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CAUCHY-RIEMANN STRUCTURES IN OPTICAL GEOMETRY*
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It is shown that the three-dimensional manifold of null geodesics forming a
shear-free congruence has a natural Cauchy-Riemann structure, depending only
on the optical geometry associated with the congruence.

1. INTRODUCTION

There 1is a natural geometry adapted to the study of null (isotropic, singu-
Tar) Maxwell and Yang-Mills fields. It constitutes also the underlying structure
of algebraically special gravitational fields. The origins of this geometry can
be traced back to early papers by H. Bateman] and E. Cartanz, to work on shear-
free congruences of null geodes1’cs3—5 and to R. Penrose's twistor programme6’7.
Recently, one of us proposed to use the name 'optical geometry' for this struc-
ture and Tisted its basic propertiesg’g. In this lecture we present a novel
characterization of an optical geometry with shear-free rays: Tlocally, such a
geometry is a product of R by a 3-dimensional Cauchy-Riemann manifo]d]o_lz.

In our work on this problem we have been influenced by conversations with,
and/or papers by, R. Penrose]3, C.D. H111]4, P. Sommers]s, J. Tafe1]6, and

R.0. Wells, Jr.17. The present text contains only a brief summary of the subject;
18-20

a fuller account of our joint work is being published elsewhere . We follow

the terminology and notation prevalent in differential geometry and mathematical
. 21-23

physics ;
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2. FLAG GEOMETRY
A flag geometry on a 4-dimensional smooth orientable manifold M is a pair

(K,L) of real Tine bundles such that
K< M, L C€T*M

and, if KX and Lx denote, respectively, the fibres of K and L over xe M, then
uda =0 for any ue Kx and o € LX.

A section k of K~ M is a vector field on M, whereas é section » of L » M is
a field of 1-forms on M; for any such sections kJ » = 0. A metric tensor g on
M is said to be adapted to (K,L) if, for any such sections k and x, one has
g(k)a » = 0, where g(k) is the T-form characterized by 14 g(k) = g(k,1) for
any vector field 1. In other words, with respect to any adapted metric, and for
any x€ M, the Tine KX is null and ker A(x) s the 3-space of all vectors ortho-
gonal to K*. The bundle &{h kera(x) will be denoted kerL.

Similarly, a p-form (p=1,2 or 3) F on M is adapted to (K,L) if, for any k

and » defined as above, one has
(1) kJF=0 and »a F =0,

For example, if g is an adapted metric, then g(k) is an adapted 1-form.

Let (¢t(k)) be the flow generated by the vector field k, section of K ~ M.
If L is invariant with respect to the flow (¢t(k))’ then it is also invariant
with respect to (¢t(ok)), where o is any function on M. It is meaningful, there-
fore, to define L as being invariant with respect to K if, for any sections k

and 1, one has
(4~ Al R
k
where‘[kx denotes the Lie derivative of A in the direction of k. In Refs. 19
and 23 we have shown, that (i) is equivalent to any of the following conditions:

(i1) the 3-form x A dr is adapted;

(iii) the lines of the flow (¢t(k)) define a ccngruence of null geodesics with

respect to any metric tensor adapted to (K,L);

(iv) if F is an adapted 2-form, then X A dF = 0.

A flag geometry which has any - and therefore all - of the properties (i)-
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(iv) is said to be geodetic. In particular, a flag geometry corresponding to an

integrable bundle kerLc TM, i.e., such that
xady =0

is geodetic. If the bundle kerL is non-integrable, then the congruence of null

curves defined by the flow is said - by physicists - to be twisting.

3. OPTICAL GEOMETRY

A flag geometry is sufficient to define a congruence of null geodesics and
the notion of null (adapted) 2-forms. If any such form F is interpreted as an
electromagnetic field, then it is possible to write one part of Maxwell's
equations, namely dF = 0, but not the other. Roughly speaking, an optical geo-
metry is the weakest structure needed on a 4-dimensional manifold M to write the
full set of Maxwell's equations for null electromagnetic fields.

In a Lorentzian geometry based on a metric tensor g one introduces the Hodge
dual *gF of F relative to g and some orientation on M. The other part of Maxwell's
equations reads then d*gF = 0.

Let us start again with a flag geometry (K,L) on M and let A be the set of
all adapted Lorentzian metric tensor fields on M. If ge A and F is an adapted
p-form, then *gF is an adapted (4-p)-form. For example, if the flag geometry is
geodetic, then *g(AA dx) is proportional to Ax. If F is a nowhere vanishing 2-
form on M adapted to (K,L) then

(2) g=g'&©*F=%* F, where g and g' €A,
R g g

defines an equivalence relation R in A. This equivalence relation does not de-
pend on F; only at this point does the assumption of M being four-dimensional
enter into our considerations.

An optical geometry on M consists of the pair (K,L) together with an element
B of A/R and an orientation of the vector bundle (kerL)/K of fibre dimension 2.
Equivalently, it can be defined as a flag geometry (K,L) supplemented by a com-
plex structure on (kerL)/K, i.e. a Tinear bundle morphism

J: (kerL)/K + (kerL)/K such that J2 = -id.

This additional structure makes (kerL)/K into a complex line bundle over M.

It is easy to see that if g € BC A then g'€ B if, and only if, there is a
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positive function o on M, and a 1-form u such that
(3) g' = pg + 2ux,

where 2ux  is an abbreviation for y @ A + A @& p.

Let M and M' be two 4-manifolds with optical geometries (K,L,B) and (K',L',B')
respectively. A diffeomorphism f: M- M' is said to be an isomorphism of optical
geometries if f*B' = B, f*L' = L and f K =K'

It is often convenient to define an optical geometry by (i) giving a Lorentzian
metric g and a null vector field k, (ii) declaring that K and L are spanned by k
and g(k), respectively, and (iii) specifying an orientation in (kerlL)/K.

Given an optical geometry (K,L,B) on M, it is meaningful to consider solutions

of Maxwell's equations

(4) dF = 0 and d*gF =0

where F is assumed to be adapted and g& B. Equations (1) and (4) imply
& * =

(5) LF=o0 and£ng 0

so that both F and *gF are invariant by the flow (¢t(k)). Therefore

* F = *(* = * , €R ,
i ¢t(k) ( gF) ¢t(k)*9F for any t€ R

and, if F vanishes nowhere, we obtain, by virtue of (2), that the flow ¢t(k) con-
sists of optical automorphisms. The underlying flag geometry is then geodetic

(because L is preserved); the remaining property implied by
(6) ¢t(k)*g 29 forany teR,

is the shear-free nature of the null geodetic congruence. Indeed, in view of (3),

condition (6) 1is equivalent to

(7) Ikg=cg+2v)\ .

where o is a function and v is a 1-form on M. The last equation is known to be
equivalent to the geodetic and shear-free property of the congruence of null
curves defined by k23.

An optical geometry satisfying any of the equivalent conditions (6) or (7) is
said to be shear—free; the geodetic property is then implied. The relevance of

optical geometry is apparent also from the following
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THEOREM 1 (Bateman], Trautmang). An optical isomorphism transforms an adapted

Maxwell field into another such field.

4. THE CAUCHY-RIEMANN SPACE ASSOCIATED WITH A SHEAR-FREE OPTICAL GEOMETRY
Consider first a geodetic flag geometry (K,L) on M and assume that the equi-

valence relation S defined on M by the congruence of null geodesics is regular

so that the quotient N = M/S has a manifold structure and the canonical map

s M Nis a submersionzq. Since the bundle L is invariant with respect to the

flow (o, (k)), it projects to a Tine bundle L/S € T*N. If x» is a section of

L/Si= NE then n*x is a section of L ~ M. Since n is canonical, there can be

no confusion if, from now on, we omit pull-backs and say that » is a section of

L » M. The vector bundle ker(L/S)< TN is of fibre dimension 2; it defines a
field of 2-planes in the 3-space N. Assume now that M is endowed with a shear-
free optical geometry based on the flag structure (K,L). The complex structure
on (kerL)/K 1is invariant with respect to the flow and, therefore, projects to a
complex structure J on ker(L/S). The complex line bundle H = ker(L/S) € TN makes
N into a Cauchy-Riemann S—manifoZd17. For brevity, we shall say that N is a

CR space. Our considerations are summarized in

THEOREM 2 Any point of a manifold with a shear-free optical geometry has a

neighbourhood optically isomorphic to the Cartesian product of R by a CR space.

From the point of view of local differential geometry, the study of optical
manifolds is thus reduced to that of CR spaces. There are, however, interesting
global phenomena19 and subtleties at the frontier between smooth and real-analytic

13,16
structures .

If the bundle kerL is integrable, then so is the bundle H; the Tatter defines
a foliation of N by surfaces with complex structure. In this case, around any
point of N one can find a system of Tocal coordinates (u,x,y) such that A = du

is a local section of L/S, the vector fields a/sx and 3/3y span H and
J(a/ax) = a/ay

The quadratic form dx2 + dy2 defines a conformal structure in the leaves of the
foliation, compatible with their complex structure. Let r be a fibre coordinate

along the fibres of m: M + N restricted to a suitable neighbourhood of a point
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in M, as in Theorem 2. The optical geometry in that neighbourhood can be des-
cribed as follows: K is spanned by the vector field k = 3/3r, L is spanned by
A = du and B consists of all metric tensors of the form

(8)  2dulhi dr + u) - PPLAx® + dyd)

where the functions h and P vanish nowhere and u is a 1-form Tinear in du, dx
25
and dy .
It is in the non-integrable case that the CR-structure of N comes really
into play. Locally, one can now find vector fields X and Y on N which span H and

are such that

but w # 0, where
w=[X,Y]J

is a measure of the 'twist'. Let (g,n,r/w) be a field of coframes dual to the
field of frames (X,Y,[X,Y): Xd& =1=Y_1n, XJdn=0=Yd g, etc. The tensor
52 + n2 defines a conformal structure in the fibres of H, compatible with J and
the analogue of formula (8) reads now]6

(9)  2x(hdr + u) - PP(2 + n2).
where the meaning of the symbols is as before.

If there is a complex function z = x+iy on N such that
(T) dzacAar=0anddzadzar#0,
where
£ =&+ in,

then the Tatter form is a Tinear combination of A and dz. In this case, the Tine-
element (9) can be reduced to26

(10) 2x(hdr + u) - Pz(dx2 + dyz)

It is worth noting that in all three cases (8)-(10) the function h can be reduced
to 1 by a rescaling of the coordinate r.
J. Tafe1]6 has pointed out that the differential equation (T) is of the Lewy

type27 and, as shown by Jacobowitz and Treves3], need not be solvable, even if
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» and ¢ are of class C . There is always a solution - at Teast Tocally - if the
CR space is real-analytic.

Most important examples of CR spaces are provided by real hypersurfaces in
62. E« Cartan]0 has classified all such CR spaces admitting a transitive group
of automorphisms. Among all CR spaces, the sphere S3¢: EZ has a CR structure
with the highest dimension of the symmetry group. In this case, the bundle H con-
sists of all vectors tangent to 53 and orthogonal to the fibres of the Hopf map
53 > 52. This CR structure is real-analytic and twisting. Locally, the optical
geometry on S1 X 53 induced from the CR structure of 53 is equivalent to the one

6,7,19

in Minkowski space R4 associated with the 'Robinson congruence' This op-

tical geometry may be described as follows: K and L are generated by
(11) k = 3a/ar

and

(12) A =’du + xdy - ydx,

respectively, whereas B contains the flat metric

(13) 2xdr - (r2 + 1)(d><2 + dyz).

The complex structure of (kerL)/K is given by the Hans Lewy operator27

N U R
(14) X + Y = 5 B 1 5 i(x+iy) =

The optical geometry under1y1ng‘bofh the Taub-NUT metriczs’29 and Hauser's
null gravitational fie1d30 is isomorphic to the one given by (11)-(14).
Our description of shear-free optical geometries generalizes the twistor

formu1at1’on6’32

of the Kerr theorem. The generalization is essential in the
sense that, as made clear by Penrose]3, the CR spaces corresponding to shear-
free congruences of null geodesics in Minkowski space form a 'small' subset of
the set of all CR spaces. Robert Bryant asked the following question: are there
any algebraically special, Ricci-flat, Lorentzian 4-manifolds whose underlying

Tocal CR structure does not come from the Kerr-Penrose construction?
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