface u = const., r = 1,

g (P ) i
X

Large classes of explicit solutions of this form have been found (7),(%).
Among them are waves which are ‘spherical’ in the sense of admitting
wave fronts topologically equivalent to a two-sphere.

The null hypersurfaces u = const. are well-defined by the geometry
of (1.7); in other words, the coordinate u can be replaced only by a
smooth and monotonic function of itself. The existence of such a
preferred family of null hypersurfaces results from the algebraic degenera-
¢y of the Weyl tensor combined with (1.5). In generic, type I, in the
sense of the Petrov classification (°), physically realistic space-times — as
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well as in conformally flat spaces — there are no such uniquely defined
families of null hypersurfaces. It is known, however, that bursts of
gravitational radiation, described by discontinuities of curvature, prop-
agate along null hypersurfaces (°). The electromagnetic field produced
by an accelerated point charge also defines a ‘retarded-time’, null coor-
dinate u (1). Considerations such as these, have led Hermann Bondi to
put forward, in 1960, a new approximate method of describing gravita-
tional waves in general relativity ('2),(®). R. Sachs (**) extended the
work of Bondi, van der Burg and Metzner.by relaxing their assumption
of axial symmetry and studying the characteristic initial-value problem.
The Bondi-Sachs line-element reads

2 _ 1y 2B g2 2
ds? = " Ve* du’ + 2 dudo (1.10 a)

- Qz hAB (dXA - UA dl]) (dXB i UB du),
where

2hap dx2dx® = (¥ + €®®) d0? + 4 5in 0 sh (y — ) d6 do
+ (7% + e ) sin? 6 d¢?. ~ (L10b)

Here capital indices take values 1,2 with x! =0, x> = ¢. The line-
element depends on the six functions U', U?, V, B, ¥ and & of the four
coordinates u, o, 8 and ¢. It is thus more general than (1.7). A rather
trivial difference between these line-elements is in the choice of the
‘angular coordinates’: the flat, spherically symmetric form of (1.7),

du? + 2dudr — 2 P2 (dx? + dy?),

P=1+%(x2+y2),

assumes the stereographic coordinates x and y whereas the Bondi-Sachs
coordinates correspond to u =t — @ and the polar variables g, 6 and ¢.
In both line-elements u is a null coordinate. Bondi’s o is a ‘luminosity
distance’: since det (hyg) = sin’ 0, the area of the two-surface u = const.,
= const. is 470>, '
The line-element (1.10) is supplemented with assumptions on the
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dependence of its coefficients on @. They are justified, in part, by the
requitement  that  (1.10)  reduce to  du®+2dude — @’
(d6? + sin? O d¢?) at large distances. Somewhat subtler conditions are
obtained by demanding that (log 0)/¢> terms be absent from U” (). It
is assumed that

V=0-2M+0 (™}, (1.12)
UA=02U2+ 0 (), (1.13)
d+iy=20""n+0(07?, (1.14)
B=0(@, (1.15)

where M, U4 are real functions of u, 8 and ¢ and n is a complex
function of u, 8 and ¢ (these expansions are discussed in greater detail
in section 4 below). When the vacuum field equations are imposed one
finds, for example, that (1.15) is strengthened to B = O (p~?), while
another of the field equations gives

— |82 + N, (1.16)

where N is a function of u, 8 and ¢ such that its average over the
surface u, ¢ = const.,

(N) = — JQK d¢ f N sin 6 d6,

vanishes. By integration of both sides of (1.16) Bondi and Sachs obtain
2 (M) =~ (laf2), (1.17)
Ju

a result interpreted as giving the decrease of the total mass (M) of the
system due to gravitational waves with a ‘news. function’ f.

The null and geodesic congruence generated by the gradient of u is
shearing. In fact, the leading term in the complex shear scalar o is
proportional to n. Therefore, Bondi’s retarded time coordinate u can-
not simply be identified with the onie used by Robinson and Trautman.
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R. Isaacson and J. Winicour (¥) initiated the study of the relation
between the Robinson-Trautman solutions and the Bondi-Sachs approach
to gravitational waves. They noticed that the simple transformation

r = op/P, (1.18)

where P is as in (1.11), brings the line-element (1.7), with a = b = 0 and
¢ given by (1.8), to the form

(K——sz) du2+2£dudg+

op P

+2g[i(£)dx+ i(ﬂ) dy]du-— (1.19)
x \ P y \ P

- 0?P72 (dx? + dy?).

This is closer to (1.10) with the assumption (1.12) than the original
metric (1.7) which contains in ¢ a term linear in r. However, the simple
change (1.18) is not sufficient to satisfy all of the boundary conditions
(1.12-15). In particular, as discussed by Bondi and van der Burgh in
Part B § 4 of ref. 13, in order to have g,, — 1 as 0 — + ® one has to
apply to (1.19) a transformation of the form

a=1f(uzx,vy) (1.20)

which leads from a non-shearing u to a shearing G. To our knowledge,
no one has succeeded in performing a transformation, in a closed form,
of the general line-element (1.7) to the Bondi-Sachs coordinates. It is
clear, in any case, that the simplicity of the RT line-element will be lost
under such a transformation (6).

One can argue that, at Jeast in simple cases, the null coordinate u is
well-defined by the physics and geometry of the systems under consid-
eration. In addition to the examples mentioned before, consider the
following: in a space-time diffeomorphic to R* let there be a congruence
of time-like, hypersurface-orthogonal world-lines. Let t = const. be the
equation of the space-like hypersurfaces orthogonal to the congruence.
Let Sy be a convex surface, diffeomorphic to §,, and contained in the
hypersurface t = 0. The curves of the congruence meeting Sp span a
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3-surface. Its intersection S, with t = const. is also diffeomorphic to §,.
Consider future-oriented null conoids with vertices on S,. Their en-
velope is a null hypersurface. By varying t, one obtains a foliation of
space-time by a family of null hypersurfaces which define — at least
locally — the required null coordinate (see figure 1).

Ficure 1: Geometrical construction
of the null coordinate u.

In this paper we consider once more the problem of gravitational
waves produced by a bounded system. We choose a line-element which
is as general as-the one investigated by Sachs: it contains six functions of
four coordinates. The coordinates are, however, different from Bondi’s:
they are such as to include the RT line-element as a special case, without
the necessity of performing transformations such as (1.18) or (1.20).
Furthermore we assume expansions, in powers of a radial coordinate r,
of the functions appearing in the metric, which preserve this property of
our line-element. Having obtained the vacuum field equations to be
satisfied by the coefficients in these expansions necessary to have a
knowledge of the metric tensor components up to and including -
terms, we compare our results with those of Sachs by analysing the
characteristic initial-value problem. He found that to determine a solu-
tion of the vacuum field equations one must specify four arbitrary
functions of three variables and three arbitrary functions of two vari-
ables. We find that one must specify five arbitrary functions of three
variables and three arbitrary functions of two variables to obtain a
solution. The extra function available to us is due to a weaker choice of
boundary conditions than those chosen by Sachs. In our formulation of
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this problem both shear-free and shearing gravitational radiation is man-
ifestly present whereas in the Bondi-Sachs formulation only radiation
with shear is explicit. In our formulation if we remove the sheat-free
radiation then we can obtain a “mass-loss” formula similar to (1.17).
On the other hand if both shearing and shear-free radiation is clearly
present then we fail to obtain a formula of this type.

2. Line-ELEMENT AND FiELD EqQuaTIiONS

If (x, i=1, 2,3,4 is a local coordinate system in terms of which
the metric tensor of space-time has components g; (x), and if u (x) is a
scalar function satisfying

gluu=0, 2.1)
then the vector field k = ki ai with
X
kK= gu; ‘ (2.2)
is null and has geodesic integral curves. Writing k' =aai and thus
r

b

ar
We shall assume that this congruence of null geodesics has non-zero
expansion and is future-pointing. Choosing r and u as coordinates we
write the line-element in the form

J 1 ;
= _— we see that r is an affine parameter along these curves.

ds? =cdu® + 2dudr —
—2p 2 {(e* chp dx + ¢ shp dy + a du)® + (2.3)
+ (e* shP dx + e chp dy + b du)?},
where ¢, p, o, B, a, b are six functions of the four coordinates
u, r, X, y. The coordinates u, x, y are constant along each inte-

gral curve of -al and the coordinates x, y are chosen so that the
" ,
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determinant of the metric tensor on the 2-surfaces u = const.,
r = const., induced by (2.3), is r*p™®. This line-element is completely
general and has the property that if o = B = 0 it takes the general form
of the RT line-element (1.7). A significant difference between (2.3) and
the Bondi-Sachs line-element (1.10) is the appearance of a non-constant
coefficient of du dp in (1.10) and a constant coefficient of du dr in (2.3).

For the remainder of this section we shall be concerned only with
the line-element (2.3). We shall consider the form (1.10) again in
section 4 when we compare our results with those obtained by
Sachs (14).

For ease of computation with (2.3} it is convenient to make use of a
half-null tetrad defined via the basis 1-forms

8 = rp~' (" chP dx + e ® shB dy + a du), (2.4 a)
02 =rp~! (e® shp dx + ¢™® chB dy + b du), " (2.4b)
93=dr+%cdu, | (2.4
8* = du, ] (2.4d)

so that
ds®> = — (8Y)% — (6%)? + 26°6%. (2.5)

We shall require (2.3) to be a solution of Einstein’s vacuum field
equations. To simplify this task we assume that the six functions
appearing in (2.3) can each be expanded in the following power series in
r, for some range of the coordinates:

c=rc_1+c0+£1-+..., (2.6 a)
r
91, 92 , 93
= 1+=+=+=+..], 26b
p Po( e il ) ( )
a=34%2,. %, (260
r

| ———
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B by ;
B= B (2.6 d)
a=ao+%+%+a—r§+-..., (2.6 )

b;  b; , bs :
e 23 2.6
by + 1_+r2+[3+ 2.61)

The coefficients in these expansions are functions of u, x, y. We shall
be satisfied to have the metric tensor components up to and including
the r Y-term in each and for this we require the twenty-one coefficients
shown explicitly in (2.6) and only these coefficients. The expansions
(2.6) determine our ‘boundary’ conditions on the six functions appearing
in (2.3) as r— + ®. The linear term in r in (2.6 a) is a departure from
the type of boundary conditions assumed by Bondi et al. (**) and by
Sachs (), and it, together with the remaining equations in (2.6), is
chosen so as to allow the RT fields to be manifestly present as a special
case.

The vacuum field equations will provide us with differential equa-
tions to be satisfied by the coefficients in (2.6). Before embarking upon
the calculation of them it is helpful to note that Sachs’ splitting of the
field equations in the six “main equations”, the one “trivial equation”
and the three “supplementary conditions” is given in our case by

Main Equations: R;3 =0, Ra3 =0, Rag = 0; (2.7 a)
Trivial Equation: Ry = 0; (2.7b)
Supplementary Conditions: Ryy = 0, Ryy = 0. (2.7 ¢)

Here again capital indices take values 1,2. The trivial equation is a
consequence of the main equations and thus provides a useful check on
the calculation of the main equations. In addition it is helpful to
examine the field equations in the order in which they are listed in (2.7)-
as the degree of complexity tends to increase in this ordering (see, for
example ref. 1, 17).

Our calculation requlres us to equate to zero the coeff]cmnts of
various powers of r~ ' in the expressions for the Ricci tensor compo-
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nents. In the table below the powers of r™! required for this purpose
(i.e. which involve the twenty-one functions needed to reconstruct the
metric tensor components up to and including the r~’-term, and only
these functions), in each Ricci tensor component, are indicated by a
shaded area. We have omitted R;,. A zero at r™! in Rs; in the figure,
for example, indicates that there is no r™!-term in the expansion of this
Ricci tensor component.

RAJ RAB ??"—R“ ?!: ?Aq QAa
7 o)

S
b / O
7 o

FiGure 2: A guide to the expansion

of the Ricci tensor components in
| inverse powers of r.

\\\cooo;o

The complex shear o and the expansion Z, of the null geode-

; d ;
sic congruence tangent to - are given by i
r

__ (e +iBy) _ 5 (az +iB7)  (204BF + 305 + 3iB5) + ..., (2.82)
2 P rt
1 @i, 29—dqf | g —3q4 +3g
F = il + A g 28b
S 12 gt ( )
The r™*-term in Ry3 = 0 gives
‘ 7 1 2 2
Q@ —qi = e (af + B1), (2.9)

while the r°-term in the same field equation results in

29} = 59192 + 3q; = 2 (0502 + Bifa). (2.10)
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Ry (A = 1,2) have r™terms to begin with and the vanishing of their
coefficients gives
a; = apy + bofy, (2.11 a)

b] = aoﬁl . bgﬂl. (211 b)

Next Rap begin with r~!-terms from which we obtain

3 2 13

i i Ipg 1
T Ppi 4+ Zpgag 22—+ 2poby - + B0 . BA24
x s 2 % 2 % .
L Py 3 1
c1 + 2p5'Po + 2podo T 2pobo po 120 3 3o _ 0, (2.12b)
_ 2 ox 2y

from R;; = 0 and Ry, = 0 respectively. Here, as before, the dot indi-
cates partial differentiation with respect to u. From (2.12) we have

Moo o o DR, (2.13)
X oy

where

Jdag 4 0 4y O “

H=py P0+-_POIOPL—P S UL (2.14)

X X oy
The r~'-term in Rj; = 0 provides us with

dap _ _ dbo (2.15)

oy oX

Now the r %term in Ry, is identically zero while the vanishing of this
term in Ry; and Ry, gives us the same equation, namely,

. P P
co=Alogpy— 2 (%—H%—aoi—bo-g}—), (2.16)
X oy _

where

A = p} (% +§) : (2.17)
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is the Laplacian on the family of 2-surfaces with line-element
po2(dx? + dy?d). (2.18)

At this stage of the calculation we can use some of the field
equations we have calculated to remove some of the functions of u, x, y.
If we make the transformation

r=r +Auxy) +0F ), (2.19)

then the form of our line-element (up to and including r~'-terms)
remains invariant if the functions appearing in.it (and here we only
quote the functions of interest at this stage) undergo the following
transformations:

p’=po(1+—q,1—+%+q§+"')’ (2202)
r r r
where
Fis _ i B ] - 2
qQ1 Qi A » 92 qz qi + (Ch A) ) (220 b)
G=q¢—q -3 (-9 A+ (q-AP,
while
ui__.al)Bi:Bl)
a£=a2_alAsBi=B2_ﬁlA>
a6=a())b6=b01ai=aljbi=b1) (2'21)
aé"—'az—alA‘—Pééé,bé=b2_b1A_P%%,
ox o9y
and also

!
c'=r'c*_1+c5+%+..., (2.22)
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where
C'_I = e 2H,
SA A) (2.23)

: 2
C6=C0+2 (A_HA—ﬂogx-—boay

Hence we see from the first of (2.20b) that if we choose A = q; then
q; =0 and this value of A in the second of (2.23), coupled with the
field equation (2.16), shows that cy= A log po. We have given the
transformations of o, B2, a, and by above since they are required to
calculate ¢ We note that the field equations (2.9)-(2.13), (2.15) are left
invariant by (2.20b), (2.21) and (2.23). Henceforth we can, without
loss of generality, put q; = 0 in all our equations up to (2.16). Thus
(2.9), (2.10) and (2.16) become

1 _

Q= ) (af + BY), (2.24 a)
2 )

= r (02 + B1f2), (2.24b)

co = A log po. © (2240

Noting from (2.13) and (2.15) that a,, b satisfy the Cauchy-
Riemann equations we can utilise this by making the transformation

x=f&,y,u,y=g&,y,u (2.25)

with —i - and—a-f— = — B_g The form of the line-element and

axf ayl' ayl axi

the field equations remain invariant with

p' =pW, | | (2.26 a)

U{=W2{a1 [(i)z_(_a_)z]_}.zglff_ig__}’ (2.26 b)
o’ ' x' '
Bi=wz{_2(11—?£‘ﬁ‘ +Bl[(£)2—(_a.g_)2]}, (2'26(:)
x' x' x'
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aj = W? ao+f)—+(b0+g);—%-}, (2.26 d)

(bo + §) — _(ao+f)a—g,}, ' (2.26 e)

{a1+a1f A LIF ¥ e

— o8+ f’lf ) — (a; + alf + |318) } (226 g)

= (2.26 h)

W = {(g)Z + (ai_%)z}_%' (2.27)

We have included af, Bi in the list above since they are needed to
compute a; and bj. We can choose f and g so that f = — ag, g = — b,
and thus (2.26 d, €) imply aj = 0, by = 0. We also have then

where

a + oyf + Big = a; — oya0 — Pibo, (2.28 )

by — asg + Buf = by + asby — B1ao, (2.28b)

and both of these vanish on account of the field equations (2.11).

Hence, by (2.26 f, g), we have aj = 0, bj = 0. Therefore, without loss

of generality, we can put ag, b, a;, b; all equal to zero in our equations
prior to (2.16). Thus, in addition to (2.24) we are left with

c_;=—2H, H = p;p,. (2.29)

We turn now to the equations Ry; = 0 and the vanishing of the
’_term in each gives

az = pg {: (po20y) + %(Po 2[31)} (2.30 a)

b, = pg { (P 2B1) —;; Po al)} (2.30b)
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If we now compute the t7>-terms in Rag = 0 we find that they give us
the equations

2 (pias) = 0= 2 (py2By). (2.31)
u Ju

The first equation here comes from both Ry; =0 and Ry = 0 while the
second comes from Ryj; = 0. Now the t *term in Ry3 = 0 yields the
two equations

_a_ —2 = — i —2 2
o (po “a2) - (po “B2), (2.32 a)
2 ?

= (po*B2) = T (po 2ai2). (232 b)

We can take advantage of the simplicity of (2.31) and (2.32) before
proceeding with the calculation of the remaining field equations. Let us
assume that the line-element (2.18) represents a family (parametrised by
u) of closed 2-surfaces homeomorphic to §,. The coordinates x, y
constitute a chart on S, with a point removed and po (u, X, y) is neces-
sarily unbounded as a function of x, y. The equations (2.31) and (2.32)
imply that, for any value of u, py“0; and pg 2B, are harmonic functions
on the closed 2-sutface (2.18) and therefore they are constants. Thus
0, = const. x p3, B2 = const. x p§ and in each case the constant must
vanish otherwise @, and B, are unbounded. Thus we have

a =B, =0. (2.33)

We comment briefly in the next section on the relationship between
(2.33) and an out-going radiation condition. We note from (2.24 b) that
now :

qs = 0. (2.34)
We now compute the r *-term in Rj; = 0. Putting ¢; = — 2m (u,

x,y) from here on (this will facilitate comparison with the RT
fields in the special case of vanishing shear of the integral cur-
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e .. . .
ves of — discussed in the next section) we find

ar
25 1 35 _ g (B, - 3HBs) — 4mP, — 200,66,
dy ox
—4afB, — BB, + 8B, (B + 3ad) H
2 Bl E?az 30.1 + 30 abz " 332 Q’l
ax P):4
B]E.F 2&_30[1&_%2&
oy
+ 4p{]_l|31 (3.2% + b;_) a&) + 4p0_232b2. . (235)
ox oy

The r™*terms in Ry; = 0 and Ry, = 0 will each introduce functions in
addition to those twenty-one given explicitly in the expansions (2.6) and-
which therefore do not contribute to a knowledge of the metric tensor
components up to and including the r~*-terms. However the r *term
in Ry; — Ry, = 0 does not introduce such additional functions and pro-
vides us with the field equation

N

8 (d) = 3Ha3) — 4ma1 + 120.1[3181 + 126%&1
ox oy

2
— 8036, + 8a; (a2 — 3B H — o, —;l

331 abz 331 abz
= 3 AL 2 3 oy —
S8 TR oy
- 3b2 30:1 4 361 Daz - %
oy oy

+ 2p;2 (a3 — b3). ' (2.36)

This completes the derivation of the main equations which are of in-
terest to us and we turn now to the supplementary conditions.
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In the case of Ryy = O the first non-identically vanishing term is the

+2term from which we obtain the equation

M= 3HM + |y — HyP? =% R &
+ 4Re {Y-a— ( ZBH)}
JZ oz

== Po { (po2a2) + — (Po 2bz)}
oy

where

2
Y=al+iﬁi7
z=x + iy,

(2.37 a)

(2.37b)

(2.37 ¢)
(2.374d)

and Re in (237 a) indicates the real part of the quantity in brackets
following. Finally the first non-identically vanishing terms in Ry4 are the

r>-terms which give us the two field equations

3 P

d P
= py' (A, — 4HA 2 =i {_ 3 204c0) + — (pg2 }
> po ' (As 3) — Po e o] - (po “a1c0) - (g “B1co)

¥Ppo 8 32p0
4 ———

-b
2 oy e

- (B, — HBy) p3 {i (b7 By)
ox

P g 0 . P
i g (po '1) } i %% + 2B, (&, — Hay) DF;O

= (6 — Hay) P%{—a‘ (po 'ay) + sl (po 'B1) } = 'api(fh — 2Hgq;
X oy ox

b, 2 ) ‘ ) d ( 1 2,
+ —= —b,—(l —a,— (I - —
% 2Iay(08P0) 3zax (log po) Po S 2 %
; oH
+ 261 ((11 = Hal)) s 0-1|31P0 ay

— (&, — Hay) py'az — (B4 — HB1) pg 'bz

(2.38a)
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and

3 2 2 -
2 pyl (B — 4HB;) — po = =p} {— (po *B1co) — — (pg 0tico) }
2 oy ox

2
oy

po azpo 2{ J —1
_ . — —H il
2 > b, o (B4 B1) P - (po 1)
2 (o8 } + o2 o (5 — Hay) 22
ox X B)'e

. - _ d .
+ (&, — Hay) Pg{% (po 'B1) — % (o o) } = %;‘O—(QZ — 2Hq;

da, a(labg_iaﬁ
2 x 2 oy

t—=—n —(log po) — bz— (log po) ) —po —
ox ay

g H
— 2B (0 — Hal)) + o1f:1po .

+ (6 — Hay) py bz — (1 — HB1) pg 'az, . (2.38b)
where
1 4 Dpo 2 P e
A;=2a,——(b + ao0) —— _ - — 3— 1o, ), (2.38
3 = a3 3 (b 20 3 qz2Po Dx 3 Po o8 (po ‘a1By), ( c)
4 P 2 P _
B;=b; —— a261 boa;) e 92Po BLYO -+ 3 p% po aufy). (238 d)

This completes the calculation of all the field equations which bring into
play the twenty-one functions shown explicitly in (2.6), and only these
functions.

3, Tue CURVATURE TENSOR

With the field equations satisfied we obtain the following express-
ions, in the notation of Newman and Penrose (), for the leading terms
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in the expansions of the curvature tensor components in inverse powers
of :

— (R3131 + Rsp30)

: 3 (3.1a)
= — {6((13+i[33)——(‘{+Y)2(Y—?)—2?3} iy
i 2
0L L By + )
1= — =Ry 3432
2 (3.1b)
1 (3 __, . % ol
= 2 + ibs) + 3pdy — (P2 ¢ + ...,
o5 { > o (a3 + ibs) + 3pgy = (Po Y)}
1
¥, = - — (Rygzq + iR3410)
. _ ; (3.1:¢)
—_-H—S{MJH/(? —H?)+2p5__( (po"?))} oy
r 0z
y ,
= — \15 (R3414 — 1R3424) (3.1d)
Ao H d ( I )}
o + 2po7 — + 208 — (po + o
" ( {Po Po¥ 3 pi o\ Pb == (Po ¥) ;
¥,y = = (Ryq — Ry G.1e)

2 (2 2aH) 1, ( 1 B e )}
e L Dl ) e pf el = &
r {az (Po 5 3 Po Po . (po 'Y)

Had we not obtained the conditions (2.33), from the field equations
and the assumed regularity of the family of 2-surfaces with line-element
(2.18), we would have found a term — 2 (0, + if33) 4 in W, It would
appear from the study by Sachs (%) that the absence of this term ensures
that the radiation in our fields is out-going.

A glance at (2.8 a) indicates that if @ =f = 0 then the inte-
gral curves of ai are shear-free (this is true .exactly). We see

r
from (3.1 ¢) that in this case gravitational radiation is still present in our
fields (in contradistinction to the formulation of this problem by Bondi
and Sachs whose fields do not manifestly contain shear-free radiation).
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If we require that only this shear-free radiation be present then our

equations undergo a great simplification. Retaining terms up to ™ in

the metric tensor components, the line-element (2.3) becomes
ds’ = (c_lr +c— Z_m) dv® + 2dudr
r
- pg? (dx2+dy2+2%dxdu+2%~dydu), (3.2)

where ¢ and c_; are given by (2.24 ¢) and (2.29). The equations (2.35)
and (2.36) reduce to the Cauchy-Riemann equations

Ba; Bb 333 o a_bj.

+ == =0, = (. (3.3)
dy ax ox oy
The supplementary condition (2.37) is now
i — 3 = % A (3.4)

and the supplementary conditions (2.38) simplify to

3 .5 m 3 e dm
= — 4Ha;) = , —Po2 — 4Hb;) = ——. (3.5
2 po “ (a3 a3) - > po” (b3 3) = o . (32)

The transformations

x=x'+§—£§-—”_¥—’—u-)—+..., (3.6a)
r
y=y'+%’,3y—’ul+---, (3.6b)
r=r'—1—2(a£—13"1 C_lapo)+..., - (3.6¢)
! r a' ayl

, L leave the line-element (3.2) invariant in
axf ayl' ayl' aX'
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form (up to and including the t'~'-term) and the functions of u, x,y
appearing in (3.2) are replaced by the same functions of u, x',y with
the exception of a; and b; which undergo the transformations

=2, (u,x,y)+B,bj=bs(ux,y)+C (3.7)

Thus, on account of the field equations (3.3), we may choose B and C
so that a; =0, b;=0. Therefore putting, without loss of generality,
-a3 = bs = 0 in (3.2)-(3.5), we obtain the equations which, together with
(2.24 ¢) and (2.29), describe the RT vacuum gravitational fields. With
a =B =a;=Dbs; =0 in (3.1), the surviving leading terms in the curva-
ture tensor are the exact expressions for these components of the curva-
ture tensor of the RT fields, with the exception of (3.1e) which, in
addition, has an r~%-term given by

L-B_(szﬂ)
2w\ wmi

4. Tue CHARACTERISTIC INITIAL-VALUE PROBLEM

We began our discussion of the vacuum field equations, resulting
from the series expansions of the Ricci tensor components in powers of
™! with the twenty-one functions of u, x,y shown explicitly in (2.6).
Using the field equations and allowable coordinate transformations we

reduced these, by the end of section 2, to the thirteen functions

C—1, Cp, Q2, a2, bs, ¢ = — 2m, po, U1, O3, |31, Bs, a3, b;. (4.1)

These however are not all independent for, by (2.24 ¢) and (2.29) both
c_; and ¢ can be derived from pg; g is derived from a; and PB; as
indicated in (2.24 a) while a, and b, are derived from po, 0, and B, as
in (2.30). Thus only the last eight functions listed in (4.1) are indepen-
dent. To solve the characteristic initial-value problem we must deter-
mine what data must be specified on a characteristic hypersurface
u = u, (say) so that the eight independent functions above are known
for u > up. Our result may be summarised in the following.
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Proposition: To determine a solution of the field equations one
must specify five arbitrary functions of three variables, F (r, x, y), po (u,
x, y), & (u, %, y), B1 (u, %, y), and three arbitrary functions of two
variables, m (ug, X, ¥), a3 (U, X, y), bs (uo, %, y), where

F (1, x,y) = (@ + iBlu=y, (4.2)

Proof: The supplementary condition (2.37 a) is a propagation equa-
tion for m (u, x, y) off the initial hypersurface u = u,. It enables us to
determine m (u, %, y) for u> uy from the given data. Using this, and
the given data, in the supplementary conditions (2.38), which we regard
as propagation equations for a; and b; off the initial hypersurface
u=u, we obtain a;(u,x,y) and b;(u x,y) for u>u, With
m (u,x,y), a5 (4, x,9), bs (u, x, ) for u> uy determined, we turn to the
main equations (2.35) and- (2.36). We regard these equations as prop-
agation equations for B; (u, x, y) and a3 (u, %, y) off u = ug and, with the
data available to us now, these functions can be determined for u > u,.

The proposition above should be compared with a similar result of
Sachs (**) in which he found that to specify one solution of the field
equations “one must specify four functions of three variables and three
functions of two variables; these functions are not subject to con-
straints”. This raises the question: why do we require an additional
function of three variables to solve the characteristic initial-value prob-
lem when the line-element we began with, given by (2.3), is just as
general as that chosen by Sachs (cf. (1.10)? The answer is that our
boundary conditions as r— + ®, embodied in the expansions (2.6), are
less restrictive than those of Sachs. In our formulation we thereby
ensure the manifest appearance in (3.1 €) of both shear-free and shearing
gravitational radiation. The extra function at our disposal is po (u, X, ).

To make a more direct comparison between our and Sachs’ results
we note that his boundary conditions (eqgs. (3.1) of () as ¢ > + ® on
the functions appearing in the line-element (1.10) are satisfied by assum-
ing the following expansions in powers of his radial coordinate o:

V=o0-2M+0(", (43 a)

B=§—1+..., ; (4.3 b)
0
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ur =2 +U%+ A=1,2), 4.3 ¢)
o 0
y=T402, 0, (4.3 d)
o 0 0
6—§+§22—+6;+ (43¢
0 0 0

The twelve coefficients shown explicitly hete are functions of u, 8, ¢ and
are required to construct the metric tensor components up to and
including the @ !-term. Using the vacuum field equations and an
out-going radiation condition, which also ensures the absence of (log p)/
o’ terms in U2, making the expansion (4.3 c) possible, one can conclude
(from egs. (4.6) and (4.9 a) of (Y)) that B, =0 and v, =08,=0. In
addition (from (4.9 b) of (*)) U,® can be derived from y; and 8, and so
the number of independent functions of u, 8, ¢ remaining is seven,
namely,

UsA M, y1, 3, 81, 8s. (4.4)

This is one less than the number of independent functions resulting
from our calculations. Upon writing out the' line-element (1.10a) in
which the metric tensor components are calculated up to and including
the o~ '-term we find

ds? = (1 — 2Mp 1) du?® + 2 dudo

— 0%hpp [dx® — (07202 + 07U dul X (4.5 a)

X [dx® — (072U® + 07°U;B) du]
where

hspdx®dx® = d6? + sin? 0 d¢p? + O (o7 1). (4.5 b)

The 07, 072 and @ >-terms in (4.5 b), which must be substituted into

(45 a), are evaluated using vy, Vs, 01,-6;. Comparing this with our
line-element at this stage of the computations we find that the luminosity
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distance o differs from our radial coordinate r by terms of order L A
comparison of the coefficient of du? in (4.5 a), with that given by (2.6 a)
in (2.3), reveals that we must have

C0=A10gp0=1,H=p0_1[.)0=0, (4-6)

for agreement with Sachs. Since we are free to make a coordinate
transformation of the type (2.25) with f and g independent of u (this
would not bring back the functions ag, bo, a1, by which we used (2.25)
to dispose of) we can use this freedom to transform the solution of (4.6)
into

po=1+ % 2 + y9). (4.7)

Thus the extra function freely available to us is fixed by (4.?) in this
case, and the 2-surfaces with line-element (2.18) are 2-spheres for all
values of u. '

5. DiscussioN

A number of questions demanding further study emerge from the
results we have presented above. We have chosen to comment on three
of them below. '

If we substitute the value of p, given in (4.7) into the sup-
plementary condition (2.37 a) we find the remarkably simple equation

M+ P =0, 5.1)
where M (u, x, y) is obtained from (4.7) and (2.37b). Upon averaging

(5.1) over the 2-sphere, with line-element given by (2.18) and (4.7), and
denoting this average by the brackets { ), we have

(M) =—(|yP): - 5.2)

This is a formula of the type (1.17) derived by Bondi and Sachs. For
the general case, in which shear-free and shearing radiation is present in
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our formulation, it is an open question as to whether a formula compa-
rable to (5.2) exists. Presumably the average now should be taken over
the 2-surfaces with line-element (2.18). It is interesting to note that one
cannot ascribe any physical significance to { M ) # 0 in this case. If we
make a coordinate transformation of the form

u=t @), r=r/t, 1= dv/dd, (5.3)

then our line-element and field equations remain invariant with substitu-
tions such as

H' = tH + ¥/t , ¢ = t2c, 5

m' =¥m, py = ipo , ¢ = ¥’
From (3.27 b) these imply
M =M (5.5)

and thus it is possible to choose T (u') so as to reduce (M) to a
constant or { M) to zero. We note that the transformation (5.3)
cannot be implemented in the fields considered by Bondi and Sachs
since it would lead to a violation of their boundary conditions (cf. egs.
(3.1 a, b) of (**)

lim o 'V=1, lm f=0. (5.6)
gt g+

Nor can (5.3) be implemented in our formulation when the equations
(4.6) hold and so the consequences of this transformation mentioned
above do not apply to (5.2).

The question above is clearly related to the mysterious role that
shear-free radiation plays in the Bondi-Sachs formulation. This also
requires further consideration.

Finally, a study of the asymptotic symmetry group in our formula-
tion and its relationship to the BMS group () also remains to be carried
out. -

We are grateful to Dr. J. D. McCrea for having kindly checked
some of our calculations on the computer and for many stimulating
discussions.
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