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INTRODUCTION

During the academic year 1976-77, at the invitation of Pro-
fessor Chen Ning Yang, I gave a series of lectures on differential
geometry at the Institute for Theoretical Physics of the State
University of New York at Stony Brook, N.Y. I also prepared
a set of informal notes which were distributed to the audience.
The text reproduced below is based on the notes. It is very
informal and sketchy.

I thank Professors B. Veit, G. Marmo and R. de Ritis for a
critical reading of the manuscript.

Netation, Standard, set-theoretical notation is used in these
notes. For example, the notation for maps is:

f:X->Y or X-5Y,

Xaxe fX)=<x,f>€eY.

f is injective if x; # %, > (%) # f(x,), surjective if f(X)=17Y,
bijective if it is injective and surjective.

Composition of maps f: X —» Y and g: Y — Z is denoted by
gof: X — Z. The following sets of numbers often occur:

W = {0, 1, 2,....} natural numbers
integers

rationals

reals

complex numbers
quaternions

== 6 2 2R

An equivalence relation R in a set X is'a subset R < X x X such



2 . INTRODUCTION

that (x, x) e R for any xe X, if (X, yJeR then (y, x)eR, if
(%, yye R and (y, z) € R then (x, z) e R.
The quotient (factor-set) of X by R is defined as:

X/R={AcX|ifx,yeAthen(x,y)eR;ifxeAand (x,y)e R
then ye A}.

If x € A then A = [x] is the class of elements equivalent to x.
The map X3 x — [x] € X/R is a canonical surjection. The symbol
3 means: ‘there exists’ and V: ‘for any’. The symbol < or ‘iff’
stands for ‘if and only if’.

A group G acts in X on the right if there is a map:

XxGax a)ym§,x)=xaeX

such that §; = idg and §, 0 d, = J,, where a, be G and 1 is the
unit element of G. The action of G in X defines an equivalence
relation R by (x, y)e R <« Jae G such that y=4,(x). The
equivalence classes in X are called orbits of G in X and the
quotient is denoted by X/G. The action of G in X is said to
be transitive if X/G = {X}, i.e. if G3 a > §,(x) € X is surjective;
it is said to be free if this map is injective for any x € X.

A

<t~

orbit

Ficure 1
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ALGEBRA

VECTOR SPACES

Given a real vector space V, one can add its elements and
multiply them by real numbers. A frame is defined as a maximal
set of linearly independent vectors; a vector space is finite-
dimensional if it has a finite frame; one shows that, in this case,
all frames have the same number of elements, say n, which is
called the dimension of V.

Let

e={(g)=1(e,..., ¢,), where e;eV
be a frame in V. If a — (al) e GL(n, B), then:
e'=ea where ¢/ =e¢; aj

is another frame and the map (e, a) — ea defines an action of
GL(n, B) in the ser F(V) of all frames which is free and transitive.

fueVthenu= u'e and the numbers u', ..., u® are the com-
ponents of u with respect to e. The components of u with respect
to e are u''=a"tul

If U, V are vector spaces, then so is their direct sum U PV
i.e. the Cartesian product U x V with addition and multiplication
defined by:

U v)+@, vV)Y=@+u, v+v), a v)= (ay, av); ae .

If Uy,..., Uy, V are vector spaces then so is the set of all
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multilinear maps:
¢ (U, ..., Ug; V)= {f: Ux ... xUg > V|f multilinear}

If U =..=U,=U then one writes £*(U; V) instead of
Y (Ula'“, Uk’ V) .
In particular, V*= £ (V; R) is the dual space of V or the
space of (one-) forms over V. If e=(g;) is a frame in V then

the dual frame e* = (¢) in V* is defined by:

et (e)) = 4.
If ueV then:

vi=cel(u), i=1,..., n.

The vector spaces under consideration being finite-dimensional,
dim V* = dim V, and the double dual V** is isomorphic in a
natural (frame-independent) manner to V. The isomorphism
K:V = V¥* is given by’

(o, x(u))={(u, o) where ae V*
The vector space:
VER. . QVE=8(V,..., Vs B)

is called the tensor product of V¥,..., V§. The elements of:

K ¢ V
) RVRIQAIVF=VR.OQVRVFR...QV*

k factors { factors

are called tensors of type (k, {) (sometimes: tensors with k
contravariant and { covariant indices).
Consider

U* @ V= (U, V; B)

and define a bilinear map:




of

the
hen

1al,

Sm

AFFINE SPACES 5

k:U*x V¥ - U* Q V*

k(cx, ﬁ):a®ﬁ

where

(@ ® B (u, Vy=a@)p(v) for ueU, veV.

If (¢%) is a frame in U* and (% is a frame in V* then (¢ @™
is a frame in U* @ V*; this shows dim (U ® V) = dim U dim V.

Clearly (e;, ® ... Q ¢, ® et ® ... @¢e¥)is a frame in (1) and
a tensor of type (k { ) can be written as:

A=Alte, ®.. Qc, @ Q.. Qck.

AFFINE SPACES

Let V be a vector space. The set E is an affine space with V
as the space of translations if V acts freely and transitively in E.
The action of V in E is denoted additively; thus, if ve V then
v+ peE denotes the point of E obtained from pe E by
translating it along v. In other words, V acts as the group of
translations on E and

V+p=pev=_0, u++p=@+v)+p,

any u, ve V, peE.
If E,, E, are affine spaces and V,, V, are their groups of
translations then:

f:E - E,
is called an affine map if there is a linear map
s : V=V,
such that
fv+p=s® W+
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for any ve V;, and peE,. A bijective affine map f:E—-E s
called an affine transformation (affine automorphism of E). The
set of all affine transformations of E is a group, called the affine
group GA(E) of E. The map s : GA(E) » GL(V) is a morphism
of groups. A translation may be considered as an affine trans-
formation: if v e V then t(v) € GA(E) is given by t(v) (p) = v + p.
Since s(t(v)) = idy, we have an exact sequence of groups:

V -5 GA(E) — GL(V).
(Exact means Im t = Ker s). In particular, one can take E= V.
In this case, GA(V) may be identified with the (semi-direct)
product of groups GL(V)x V: if ae GL(V) and beV then
there is the affine transformation (a, b) e GA(V) given by:
(a, byv=a(v) +b.

The group GA(V) may be also embedded in GL(V X ®) by

(a, b) = (3 l;)

For any n €, there is the affine number space B" (E=V =R").
An dffine isomorphism f:R" —» E defines an affine frame {0, €)
in E. Namely, o= f(0) and ¢; = s(f) (&) where

g =(0,0,.,1,0,...,00eR"

and x'(p) = £ !(p)’ is the ith affine coordinate of p with respect
to the affine frame (o, €):

p = x¥(p)e; + o.

Forums

Let o, be the group of all bijections

o {1,2,..k) > {1,2,...,k}
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and let sgno denote the signature of the permutation o,
sgno = + 1. We say that the tensor
k

fe @ V* is skew- or is a k-form over V if

f(Vg(l )5‘"'7Va'(k)) == Sgno‘ f(Vl,.“,Vk),

for any v;e V and o € o,.
The set

k
A*VF = {fe @ V* | f skew}
is the (vector) space of k-forms and one defines a k-linear map

VEX X VEs (@, .., a") = o' A ... Aake ARV

by

@ @A A (v, V) = det || & vy || for v;e V.

Any form given by formula (2) is called decomposable (some-
times: simple). There are non-decomposable forms: if the forms
e', ¢?, &%, ¢* are linearly independent (therefore n > 4) then the
2-form e' Ae? +¢° ae* is not simple.

The wedge product can be expressed in terms of the tensor
product, for example:

anf=a®B -fRa a feV*
From the properties of det one infers that

1

@ A .. Aaf# 0« the set (o)., is linearly independent.

(e A ... aek) where {if, ..., iy} = {1, ..., n}
and i <1, < ... <ig

is a frame in A¥V*, thus

dim A*v* = (7).
im A*V (k)
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The wedge (exterior) product A may be generalized: if o € A¥V*
and fe A!V* then a A fe AV where

(d A ﬁ) (Vla () Vk-i-f) -

1
= i Z Sgno o (Va(l)a erey Vo(k)) B (Vogt1ys Votk +0))-

CEDT g f
The wedge product so defined is associative.

The direct sum AV* =@ A*V* where A°V¥*= R and
k=0
AV* = V* can be made into an algebra (the exterior, or Grass-

mann, algebra over V) by defining:

11

o AT= (0 AT, ;)
i=0

where w = (), = (), 1= 0,..., n and Wy A &= W« (ordinary
multiplication by the number w, € B).
The definition of AV* implies:

dim AV*= Y (n) =,
! k=0 k

Geometrical interpretation of decomposable (simple) forms.
Note that if e¢=Alel (i,j=1,..., k) then

A L A =detAe A ... Aek

Consider an (n — k)-dimensional subspace U of the n-di-
mensional space V and a frame e adapted to U, i.e. such that
€pi1s o €q € UL :

Let (¢!) be the dual frame, then

seUsui=cu)=0 for i=L., keiwa=0

where
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and
i(u): AKV* —» AR Ly*
is the interior product by u, defined by
3) () B) (ViseosVie ) =B (U, Vi, Vo)

(Note: deg o = codim U; under a change of adapted frame,
the form a acquires a numerical factor).
If u,veV and a e AXV*, B e A'V* then

i(w) iv) +i(v) i)y =0
and
(W) (@ A B)= (@ a) A B+ (~D¥e A iu) b
The last formula expresses an important property of i(u): it

is an odd derivation of the (graded) Grassmann algebra. More
generally, the vector space:

A = @ Ai’ 1 € Z
is a Z-graded algebra if there is given a bilinear map A X A— A
called the product in A, which is coherent with the grading in
the sense that:
Ai * IA.J i Ai+j'

If a; € A; then a; is said to be homogeneous of degree i.

The algebra is graded commutative (respectively: anticom-
mutative) if, for any a; € A; and a; € A; one has

ajai = i (— 1)1“ ai aj

where the upper (lower) sign refers to the commutative (anti-
commutative) case. Clearly, A = AV* is a Z-graded commutative
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(and associative) algebra. In this case, A; is trivial for 1 <0
and i > n. A derivation of degree k is an endomorphism D of A
such that

D (A) = Ay
and, for any a; € A and b € A there holds the Leibniz rule
D (a;b) = (D a;) b + (— 1)* a; Db.

Sometimes derivations of odd degree are called antiderivations.
A graded Lie algebra is a Z-graded anticommutative algebra
B such that, for any a e B, the map

Ad,:B—- B
defined by
@ Ad, (b) = ab, beB

is a derivation of B of degree k. It is customary to define the
product in Lie algebras (graded or not) by a bracket so that
instead of (4) one writes

Ad, (b) =[a, b].
The condition that Ad, be a derivation of degree k becomes
&) [a, [b, c]]= [[a, b], c] + (= 1) [b, [a, c]]

where

aeB,, beB;, and ceB.

Formula (5) generalizes the Jacobi condition of the theory -
of (ungraded) Lie algebras.

If A is any graded algebra, then the vector space

B=DerA= @Der, A, kel
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of all derivations of A has the structure of a graded Lie algebra
provided that one defines the bracket of a derivation D; of
degree k with a derivation D, of degree { by the formula:

©) [Dy, D,]=D; 0D, — (-1 D, oDy

For example, if V is n-dimensional, then

Der AV* = nG_BI Der, AV*

k=1
and
c € Der, AV*

defines in V the structure of an (ordinary) Lie algebra if and
only if

[c,c]=0

(cf. L. Corwin, Y. Ne’eman and S. Sternberg, Graded Lie algebras
in mathematics and physics, Rev. Mod. Phys. 47 (1975), 573-603).
The formula

[i(w), i(v)]=0

expresses simply the fact that there are no derivations of AV*
of degree lower than — 1.

Orientation of V is a ‘new’ element, which must be ‘put in
by hand’. Two frames, ¢ and ¢’ = ea define the same orientation
iff 'det a > 0. Therefore, an orientation may be defined as an
element of F(V)/GL*(n, §); alternatively, as a half-line of A"V*.

An oriented volume element is any ne A"V*, n# 0. If
U, ..., U, € V, then # (uy, ..., u,) = volume of the parallelepiped
spanned by the vectors u;. A frame e is said to be unimodular
if w=-¢e"A..Ae" Clearly, the set of all unimodular frames
defines an oriented volume element; therefore, giving an oriented
volume in V is equivalent to distinguishing an element (orbit)
of F(V)/SL(n, B) where SL(n, B) is the group of n x n matrices
of ‘determinant one.
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A Euclidean (pseudoeuclidean, Lorentz, Minkowski) vector
space V has a scalar product (metric), i.e. a tensor:

geP(V;B)y=Vv*QV*

which is symmetric, g (u,v) =g (v,u), and non-degenerate, i.c.
such that

Yu guv)y=0=v=0.

For any v, the map u+ g (u, v) is linear, therefore there
exists g (v) € V* such that

gu, v)={(u, g
Since g is non-degenerate, the linear map
g: V- V*

is an isomorphism. If (¢!) is a frame in V*, then g=g;; ¢’ @ ¢
where ‘

g;—8 (& ej)
and
g (e) = g el.

Symmetry of g g; = g;;, non-degeneracy < det || g; || # 0.
A classical theorem of linear algebra says that one can find an
orthonormal frame (o;) such that

g=0 o'+ ..+ 0 QoF -0 Qo —... —0" ®o"

If (0,) is orthonormal then so is 0o’ = oa where a € O (k, n —k)
is an element of the orthogonal group [of type (k, n —k)].

Conversely, an orbit of O (k, n —k) in F(V) determines a
metric of signature + ...+ —.. —.

e et

k n—k
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An oriented Euclidean space has a ‘natural’ volume element
n=0" A ... A 0" where (0;) is orthonormal and ‘well’ oriented.
If e=oa is any well oriented frame (det a > 0) then

n=0"A.. Ao"=detael A ..ne"=]/|detg;(e)|e'A ... Ae"

because
g;(e) = gy((0) af af = l det g;;(e) 113 (det a)®

One often writes

— 1 eix A A ein
n=—rt ., A Alh,

where
rli, I N n (eila ) ein)'

The preceding considerations lend themselves to an interesting
generalization. Let G be a closed Lie subgroup of GL(n, R).
A G-structure on V is an element of F(V)/G, i.e. an orbit of G
in F(V).

Examples: an orientation, an oriented volume element, and
a scalar product are GL*, SL-, and O-structures respectively.

FV)

DN

orbit of GL orbit of H FIGURE 2
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If H c G the H-structure is finer (richer, stronger) than the
G-structure; an H-structure determines a G-structure. The
{I}-structure is the strongest (a preferred frame in V), the
GL (n, R)-structure is the weakest (no additional element
whatsoever).

Some of the important subgroups of GL(n, B), and the cor-
responding G-structures on an n = 2m-dimensional real space,
are enumerated below.

Hermitean Complex structuvre.
U(m) # GL (m, b)

(real) Symplectic
Spa (B)

v : ‘ ¥

SO(n)———— SL(n, §) ——————GL* (0, B)
Orientation

v v

O(n) . )
Euclidean » GL(n, &)

FIGURE 3
The injection k : GL(m, ) - GL*(n, R) is given by:

A B

_B A) (A, B real m x matrices).

k(A—HB):(

Let j= ( (; i)), where I is the unit m X m matrix, then

ae GL(m, B)<>aj=ja and deta # 0;
a € Sp,, (B) < ‘'aja = j, where ‘a denotes the matrix transpose of a;

aeU(m)<‘aa=1 and aj=ja;
aeOm) «‘aa=1,; aeSO(n)<«ae O(n) and det a >0.
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Exercise: describe geometrically the G-structure on an n-di-
mensional vectore space V for:

A B n
Gz{(o C)eGL(n, B) | A e GL(k, B),

CeGL(n ~k, B), B=any kx(mn —k) matrix}‘

Geometric objects of type p over an n-dimensional vector
space V. Consider a representation of GL(n, B) in B™, 1.e. a

- homomorphism of groups

p:GL(n, B) » GL(m, B)
p(ab)=p(a) p(b), p(H)=1.

The group GL(n, R) acts in F(V) x B™ on the right,
(e, 9)a = (ea, p(a™")q)
where ee F(V), ge B™ and a e GL(n, R). The quotient
p(V)=F(V) x BR™/GL(n, R)
is the space of objects of type p. Let
k:F(V) x B™ — p(V)
be the canonical map; by definition
(D ke, q9)=k(e’,q)«= T aeGL(n,R)e’ =eaand q' = p(at)q.
The partial map k,: B™ — p(V) defined by k.(q) = k(e, q) is
bijec;tive and may be used to make p(V) into a vector space b
putting :
ke(q) + k(@) =ke(q; +q2),  Ak(q) = k,(4q).

By (7), this definition is correct: addition does not depend on e.
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To any object u e p(V) there corresponds a map

®) u: F(V) - R™
defined by
u(e) = k. '(w).
It follows from (7) that
® t(ea) = p(a™") (e)-
Conversely, any map (8) which satisfies the ‘ transformation
law’ (9) gives rise to an object of type p, u= k(e, u(e)). The

bar over u is usually omitted; this abuse of notation is often
convenient and only occasionally confusing.

EXAMPLES

1. The representation p, in B, p.(a)=(det a)¥, corresponds
to scalar densities of weight w e Z.

9. The one-dimensional representation n : GL(n, B) — GL(1, ®),

- n(a) = sgndet a corresponds to ‘pseudoscalars’.

3. The identity representation id:GL(n, R)— GL(n, B),
id (a) = a, corresponds to V.

4. The adjoint representation ad of GL(n, B) in £@"),
ad(a) (c) = aca™!, ce £ @"), corresponds to the space
V)=V ® V* of ‘mixed’ tensors.

5. If p is a representation, then so is the contragredient map
p,p(@) ="'p(a?), (t denotes the transpose). E.g., id corre-
sponds to V*,

6. If p,(i=1, 2) are two representations, then so are p, Dp,

and p; @ p,, where

(pr @ pr) (@) Q1,4 = (p1(@)ay, p2(a)q,),
(py @ py) (@) (1 ®q)=(p(d)y & p2(2)q2)-

Duality.
Consider a vector space V with a metric tensor g and an
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orientation. This gives rise to an n-form # which is the oriented
volume element in V.
One can now construct an isomorphism (the Hodge map)

* . AkV* — An—kv*
by putting

(10) Fa(Virton V) =0 A B(Viy1) A o A B(Vy),
for any v;eV, i=k+1,..,n

The Hodge map transforms decomposable forms into decom-
posable forms. To get a geometric interpretation of *a, consider
i(u)*o:

n- (I(U)*a) (Vk+29"'3 Vn) = *a(u: Vid 250009 Vn) n
=oA g(‘j) AB(Ves) Ao AB(VL)
=" *(a A g(u)) (Vk+23“'a Vn)

thus

an ; i(u)*a = *(a A g(u))

(12) veUsi(@a=0

13) ue U «i(w)*a=0.

Ui
Ckt1 U jev
(n ~k) —dim
en
Cppis-ir € span U

a=¢e AL A e Froure 4
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Proof of the last statement: i(u)*a = 0 < o A g(u) = 0<> §(u)
is a linear combination of e',...,, e¥, but ue U' < g(u, ¢) =0
for i=k + 1,..., n<e (e, gu)) =0, and the last condition is
equivalent to the statement that g(u) is a linear combination of

el,..., ek

Since **a corresponds to U’* = U one has **« || a; in fact
**q = + a. More precisely, **o = (—1)*™*Dsgn detg a if
a e AFV*,

Another important property:

(14 if o, fe A*V*  then *a Af=*B Au.

It follows from the definition of * that:

*n=1.

To get the expression of *a in terms of the components of a
consider the volume element:

nN=—1m,.. LA L Aer=n et AL Ae"
n!

where
Mo .n= |detg |
and define
it in = (sgn det g) gitit ... ginin My iy
so that
1
i
and

(15) ei1 A A ei" = rlil wedn 1
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. ; 1 ; ;
Any k-form o can be written as o = o Oy i €A o AE

where
o, wig ‘x(ei;a'"v eik)
and similarly for *a«. From the definition of the dual form,
& P, . — & S
] *“ik,»x...in =1 o€, e C) = ABE ) A - A B(E)
=L ; i 1A L Agi
k1 dteedx Bixt kst = Binjn >
thus

1 L
sk o J1een ]
(16) Ly oy i — k! O, ik n ! gik+x1’k+1 o Bipgjn-

Example 1.In Euclidean space R® with standard metric g,
consider an orthonormal frame (e;),

gle, &) =0y, Ble) = e, n=¢ re? e,
then
l=el Ae? ned, Fel=e? ned, *(e? ned)=¢e, ¥ ne? ned) =1,
so that

*(@ AB) corresponds to & X ﬁ, *(a A B A y) corresponds
to % (Bx ),

*(*a A ) corresponds to - [7, i(u) (o0 A B) =*(*(a A B) AB(1))
corresponds to U X c.? X B)), etc.
In B3, for anya, **a = a.

Example 2. Consider Minkowski space with metric of si-
gnature -+ — - —,
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Let (ey, €, €,, €,) be an orthonormal frame, n = ¢®> Ae' Ae? Ae’,
1 29 %3

then
*l= —y
0 = —el ne? ne’, *el= —e’Ae? Ae’, etc.
*e? nely=¢e*ne’, *e@ae)= —e’ nel, etc.
*eP netne?)= —¢’, *e ae?aed)= —¢ etc.

¥ aet ne? ned) =1
#y = (= 1)*g for e AKV*,
The electromagnetic field may be represented by the 2-forms

f=E,e®Ael+... —B,e?rne’— ..
=B, el +... +E, e ned+ ...

One has

- >

fAaf= —-2E-Bn,
-, -5

*faf=E -B)n,

and f Af=0<«f is simple.

X -y =y >
Put F:f~1*fand F=E —1B, then

. —
*F=iF, FAF= —2iF"y.

An éleétromagnetic field is said to be nmull (optical, isotropic)
iff

-,

FAF=0<E -B=0=E — B2

This implies

fAf=0= f'::a/\x
HAf=0=*=fAx.
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Let W< V+1iV be the complex 2-dimensional plane cor-
responding to the simple complex 2-form F=(a —if) Ax.

Since *F || F we have W= W; therefore

(@ —if)y=x*=x" (0 —if)=0

or

keUn U

FIGURE 5

For an arbitrary frame e in Minkowski space, define
H 1 k 1 3
Tijx = Sk, Uy = 5 Atk M= 3 A,
then

L
ﬂ:z’e Ay

and the following formulae are sometimes useful:
e' A i = 5}< M + 5% M + 5§ ki

ek/\r]ijzéi-‘r]i “5¥’7j
o nm = ol

also

*'lijkx =8(e) A g(ej) AE(e) AE(e)
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M= —Ble) A g(ej) AEB(ey)
Ny =E(e) AE(ey)
= ‘“g(?i)
*n=1.

Exercise. Given an arbitrary vector space with a metric and
orientation, extend the definition of the interior product (3) to
) : AV* = AV* define j(u): AV* - AV* by j(ua=gu) A «
and prove

i(u) i(v) + i(v) ifu) = 0,

j@ jv) +j(v) j(w) = 0,
i(u) j(v) + j(v) i(u) = g(u, v), where u,ve V.

Moreover, if one defines a scalar product on AV* by:

@B n=3 an*Be where a= (@), f=(B)ec AV*,

k=0
then
(i(wea, B = (o, jW)pP)-

Remark: a natural extension of i(u) to A°V*= R is given
by i(w)l=0.
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DIFFERENTIAL MANIFOLDS

A chart on a topological space M is a homeomorphism
x: U — V of an open subset U of M onto an open subset V
of B” U is called the domain of the chart, n is its dimension
and the real-valued functions x', x = (x), i=1, ..., n, are the
local coordinates defined by the chart. An atlas on M is a col-
lection of charts whose domains cover M. If all the charts of
the atlas are n-dimensional, then n is said to be the dimension
of the atlas.

An n-dimensional manifold is a Hausdorff space which has
a countable basis for its topology and admits an n-dimensional
atlas. Consider two charts x, and x, on an n-dimensional manifold
M, x;: U; = V;; they are said to be C®-compatible if the com-
posite maps:

X, 0 X1 x,(Up n Uy) = x,(U, nU,) < B®
and
Xy O X;l : XZ(UI n Uz) i XI(UI n Uz) < E]\])n

are of class C*® (i.e, if they have all partial derivatives). An
atlas is of class C* if all pairs of its charts are C®-compatible.

M @n FIGURE 6
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A differential manifold of class C*® is a manifold with a maximal
atlas of class C®. Any atlas of class C® is contained in an unique
maximal atlas; therefore, to define the structure of a differential
manifold it is enough to specify an atlas of class C®.

If M, N are differential manifolds of class C* then a map
f: M - N is said to be differentiable (smooth) if, for any charts x
on M and y on N, the composite map yo fo x~! is differentiable
wherever defined.

A diffeomorphism is a homeomorphism f: M — N such that
both f and f™! are smooth.

From now on we consider only differentiable manifolds of
class C® and smooth maps.

Examples of smooth maps: if N=R then f: M >R is a
(real valued) function on M. The function f is smooth iff its
expression by local coordinates T o x™' is smooth for all charts.
If M= R, then f: B - N is a curve in N.

EXAMPLES OF MANIFOLDS

1. B® with its ‘natural’ differential structure, defined by the
global chart x:R"—R*", where xi(t}, ..., t") = t&.

2. An n-dimensional affine space is deﬁned to be a set M on
which an n-dimensional space V acts freely and transitively.
If p, € M and e € F(V) then the bijective map x : M —R* de-
fined by

xX(p)e; +po=p

induces on M a manifold topology and a differentiable
structure; they are both independent of py and e. (Explanation:
ifueV and pe M, then u -+ p is the result of action of u
on p: it is the point of M translated by the vector u).

3. The n-sphere

={qelR" |qgl+qi+...+q =1}

has an atlas consisting of two charts defined by the stereo-
graphic projection from two distinct points of § .




ximal
nique
ential

map
arts x
tiable

1 that
ds of

is a
iff its
harts.

y. the

M on
ively.
I® de-

tiable
ition :

of u
I

tereo-

EXAMPLES OF MANIFOLDS 25

4. The (real) projective space RP, is defined as the quotient of
B!~ {0} by the equivalence relation

R=1{(s1)|s=t, 0£1eB),

where
t=(t¥), s = (s¥) e @' — {0}.

For any « (¢ =1,..,n +1) one defines a chart x,: U, »R"
by U,={k(t) eRP, |t*# 0} where k:B™!— {0} -RBP, is
the canonical map, xi(k(t))=t'/t% i# a. Exercise: check
compatibility of these charts.

5. The sets 6™ and [™ have a natural structure of differentiable
manifolds of dimension 2n and 4n, respectively.

6. Exercise. Define the complex and quaternionic projective
spaces and describe their differential structure.

7. If N is an open subset of an n-dimensional differential ma-
nifold M, then N has a natural structure of an n-dimensional
differential manifold. Example: GL(n, B) = £ (B™) ~ R** is
an n’-dimensional differential manifold.

Problem. Is it possible to have distinct differential structures
on the same topological manifold? Yes; consider - B and the

following two global charts x,, x, : B — R, where x,(t) =t (the

‘natural’ chart) and x,(t) = t°. These two charts are not com-
patible (exercise: explain why), therefore they define distinct
differential structures on R. However, these structures are
equivalent in the following sense: there is a diffeomorphism f
of B with one structure onto B with the other (namely, f(t) = t}/3).
J. Milnor [Ann. Math. 64 (1956), 339] has shown that $, has
non equivalent differential structures. More surprisingly, it has
been shown recently by S. K. Donaldson that B* admits dif-
ferential structures inequivalent to the standard one (¢f. Pro-
ceedings of the 1982 International Congress of Mathematicians,
Warsaw, 1983).

The set C°(M) of all differentiable functions on M forms an
associative and commutative algebra (functions can be multi-
plied by numbers, by each other and added). A smooth map
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h:M — N induces a homomorphism of algebras
h*: C°(N) —» C°(M)
defined by |
h*(gy=goh for ge C°(N).

Note that if

M2 N5 P then (h, oh,)*=h¥ o ht.

A vector field u on M is a linear map u: C°(M) —» C°(M)
such that

u(fg) = fu(g) + gu(f)

for any f,ge C°(M); in other words, u is a derivation of the
algebra C°(M). If u and v are vector fields on M, then so is
their commutator (bracket) [u, v] defined in the usual way:

[u,v] (F) = u(v(f)) — v(u(f)).

The bracket is skew, [u,v] + [v,u] = 0 and satisfies the Jacobi
identity

[[w,v],w] +[[v,w]u] + [[w,u],v] = 0.

Therefore, the set V(M) of all vector fields on M is a Lie
algebra. If pe M and u e V(M) then there is a linear map

u,: C°(M) — B
such that
L up(fe) = f(p) u, (g) + g(p) u,(H)
defined by

U () = u(®) (p).
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Any linear map from C°(M) to B satisfying the Leibniz rule
(L) is called a tangent vector to M at p; the tangent vector defined
by the last formula is induced by the vector field u.

Any curve k: B — M through p, k(0) = p, defines a tangent
vector to M at p by

d
fo g fokO|

FIGURE 7

An alternative and equivalent definition of a tangent vector

to M at p is:

an equivalence class of curves through p,
two curves k; and k, being considered
« = { as equivalent iff, for any feC°(M)
to M at p d d .
—f okt = —fok,(t
g fok® o rrali 2()%:0_

Coordinate lines and coordinate vectors on M are defined by
achart x: U— V < R" as follows. Let pe U, xi(p) = ti, then

k() = x71(tg,.., th1, 1, BT L tD)

defines the ith coordinate line through p.
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Note:
th for j#£1i
t for j=1i.

X (k; (1) = {

The ith coordinate vector at p is given by its action on f € C°(M)
as follows:

ei(ﬂx—;i;foki(o]t:tg

_ 0 ~1g n
= 5 fox™(th,...t"

all t' =t}

Because of the last formula, the vector e; is often denoted
by 8/ox' [or (9/0x"), if one wishes to emphasize the point to
which it is attached]. Thus a chart x: U — V defines at any
point pe U a collection of n vectors

FiGurg 8

One can prove the following

Theorem. The vectors (e,) form a frame of the vector space
T,M tangent to M at p; therefore dim T,M = dim M.
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The functions x' defining a chart may be extended to functions
defined over all M; in general it is necessary to restrict them
first to a compact set V< U; but, given p e U, one can always
extend the functions x' to M in such a way that the extensions
coincide with x* in a neighbourhood of p. Therefore, it makes
sense to evaluate the vectors ¢; € T,M on x:

N=— Y __ i =11 n = 51
& (x%) atl X oxTHt, .., 1) e J}
or
0 = i
E ()= d}.
If ue T,M and vl u(x) then u=u' ;f—;s the numbers u'

are thus the components of the vector u with respect to the
coordinate frame (e).

Tensor fields, fields of k-forms, etc. may be introduced ac-
cording to the following scheme. Consider the dual of the tangent
space,

TiM 5 (T,M)*;
form K ,
TMR.TM ® TiM R .. QTiM :T;k,nM’

 and define a tensor field A of type (k1) to be 2 map
Mspm A, e TFVM

_Which is smooth in a sense explained on the example of a field
of k-forms w,

Ms pr w,e AT¥M.
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The field w is smooth if, for any vy,...,v, € V(M), the function
M3 p> @y (Vy,, Vo o Vi) € B
is smooth. Let C¥(M) be the vector space of (smooth) fields
of k-forms. If w € C¥(M) and n € C'(M), then w Am e C**'(M)
is defined by

(W AR), =W, AT,

and this ‘point-wise’ method of extending algebraic operations
from the tangent spaces to fields may be used to define:

i(wa for ue V(M) and « e C*(M),
g(u), where g is a metric tensor field, ue V(M),
*uo, etc.

Exterior derivative. Let fe C°(M); one defines df e C*(M) to
be such that, for any ue V(M),

D (u, df) = u(h).

Clearly, if x is a local coordinate system, then

(e;, dxi) = &}
The forms (dx'), constitute the dual frame relative to ( ai )
and ox
(1 bis) df= 0. () dxt  or simply f dxi.
ox ox

"The linear map d : C°(M) —» C'(M) is extended to a unique
linear map

) d:C¥M) = C*1(M), k=0, 1,..,n=dim M
with C**1(M) = {0}
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inction “ called the exterior derivative; its characteristic properties are

3 linearity
1) fields (4 d on C°(M) is given by (1)

:k+l(M) ;

6) d@nap)y=(da)Ap+(—D*aAndf for ae CEM).
erations Conditions (2), (3) and (6) can be summarized by saying
ne that d is a derivation of degree 1 of the Cartan algebra @ CE(M)

of differential forms.

) For example, if

o= i dX'T A . Adxi, then
1
(M) to da = day, 5 Adx" A Lo Adxi

I

1
il
i
k!
~—1— . dxd Adxi A .. Adxk
k 11 xku ’

_ where

iy oigo § det _a%* %, ..;  (compare (1bis));

(do;, S O T (=D& +1D &, ..

g i 4]

with the square brackets denoting antisymmetrisation over the
indices enclosed.
umque _ Remark. Nothing compels us to use coordinate frames on a

manifold; one can — and often does — use an arbitrary field of
frames

Ms Us pr e, e F(T,M)
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and the field of dual frames (coframes)
Ms Us pe e} e F(Tj M)
with
(e;, €') = &}.
Note that locally
el =dx'ede' = 0.

Indeed the implication = is true by (5), and the implication
<= is true locally by a theorem known as the Poincaré Lemma.
Sometimes one says that de' = 0 characterizes holonomic frames.

ExXAMPLES

1. Vector analysis in B3 with Euclidean metric and orientation:

if feCo(R3), then df = (grad D), dx'
if e CY(R?), then  *da= (curl ), dx'
*d¥g = div a.

Therefore, both divcurl=0 and curl grad =0 are con-
sequences of d?= 0. Formulae of the type

div{(ax )= Pcurla —acurl B
may be derived from the Leibniz rule for d.

2. Maxwell’s equations in Minkowski space.
Let A= A, dx' be the 1-form of the electromagnetic po-
tential, A, = qo, A, = — A, etc. then

f=dA

is the 2-form of the electromagnetic field. The Lorentz con-
dition is

d*A =0,
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whereas Maxwell’s equations are
df=0 and d*f= —dn*j,
wheré
j=jidx!
is the 1-form of current, conserved as a consequence of d? = 0:

d*j=0.

. Lienard-Wiechert potentials and field of a unit charge in Min-

kowski space R*. Consider the motion of a unit charge, refer
everything to an orthonormal frame. Given the world-line
7i(s) of the charge, define function_‘ o on R* by

gi_)pi(x)pj(x) = Oa po Z 03
where
P =x —2Z' (a(x)).

(x)

o == const
on the null cone

' (o (x))
2 (s) FIGURE 9
Define p = p;(x)dx, u= z(c(x))dx}, w= Z,(o(x))dx!

R=u-p(=¢gVzp);
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show p= Rdo, du=do Aw, dR= (w- p)de +u —dg,and
differentiate A = u/R to obtain the field

__doAu

f— n do A(w —(w-do)u)

R? R

(Note that (de)?=0 and do Lw — (W - do)u).
In some respects, ‘ forms are bettéer than vectors’: they can be

differentiated by means of d;
integrated;
transported (pulled back) by smooth maps.
If h: M — N is smooth then there is a linear map
h* : CE(N) —» C*(M)
defined by
0 (h*a), (g, Ug) = Unep) (Tph(uy),..., Th(ug)),
where
ae CE(N); peM; uy,...,u € T M,
and
Tph: T,M = Tyy)N
is a linear map, called the tangent (derived) map of h at p, given by
(g, T,h(w))=(g o h, u), ge C°(N), ue T M. |

In terms of local coordinates x on M and y on N, T h is given
by the Jacobian matrix:

h (L) = 2ol O
ox' ox! ay*
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The direct sum C(M)= @ C¥(M) can be made into an al-
k=0

gebra relative to A ; this is the Cartan algebra of differential
forms on M. The pull-back map h* can be extended to

h*: C(N) - C(M).

Moreover, (h; o hy)*=h,* o h¥, id} = idcy); one says
that C and h+— h* define a (contravariant) functor from the
category of differential manifolds to the category of associative
algebras with (anti)derivation.

Indeed, h* is not only linear but also

8 h*(a A B) = h*a Ah*B;

©) h* od=d o h*..

Many of the potentials and fields occurring in physics are
(Lie algebra — or spinor-valued) differential forms.

Vector fields occur in a natural manner in connection with
_ problems of invariance and transformation groups.

A diffeomorphism h: M - N can be used to transport (‘drag
along’, ‘Lie transport’) any tensor field from N to M. It is
enough to define the transport for vector fields; any tensor field
can be represented as a sum of products of vector fields and
forms. Denoting by V(M) the set of all vector fields on M, we
_ define

h*: V(N) - V(M)

(19 b*™v) D =v{foh™) oh,

veV(N) and feCo(M).

A one-parameter group of transformations of M is given by
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a smooth map

MxBa @t~ o(peM

such that
@0 Q.= Quys, and @o=1idy.
FIGURE 10
Clearly,
QDt—l = Py,

therefore, @, is a diffecomorphism of M onto itself. The group
(p,) induces a vector field u on M,

d .
U(f)z —a'i“f O @, ‘ ‘oo . fe CO(M)

Conversely, any ue V(M)\ generates a (local) one-parameter
group of (local) transformations of M. Given ue V(M), one
defines the Lie derivative of a tensor field A on M to be

d
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Now,
d d .
e = e A = —— Q¥ p*A =
dt ¢t d (pt-}-s ’Sz d (pt qos e=0
d
= % — @p*A
qot dS (ps =0
gives

d
a PFA = @fL,A;

therefore there holds the
Theorem. A is invariant under (o,),

e, pfA=A for any te <L ,A=0.

Properties of the Lie derivative useful in computations.
Consider the tensor algebra G(M) over M: its elements are
_ collections of arbitrary tensor fields on M; multiplication is
defined by the tensor product &. Then, for any ue V(M):
(1 L,: (M) - T(M)

is linear and type-preserving;

(12) LA ®B)=(L,A) ®B+A ®L,B;

(L, is a derivation of degree 0).

13 if fe C°(M), then L,f = u(f);

(149 if ve V(M), then L,v=[u,v].

Proof: let (¢,) be generated by u, then from equation (10)

(prv) (D =v({ o o ") 0 gy,
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and
4 nml = Lvtoo 4
’&‘{(‘Ptv) (t) t=0——— dt V(fo @, 1) l t:0+ dt V(f) O @, ‘p
= ———d—v<fo<p)\ + uv()
dt “li=o
= [u, v] ().
Moreover,

(15) the map u~ L, is a Lie algebra homomorphism,
L[u, v} = [Lw Lv] M

The Lie derivative restricted to the Cartan algebra C(M)
enjoys the following properties:

(16) L,od=dolL,;

an Li@Ap)= L) AB +arLyp;
(18) L,=doi(u) +i(u) od;

(19 [i(w), L,J=i([u,v].

Formulae such as (15), (16), (18) and (19) can be proved by
noting that a commutator of a derivation and an antiderivation
is an antiderivation (similarly, the anticommutator of two anti-
derivations is a derivation; cfr. the paragraph on graded algebras
in the Chapter on algebra), and taking into account that C(M)
is generated by C°(M) U C'(M) so that any (anti)derivation
vanishing on functions and 1-forms vanishes on all of C(M).

EXAMPLES AND EXERCISES.

1. If x=(x) is a local coordinate system, then, by equations
(13) and (16),

L,dx' = dL,x' = d(u(x)) = du'.
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2. If a=a,dxi e C}(M), then

Lya= (Lya)dx’ + o;L,dx' = u(e;)dx! + a;du’ =
= (o0 + ajui;) dxi,

where one uses (17) and u=u! 6?& , dul = Ju'/oxidx.
3. Show
(20) L.g= (gijakuk + 8y ul; + gikulfj) dx' @ dx

where
g =g;dx' ®@dx! is a metric tensor field.
4. If o e C'(M) and u, v e V(M), then
2y da(u, v) = u(@(v)) —v(a@@)) —auy, v]).
Proof: substitute (18) into (19) to get
(w)di(v) + i(w)i(v)d — di(v)i(u) — i(v)di(u) = i(u,v]).
Evaluate both sides of the last equation on a and use

iMi(wa=0 for a € C*(M), i()i(v)= — w)i(u),
da(u,v) = i(i(u)de, u(a(v)) = i(w)di(v)a.

Similarly, if & € C*(M) and u, v, w € V(M), then

(22) da(u,v,w) = u(a(v,w)) + v(e(w,u)) + wie(u,v)) +
+ a(u,[v,w]) + a(v,[w,u]) + a(w,[u,v]).

5. Prove the following: if h: M — N is a diffeomorphism, then

1° h*[u,v] = [h*u, h*v];

2° if (¢,) is a one-parameter group of transformations on N,
generated by ue V(N), then (h™! o ¢, o h) is a one-pa-
rameter group on M, generated by h*ue V(M).
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6. Symmetries of plane electromagnetic waves.
Consider a plane, linearly polarized wave moving in the z
direction, ‘

f=a(u)du Adx, *f=a(u)du Ady,

where 1/§u =t —z and a is an arbitrary function. If 1/§V =t+2z

then g = 2dudv — dx? — dy? (here dx? is short for dx & dx, etc.).
Symmetries are generated by vector fields &, solutions of

L.g=0 and Lf=0.

For a # 0, these equations admit 5 linearly independent
solutions, e.g.

0 o 8 L0, 8 0 0
ov’ 6x’6y’xav+u6x’yav+u6y'
The three vector fields

9 0 L0 0 0 4,0
Xay y@x’x6v+u6x’y tu

generate the ‘little group’ of the null vector 9/ov.
7. Divergence of a vector field.

Let 5 be a volume n-form on M. E.g., if M has a metric
g=g;dx ®dx’ and y=| det g;| /2, then n may be taken
to be ydx* A ... Adx".

For any vector field u on M define its divergence by

Lyg=(div u)n.
Using equation (18) one obtains
L, =d(@(wn),
and

Lg=dyu' Adx®> A ... Adx® —pdx' Au® A ..o Adx®+.0)
= (yud),;dx! Adx® A ... AdXx" +

+ (yud),,dx! Adx? A oo AdX"+ L= —i—(yu"),kn;
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. the z 1
divu= > (yu®),,.

. Behaviour of integrals under infinitesimal transformations.
=t-+z . Let 4 be an n-form on an n-dimensional oriented manifold
, ete.). M and let x: U —» R® be a local coordinate system which
i of agrees with the orientation of M. Write

A=Ay dx! Adx? A ... Adx®

endent
ey Ji= J Az.aoxt-dEder . déem,
o

x(U)

where the integral on the right is the ‘ordinary’ (Riemann)
integral over ¢ex(U) < Rn

If x:U - B"® is another coordinate map of the same
orientation as x and

A=A o dx AdX? A .. Adx®,

. , ox't
metrlC ’ 112 e 112 e 1 det ( . ) 5
: taken

[ A= [h*A.

h(u) U

Let (@,) be a one-parameter group of transformations of
M generated by ue V(M), then

B TR L S
I A= It l{qo,l !thuA* J L.

o.(U) ?(U)
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If A=nL, where L is a Lagrangian, then
L, A= (Ldivu+ L,L)7n.

Canonical formalism of classical mechanics.

A symplectic (phase) space consists of an even-dimensional
manifold P with a two-form B which is closed, df =0, and
non-singular: for any p € P, the map

T,P2 u, — i(uy) BeTiP
is invertible. In local coordinates,
B=dp; rdq’.

A diffeomorphism h: P — P is called a canonical transfor-
mation iff h*f=p.
Let ue V(P) generate a one-parameter group (@, of ca-
nonical transformations. Then

0=L,B=(doi(u)+i(w) od)p=d(w§H).

Therefore, locally A
i(w) f=dU

where U e C°(P) is the generating function of (¢,), defined

up to U~ U +const. If uj,u,€ V(P) generate canonical

transformations then so does [u;, u,] Let i(u) f=dU,

i=1, 2 and i(u,, u,]) B = dU. Using equation (19) we obtain

U = i([uy, u,]) B = (i), Ly,] = — Lyi(w) f=
~1,,dU, = ~d (L,,U)=d(L,, Us).

Define the Poisson bracket by
{Ula U2} = Lu1 UZ

to obtain
U = {U,, U,} + const.
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If He C°(P) is a Hamiltonian function and () is the
corresponding group of transformations of P (= motion of
the classical system) then U e C°(P) is a constant of the motion
iff

sional
. and Y¥rU=U«L, U=0«{H U}=0,
where v is the Hamiltonian vector field: i(v)f = dH.

If dimP=2n, then n!y=BABA .. A (n times) is a
volume form on P and different versions of the Liouville
theorem read

Yin=n, divv=0, [n= [ g Q=P
Q ¥(Q
msfor- Exercise. Consider local coordinates (py, ..., p,, ¢/, ..., q") on
P such that 8 =dp; Adq' (such coordinates always exist locally
of ca- _ by a theorem due to Darboux). If i(u)f = dU then write
_o0u ou
and show
0= ou o 0U @ |
efined 0’ dp;  dp aq'’
onical dU, 8U, oU, oU
= dU;, U U= 30 o " op aq
obtain ! !

- n=dp, Adq' Adp, Adq® A ... Adp, Adq™.
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LIE GROUPS

A Lie group is a group G, which is also a differential manifold,
and such that the map

GxGa(ab)—»a'beG

is smooth.

It follows from the definition that, for any ae G, the left
translation

%:G -G, 7a(b) = ab
and the right translation

0,:G -G, d,(b)=ba

are diffeomorphisms; the same is true of the internal automor-
phism of G,

ad,: G > G, ad,(b) = aba™.
A vector field A € V(G) is left-invariant, if for any ae G
y¥A=A.

Since

h*[A, B]=[h*A, h*B]

for any diffeomorphism h, the set G’ < V(G) of all left-invariant
vector fields on G is closqd under the bracket; it forms the Lie
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algebra of G. Any Ae G’ is deﬁned by its value at the unit
element of G:

Aa = Te ya(Ae) M

Therefore, G’ may be identified with T .G, and dim G’ = dim G.
If (e;) is a frame in G’, then

[ei’ ej] = cikj ek’

where cfj are the structure constants of G. From the properties
of the bracket they are skew in (i, j) and satisfy the Jacobi identity.

One-parameter groups of transformations of G generated by
elements of G’ may be described as follows. Let (¢,) be a group
generated by A € G'; since A is left-invariant, by example 5.2°
at the end of chapter III,

&) V.00, =@, 0y, forany aeG.

Define the exponential map
exp: G' - G
by
exp A = ¢, (e).
Since sA generates the group ¢, we have exptA = ¢,(e)
and (%) gives:
@1 = Oexp ta-

One shows that exp restricted to a sufficiently small neigh-
bourhood of 0 in G’ is a diffeomorphism.

By putting a = @ (e) in (3%) and evaluating both sides of this
equation on e, one obtains

?.€) - (e) = @ (e);

thus
exptA-expsA=exp(t +s)A.
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_ ExamrLES OF LI1E GROUPS

1. Let V be a real or complex vector space. The group GIL(V)
of all linear transformations of V is a Lie group. Moreover,
GL(V)" may be identified with £(V):

[A, B] in GL(V)' corresponds to AB — BA in L(V);

La+Lazy inow.

exp A in GL(V)’ corresponds to I + 11 7

2. Let K=&, € or {l. Consider the vector space K, where the
multiplication by quaternions is taken on the right, i.e. if
q=(q") K", 1eK, then qA = (g'4) eK™ Put A=A for K = [§
and A = conjugate of A for K= B or [l, consider the quadratic
form in K:

Q(q) — ql ql Ao+ qk qk _qk-H qk+1 —_ _qk+€ qk+€

where n=k +{. The group G defined by

G = {ae GL(K") | Q(a(@)) = Q(q), for any q e K"}
is
Ok, ) forK=R; Om=0(,0)
G={U(k{) forK=B6; U(m)=U(n0)
Sp(k,{) forK=[]; Sp(n)= Sp(n, 0).

The groups O(n), U(n) and Sp(n) are compact.

Note that the quaternionic symplectic group Sp(n) is dif-
ferent from the real symplectic group Sp. (R) defined in
Chapter 1L
According to that Chapter, the group U(n) is isomorphic to
O@2n) nGL(n, €) and to O(2n)~ Sp,; the isomorphism is
obtained by representing the complex matrix

a=A+iBeUm)

by the real 2n x 2n matrix

k()= (_‘; A):
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and noting that
ata=1l<e'k(@) k(@)=1.

In order to obtain similar isomorphisms for Sp(n), consider
the representation ¢ of quaternions by complex numbers
given by

s i=t+ix+jy+tkz—
{(D=@t+iz,y+ix)=(neb?

then

L) = (& —n) and (&, m) a1 =
= ({18 — M2 m &y +Eima).

Reminder of basic notions on guaternions: any A€ [l is
written as A=t +ix +jy + kz, where t, x, y, ze R and
i, j, k are the unit quaternions; they satisfy i’ = j> =k*= — 1,
ij= —ji=k and cyclic, A=1t —ix —jk —kz so that
A4 =12+ x2 + y? + 22 and any 4 # O is invertible: ™! = 1/44.
There is an obvious representation of quaternion units by
Pauli matrices. Namely '

0 ) -1

ie ( ), etc.
-1 0

Let ae GL({1"), then

(A -B
{(a) = -
w=(5 %)
is the corresponding representation of a by a pair of complex

matrices A, Be £(G").
Moreover,

ata= 1< {(a)e U(@2n),

where + is transpose of the quaternion conjugate matrix, and

Y(a)jl(a)=j, where jz(._.(l) (I))
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Therefore
Sp(n) is isomorphic to  U(2n) n Sp,_(B),
where

Spm(6) = {fe GL(m, B) | fjf = j}.

. Cartan’s classification of compact non-commutative simple

Lie groups (simple means all normal subgroups are discrete
or= G itself):

SO(m) for n=3and >5;
SUm) for n>2;
Sp(m) for n>1.

There are 5 “exceptional’ groups of dimension 14, 52, 78,
133 and 248.

There are isomorphisms and local isomorphisms (= Lie
algebra isomorphisms) among these groups. For example,
the map ¢ described above establishes an isomorphism

Sp(1) = SU(Q2).
Namely,

A=t+ix+jy+kzeSp(Heil=1<«
s ({7 )
y+ix, t—iz
t+iz, —y+ix
= (y +ix, t —iz)E SU@-

b

There are also isomorphisms of Lie algebras:

Sp(1)’ =S0(3Y’;
Sp(1)" X Sp(1) =SO4)’;
Sp(2)" = SO(5)’;
SU@)’ = SO(6)’.
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Exercise. Prove

dim SO(n) = % a( —1), dimSU@)=n? —1,
dim Sp(n) = (2n + 1)n.

Morphisms of Lie groups; derived morphisms of Lie algebras.
Let h: G —» H be a morphism of Lie groups, i.e., a smooth
homomorphism. One defines the derived morphism of Lic algebras

K:G' > H

as follows. If A € G, then d,,,, is the one-parameter group
of transformations of G, generated by A, its characteristic
property is that it is left-invariant:

5exptAAO Ya=7Ya O O¢sp1a for anyaceG.

The transformed one-parameter group on H given by
On(exptay i also left-invariant; therefore, the vector field h)
on H, generating 0y .p.a) 1S left invariant, hy e H'. An alter-
native and equivalent definition is to put hy(f) oh=A(f o h)
for any fe C°(H). Clearly, h’: G’ » H’ is linear and one shows
that it is a Lie algebra homomorphism,

D h{s, p;=[h4, h3]
Moreover, since h, generates & yexpiay ,» We have

5expth3 = 6h(exptA) H

thus

NP exp hy = h(exp A).

THE ADJOINT REPRESENTATION

For any a € G, the map ad, : G —» G, ad,(b)=aba™! is an
automorphism of G; the derived morphism

ad,: G'—> G’
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is an automorphism of the Lie algebra G’ (clearly, (ad)) ! =
= ad,-1). Therefore, if we put Ad, = ad., then

Ad: G - GL(G)
is a morphism of Lie groups, called the adjoint representation

of G in G".
The derived morphism

‘bras.
1ooth
ebras

Ad' : G’ - GL(G)' ~ £(G)

jroup

is the adjoint representation of the Lie algebra. To compute
ristic

Ad’, consider G embedded in GL(V) for some vector space V.
Then (2) may be written as
e™ =hE"), h:G-> G < L(V);

1 by thus
d h
alter- hy = da h(e'?)
foh) dt t=0
shows
Apply this to Ad:
AdyB) = L Ad. B)| =L ewpen| (A B]
A dt = ¢ =0 dt o o

Exercise. Check that condition (1) for h= Ad is the same
ing as the Jacobi identity for the Lie bracket.

The canonical form on a Lie group G is defined as a Lie algebra
lued 1-form, &g : TG — G, such that, for any ueT,G,
c(u) is that element of G’ (i.e. a left invariant vector field on G)
hich coincides with u at ae G:

is an dgw),=u for ueT,G.

Here TG = UGT,,G and we denote by Th: TG — TH the map
ven by Th | T,G = T,h.
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If h: G — H is a morphism of Lie groups, then

(3) h’ OGJG:CT)H OTh.
Moreover,
“ Y¥@g= bg for any aeG,

and (3) applied to h=ad, gives
ad¥® = @® o Tad, = ad, o & = Ad, @,
thus

(5) 5: CDG = Ada—l o] (T)G'

Let o, § be differential forms defined on a manifold M, with
values in G'. Let (e;) be a frame in G’ and put « = a'e, f = fe,,
where o' and ' are B-valued forms on M. Define a G’-valued
form [a, ] on M by

[a’ ﬁ] = ai Aﬂj [eis ej]'

For example, if « and f are G'-valued 1-forms, then [a, ]
is a G'-valued 2-form and

[, B] (u, v) = [a(w), (W] = [a(¥), B(w)].

Note that [o, @] =0 if « is an even form, but [a, «] may be
different from 0 if a is odd. If « is odd, then [[«, a], ] = 0. The
space G’ @ C(M) is a graded Lie algebra.
" Consider equation (21) of Chapter III and note ®(u)=u for
ue G’ to prove the Maurer-Cartan equation:

(6) do + é- [®, ®@]=0.
In terms of the frame (¢;), @ =¢; ® ¢’ and (6) becomes:

@) de + - ¢l & Ak =0,
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The 1-forms ') constitute a frame dual with respect to (e;),
and ®(u)=1u for ue G/, is equivalent to

e'(e;) = &i.
Alternatively, one can define @ A @ by
@ Ad@,v)=[aW), dV)]
and write the Maurer-Cartan equation as

®) do + & Ad=0.

INVARIANT METRICS ON LIE GROUPS

with
Be;, A metric g on G is left invariant if y¥g=g for any ae G;
lued it is right invariant if 8*g=g; it is biinvariant if it is both left

and right invariant.

Let

k:G'xG - [
5 Al be a scalar product in the Lie algebra of G, then g defined on
G by g(u, v)=k(®(u), &(v)) (symbolically, g=k o @) is left
invariant: indeed,

y be vig=goTy,=kodoTy,=koyld=kod=g by (5).
The . . .
Let us check when g is right invariant:

1 for
5:g:gOTéa=kOd’)OTaaszAda-l OC?),

where formula (5) has been used. Therefore, k o @ is biinva-
riant <k o Ad, =k for any a € G. For example, if G is Abelian,
then g is biinvariant for any choice of k.

For an arbitrary Lie group G one defines its Killing form by

K(A, B)= Tr(Ad, o Ad}).
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Recall that, for any fi, f, € £(V) and a € GL(V), Tr(f, o f,) =
= Tr(f, o f}) and Tr(a o f; o a™') = Trf,. Therefore, K is sym-
metric, K(A, B)=K(B, A), and invariant, K o0 Ad, = K. By
definition, a group G is semi-simple iff its Killing form is non
degenerate.

In that case g= K o & is a (pseudo)Riemannian, biinvariant
metric on G. Consider a frame (¢;) in G, [e;, ¢;] = cje,, write
g=g; ¢ @el, thus:

8i; = 8(ep, ¢)) = K(e;, ) = Tr(Ad',, 0 Adé&)'

Then
Ad;i 0 Adéj (ep) = [e;, (eja ek]]:cjek it C€m-
Thus
9 gi; = Cike Cjek'

One can prove that if G is compact then (g;;) is negative definite.
The property of g = k o @ to be biinvariant is easily expressed
in terms of the structure constants. Clearly, k o Ad,=k implies
k 0 Adg,, s =k, where A € G’ and t € B. By differentiating the -
last equation with respect to t at t =0 one obtains:

(%) k([A,B], C) +k(B,[A,C])=0 for any A, B,CeG".
Putting
ky=k(e,¢) and ¢y =kl
one obtains from (3%):
Cixi + Ci; =0,

so that invariance of k is equivalent to complete antisymmetry
of ¢y
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SPACES

We define a space as a differential manifold M on which a
Lie group G acts as a group of transformations, i.e. there is a
smooth map

Yy MxG->M
such that

(10) lpa o Wb - !//baa and ‘/Ie = idMa

where ¥,(p) = Y(p, a), pe M; a, be G, and ee G is the unit
element.

One often writes pa instead of ,(p), and one says that condi-
tion (10) means that G acts in M on the right. To emphasize
the role of the group G one says that M is a G-space.

For any p e M, the subset of M

PG = {¥.(p) |2 € G}

is the orbit of p, and

G,={aeG|y.(p)=p}

is a closed subgroup of G, called the isotropy group of pe M.

If pG = M then we have a homogeneous space (the action of
G on M is transitive).

If, for any pe M, G, = {e}, then G is said to act freely on
M- and M is a principal space.

Let M be a homogeneous space and o e M. Consider the
quotient (right coset space):

G/G,= {G.,a|aeG}.

G/G, is also a space: the group G acts on G/G, by right trans-
lations : G/G, x G - G/G,, d(G,b, a) = G, ba for a, be G.
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Clearly, G/G, is homogeneous under this action. One shows
that G/G, has a natural structure of a dxtferentlal manifold,
0 is smooth and the bijection

G/Ga2 G,a= Y, (0)eM

is a diffeomorphism h which is equivariant with respect to the
action of G in the sense that the diagram

G/G,x G -5 G/G,
h X idg l l h
MxG % M

commutes. If o’ is another point of M, then o' = y,(0) for
some a € G; therefore G, =a 'G,a and the spaces G/G, and
G/G, are diffeomorphic: conjugate closed subgroups of G lead
to the same homogeneous spaces; all homogeneous G-spaces
may be obtained by considering quotients G/H, where H< G
is closed.

The assumption that H = G be closed is essential; e.g. consider
the torus G= U(1) x U(1) and its subgroup H, consisting of
pairs of complex numbers (e?™', e?"i*Y) where teR and 1eB
is fixed. If 4 is rational, then H, is isomorphic to U(1) and closed
in G; the quotient G/H, is isomorphic to U(1). But if 1 is irra-
tional, H, is isomorphic to B and “fills the torus’: H; # H, = G ;
the quotient G/H; is a ‘pathological’ space and is not a mani-
fold in any natural sense.

s

(0,0) 1 t FIGURE 11
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Returning to the regular case, consider a space M; the map
Yy : M x G —» M defines a homomorphism of Lie algebras

(1) Y G- V(M)
given by

Ya = vector field on M induced by the one-parameter
group Y., ,a of transformations of M.

If aeG, then Y., aq, o induces Yy 4. From formula (2)
one has

expt Ad, A = ad, exptA.
Therefore
Ve 1aa, A= Vart © Verpia © W, induces Y ),
and
(12) Vaa,a = V3 Va.

If the action of G in M is regular * then one can form the
quotient manifold M/G: its elements (points) are orbits of G
in M.

PR M/G FIGURE 12

* To define a regular action of G in M consider Rc M x M corresponding to
the equivalence relation given by the group: (x, y)e ReJaeG y= Y. (x); let
pry : R — M be the (second) projection, pry(x, y)=y. The action is regular if
R is a submanifold of M x M and the tangent map to pr, is everywhere surjective.
These assumptions are necessary to dispose of the pathologies such as the one
concerning the embedding of B in the torus. For further details, see J. P. Serre,
Lie Algebras and Lie Groups, Benjamin, New York 1965.
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If the action of G is free then the orbits are diffeomorphic
to G and dim M/G + dim G = dim M.

Example. Hopf spaces associated with K= B, 6 or [.
Consider the vector space K®*'; in the case of quaternions
define multiplication by numbers on the right.
Consider the positive-definite quadratic form Q on K™*':

Q@) =39°q° +a'q" +... +q"q™

Remark. Most of the following considerations apply to the
more general, indefinite quadratic forms defined at the beginning
of this Chapter.

Let
S.K) = {qeK"*! | Q(q) = 1};
then '
S for K=10R
Sn(K) = §2n+1 K=0
S an+3 K=,
and if
Go+1(K) = {a e GLEK"") | Q(aq) = Q(q)}
then
On+1) for K=R
G = U@+ 1 K=6
Sp(n + 1) K=1{.

Theorem. S(K) is a homogeneous G, (K)-space. (Reference:.
N. Steenrod, Topology of Fibre Bundles, Princeton University
Press, Princeton 1965). . The proof is based on the ‘Schmidt
orthogonalization procedure’: take the canonical frame in K**!:

eo = (1,0,...,0)
e, = (0,1,...,0)
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phic and an arbitrary z, € S,(K); complete z, to a Q-orthonormal
frame Zg, Zy,..., Z,; there is then an element a of G,y 1 (K)sending
e into z, z;= a(e;), thus z, = a(ey); this proves transitivity of
the action of G, ,(K) on S (K). Moreover, the isotropy group
ions of e, consists of all elements of G,,,(K) of the form:

1 0
(O b) where b e G,(K).

Therefore, if we put n(a) = a(ey), then 7 and the canonical map
the G, 1K) = Gy ((K)/GL(K) identifies S(K) with G, ,(K)/G,(X).
ning Consider next the projective space (cf. example 4 at the beginning

of Chapter III):
KP, = K"! - {0}
K — {0}

where K™! — {0} is considered as a space relative to the multi-
plicative group K — {0}: elements of KP, are ‘directions’ in
K™!; depending on whether K =8, G or [, these directions
are one, two or four dimensional in the real sense.

The sphere S, (K) may be also regarded as a G(K) =« K — {0}
space: if 1€ G(K), i.e. if Ad=1, then Q(qQ) =1=Q(gl) = 1.
Let p(q) e KP, be the direction containing qe S, (K); the map

p:S.(K)— KP,

is surjective (‘the sphere meets all directions passing through
nce: p(q)

rsity q

midt

n+1

8, (K)

Kott FIGURE 13
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its origin’), and
p(@ = p(q)%@aaecl(x) q' =q4i.

Therefore, KP, is the quotient manifold of S,(K) by G,(K).
We have a sequence of maps (projections onto quotients)

(13) G (K) = Gy (K)/Go(K) = S,(K) > KP,,.

Clearly,
o) =1, for K

G,(K)=1 UQ) for K=@
Sp(1)~SUR) for K=10.

The last two groups are structure (gauge) groups of electro-
magnetism and the Yang-Mills theory, respectively. The Hopf
spaces are closely related to the ‘topologically non-trivial’
solutions of Maxwell (K = B) and Yang-Mills equations. For
example, the Hopf map S; — S,(K = B, n = 1) carriers a geometry
corresponding to the Dirac pole of lowest strength g = 1/2e,
whereas S; - S,(K =M, n=1) is associated with the BPST
‘instanton’ solution of the Yang-Mills equations, as will be
shown in detail in Chapter VIIL

Example 1. Some details on the classical groups G,(K), K =R,

Gor M.
Write a* for the conjugate transpose of ae G, (K); in the
real case a* = ‘'a. The defining equation of G(K)=G

Q(aq) = Q(q)
is equivalent to ata=1.

Writing a=expt A, A e £(K"), we obtain
(14) AeG <A +A=0.

The matrix elements a§ of ae G are K-valued functions on
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the differential manifold G; therefore da.‘j are 1-forms on G,
and we write

da = (da’).

_ Consider a*da; this 1-form is G’-valued because

(da*)a +a*da=0 implies (a*tda)® +a*da=0.
Moreover, a*da is left-invariant on G: if be G, then
(ba)*d(ba) =a*b*bda=at*da,

and

(A, a*da),., =A.

Therefore,

| d=a'da

is the canonical form on G,(K); we may check the Maurer-
Cartan equation (8) by noting that

do=da* Ada= —a*danatda= —DAD.

Example 2. The group Sp(1) = SU(2) as a manifold is homeo-
morphic to S;:

_.‘22

(L2 2)=acsu@mlnp+np-1,
i

where z;, z, € 6. A convenient system of local coordinates on
§; is given by the Euler angles y, 9, o:

i i
L+ 3 =~ . §
e2 0P s 2 z, = ¢’ sin —.

le 2
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The canonical form on SU(2) is

(T)=a+da=—c ) ¢ —in
2 \¢+iny -

where
E+in=1¢"9(d9 +sinddy), (=de +cosIdy,

and the Maurer-Cartan equations are dé =n A (, etc.
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FIBRE BUNDLES

HEURISTIC CONSIDERATIONS

A map (function)
f:M->N
is often represented by its graph, defined as the image of M under

FFM>E=MxN

def

f(p) = (o, f(p)).

The construction of the graph of f requires the introduction,

E=Mx N

f
— e | |©

grap~h of
f=f(M)

M p FiGure 14
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in a trivial manner, of (some of) the ingredients of a fibre bundle:

E s the total space of the bundle (one often says
simply that E is the bundle);
M 1s its base;
n:E—> M given by n(p, q) = p is the projection;
N is the typical fibre;
E,=n"'(p) <E is the fibre over pe M;
f:M > E is a (global) section of n, = © F=idy,

Of course, this is a trivial example which does not justify
the introduction of all this new terminology.
Consider next a vector field u on a manifold M and assume
first that M admits a global coordinate system x. Relative to
this coordinate system,

u=1u'(p) (—aa;-) , peM
P

and the vector field is given by a map
o @W): M- R*=N.

This is the classical (XIXth Century), coordinate description

of vector fields.
But it is deficient for at least three reasons:

1° it is coordinate dependent;

2° vector spaces at different points of the manifold are
distinct, whereas they are identified with @" in (1);

3° in some important cases, M does not admit global
coordinates (e.g. if M=§,).

There is a way out: first define the tangent vector space M
at pe M (cf. Chapter III), put

T™M = U T,M.

peM



dle:

says

stion

arc

HEURISTIC' CONSIDERATIONS 65

Define an obvious projection n: TM — M by n(u)y=p if
ueT M.

1}3 n
™ T,M

M ) Ficure 15

A vector field u on M defines a section of 7,
2 u: M- TM; u(p) e T,M<en ou=id,,.

But how can we describe in terms of the map (2) the smooth
character of u? So far, TM is only a set and u(p) may vary
wildly with p. To solve the problem, one makes TM into a dif-
ferential manifold by constructing an atlas as shown below.
Consider a chart x: U— B" on M and define a map

X' (U)y-> B*x R*=R*»

as follows. Let uen™*(U) = TM, then u e T,M for some pe M
and .

Put
X(@) = x'(p),..., x*(p), u,..., u").

The map X is bijective; moreover, if x and y are compatible
arts on M, then X and § are compatible on TM; in other
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words, the hat operation lifts an atlas on M to an atlas on TM
and makes the latter into an 2n-dimensional differential mani-
fold, called the tangent bundle of M. It is now not difficult to

check that ‘

a vector field on M is smooth LT M- TM is a smooth
(i.e. defined as in Chapter III) section of the tangent bundle

™
™
T ‘
i L 0
{ Au |
t
| |
v 4
M u 7 M
FIGURE 16 Figure 17
A vector field on U< M is The tangent bundle always
described by a section admits global sections; one
u:U->TM, n ou=id,. of them is the zero section
0:M—->TM (zero vector
field on M).
More formally,
n:E->M

is a fibre bundle with typical fibre N, if = (the projection) is'a
smooth surjective map of differential manifolds and any pe M
has a neighbourhood U and a diffeomorphism

h:UxN -z 1(U),

such that n(h(p, ¥)) = p (local triviality of the fibre bundle: the
portion of E over a sufficiently small U = M looks like U x N).
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a T™M ~ A bundle is trivial if there is a diffeomorphism h: M x N - E
mani- such that

ult to (@ (p, O)=p

for any pe M and qeN.

nooth
undle E,
B % ? Ux N N
» typical
space ? é// h T fibre
%
W / /
M ) | P: % P
base space U U Ficure 18

Clearly, if M admits a global coordinate system, then TM
il is a trivial bundle (X defined above may be used to construct h),
but the converse is not true: TS; = TSU(2) is trivial (why?)
though S, has no global chart.

Uways
S; ong
ection
vector

OTHER EXAMPLES OF BUNDLES

. (Important and general). If G < H, and is a closed Lie sub-
group of H, then there is the bundle

n:H—-»H/G=M.

In particular, for K= B, €, I we have the bundles over
; spheres
1) is a ‘

peM Gt 1(K) = G4, (K)/G(K) =§ {(n+1)dim K~1>»

_ and also the Hopf bundles over projective spaces.
. The map

Y N) 7, U() - U(l), m(e)=¢e" n=1,2 3, ..
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defines U(1) as a bundle over U(1); the typical fibre Z, may
be identified with the n-element set (group) of nth order
roots of 1. (Such a set may be considered as a 0-dimensional

differential manifold).
This bundle is trivial only for n= 1.
A related example is the (universal covering) bundle over

UQ), n: 8 - UQ), n)= e2rit Here the typical fibre may
be identified with Z. v

E % ?> 0] ¢
R
U o
Ow

Ficure 20

FIGURE 19

4. Frame bundle: the set FM = UMF(TPM) of all frames of M
pe

can be made into a bundle over M; 7 : FM — M maps a frame ¢
into the point p of M at which the frame is attached; if
x:U — B® is a chart, then X: 2 1(U) » B* x GL(n, B) is
defined by %(e) = (X" (), -» X"(P) al) where aj = (¢j, dxHp)s
% is bijective and the hat operation lifts an atlas on M to an
atlas on FM.
Fibre bundles occurring in examples 1-4 above all have groups
as their typical fibres; these groups act freely and transitively
on the fibres, and, in each case, the base manifold may be con-
sidered as the quotient of the total space by the action of the
group. Such fibre bundles are called principal; other bundles
may be obtained from principal bundles by a construction
paralleling the one of geometric objects of type p over a vector

space (cf. Chapter .




EXAMPLES OF PRINCIPAL BUNDLES 69

2

., may
order

1sional

Formally, a fibre bundle n: P — M is a principal bundle if
its typical fibre is a Lie group G which acts freely on P,

V:PxG- P, W, O Yy = Y.,

e over
‘e may

_ the action of G is transitive on the fibres,
ne)=mn(e)e3,.; e =y,(e) fore, e’ P,

and for any pe M there is a neighbourhood U « M and a dif-
_feomorphism h: U x G - 77 }(U) such that

@ nhp.a)=p and hp, ba)= Y, (h(p, b)

for any peU, abeG.
The group G is the structure group of the bundle 7: P — M.

~ Theorem. A principal bundle admits a section iff it is trivial
_ (Exercise: prove the theorem).
Remark: this is not true for other bundles.

 EXAMPLES OF PRINCIPAL BUNDLES
sof M

frame o 1. If G is a closed Lie subgroup of H, then n: H — H/Gis a
hed: if principal bundle with G as the structure group.
1 E’%S is 2. In particular,

f[ix )p s On+1)-§, is a principal bundle with O(n) as
to an
the structure group;

3) U+ 1) > §,,41  is a principal bundle with U(n) as

L groups the structure group;

wsitively Sp(m+ 1) - §,,,5 is a principal bundle with Sp(n) as
be con- the structure group.

. of the

bundles
‘ruction
L vector

Iso, one has the Hopf fibrations,

8§, —RBP, is a principal bundle with L, as the
structure group;



FIBRE BUNDLES

4 8., —0BP, is a principal bundle with U(1) as the
structure group;
Sanr3 — 0P, is a principal bundle with Sp(1) = SU(2)
as the structure group.

3. mn,: U(1) > U() is a principal bundle with

2ni 2mi 2mi
SR 2. == n -1) -
Zo~{l,en e n,. ., e" "}

as the structure group; action of the group
is ordinary multiplication.

n: B - U(), n(t) =e?™ is a principal bundle with Z as the
structure group; action is Y, ()=t +a,

where te R and ae Z.
4. FM —» M, where M is n-dimensional, has GL(n, B) as the
structure group; the action is as usual,

Yale) = ea = (c; al).

Associated bundies.

Consider now the construction of geometric objects of type p
described in Chapter II. Given a representation,

p:GL(n, B) » GL(m, B)
and an n-dimensional vector space V, one constructs
Vowr F(V)or p(V).

Apply this to V= T,M, dim M = n, and ‘bundle up’ = form

U to get a new bundle over M:
pe M

TyMes F(T, M) p(T,M)

TMrs - FM s pM

We shall now describe this construction directly, in the general




the

12)

the

the
mal,

pep

form

neral

EXAMPLES OF PRINCIPAL BUNDLES 71

case of a principal bundle n: P—> M with group G acting also
in: N:

p:GXN->N
Pa O Pp=Pap, Pa(@)=p(a,q); a,beG, qeN.

Form Px N and define an action of G in Px N by

(e, Pa= (Y.(e), pai(q)).

Let E be the quotient of P x N by the action of G, and
k:PXxN - E be the canonical map:

k(e,q) =k(e’, q) 3,6 ¢ = ¥.(e) and q' = p,-: (q).
There is a natural projection:
ng : E—~ M given by ng(k(e,q)) = n(e), ¢ € P,

and E can be made into a differential manifold; n; is smooth.
Ifth: U x G —» n~'(U) defines a local trivialization of . : P — M,
in the sense of (2), then {:Ux N - ng!(U) defined by
{(p,q) = (H(p, 1), q) provides a local trivialization of 7 : E > M
(here 1 denotes the unit element of G).

To sum up: given a principal bundle z : P — M with structure
group G and a (left) G-space N, one constructs as asso-
ciated fibre bundle 7z : E — M whose typical fibre is N and
E=(PxN)/G.

G is also said to be the structure group of the associated bundle.

Examples of fibre bundles associated with principal bundles.
. Let n: FM —» M be the frame bundle of an n-dimensional
manifold M and let p : GL(n, B) - GL(m, R) be a morphism
of Lie groups; put pM = E and m, = Ty, then n,: pM - M
is the bundle of geometric objects of type p over M. In par-
ticular, if

p=id then pM may be identified with TM (tangent
bundle);
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pzia then pM mat be identified with T*M (cotangent
bundle);

p=ad then pM may be identified with the bundle of
_ mixed tensors (tensors of valence (1,1));

p = A¥Fid then pM may be identified with the bundle of
k-forms, A¥T*M.

(5) (p; ®p,)M is denoted pM @ p,M and called the
Whitney sum of the bundles, and

6) (p; @p,)M is denoted p M @ p,M; it is the tensor
product of bundles.
All these bundles, obtained from FM by linear representa-
tions of GL(n, B),are examples of vector bundles: their fibres
are vector spaces which, under any local trivialization, are
isomorphic to the typical fibre (also a vector space). In general,
bundles are named after the properties of their fibres. Clearly,

dim E=dim M -+ dim N.

2. Consider 7, : U(1) -» U(1) defined previously, 7n,(z)= 72,
N=[-1, 1] = B, and consider the action of the structure
group of m,, G=12,~ (1,~1} defined by ordinary multi-
plication. The associated bundle E over U(l) is called the
Mobius band.

Description of sections of associated bundles.
Sections of these bundles are important in physics and
geometry: tensor fields and wave functions are examples of such
sections. There are two equivalent ways of describing sections.
From its definition, a section is a map.

@) s:M~—E such that 7 os=idy.
Define (cf. Chapter II)

®) 5:P>N by s@=k(s(z@)),

where
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nt ©) ke: N = nzt (n(e)), k(@)=k(e q)

of is a diffeomorphism between N and the fibre of E over n(e), de-
fined by e. From the definition of the canonical map k : P x N— E,
of it follows that

(10} § (ea) = p,-1 0 5(e).
the
This is the ‘transformation law’ of classical tensor analysis.
sor Conversely, if s: P —» N satisfies (10), then s(p) = k(e, s(¢)),
e € n '(p), defines a section (7).
ta-
res E
are
ral,

rly,

N P G

w2
wl &b

FiGure 21

the Two ways of representing a section of the associated bundle
g E - M.

Interpretation: s(e) are the components of the field s, at the
point 7(e) € M, with respect to the (generalized) frame e € P.
Under a change of the frame, ¢ — ea, the components transform
according to the representation p.

and
uch
MIS.

MORPHISMS OF FIBRE BUNDLES

For each *category’ of mathematical objects, there are natural
transformations among these objects, which ‘agree’ with their
structure; e.g. for groups, these maps are homomorphisms, for
vector spaces they are linear maps, for differential manifolds
they are smooth maps. We now define such ‘morphisms’ for
fibre bundles.
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Let m;: E; - M; (1= 1,2) be two fibre bundles; to alleviate
the language, we refer to =; as the bundle. A pair (h, f) of smooth
maps is called a morphism from =, to =, if the diagram

E, > E,
Ty l T,

M, 5 M,
commutes. A bundle n: E - M with typical fibre N is called
trivial if there is a morphism (b, idy) of = to pr; : M X N - M,
such that h is a diffeomorphism. For example, if the manifold M
admits a global coordinate system x,then n : TM — M is trivial
because h: TM — M x R given by h(u)= (n(u), ux)),is a
diffeomorphism. A morphism of a vector bundle into another
such bundle is a vector bundle morphism if the restriction of h
to- any fibre is linear.

Let m;: P; - M; be two principal bundles with structure
groups G; acting in P; according to y;: P; x G; — P,. A morphism
of principal bundles is a triple (h, k, f) of maps h: P, - P,,
k:G; -G, f: M, »>M,, where k is a Lie group morphism,
and the diagram

P, x G, 25 p, x G,

wll lwz

Py s P,

nIJ/ lnz

M, —— M,

commutes.

In the case M; = M,, one usually restricts f 10 be the identity
map. The most interesting cases are those for which h and k
are both injective or both surjective. (More precisely, one re-
quires that not only h and k but their tangent maps should
enjoy this property; this is to exclude maps such as x — x3).
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If both h and k are injective, then =, is a restriction of ,
or m, Is an extension of ;.

*—‘ MPI

M

FIGURE 22

If both h and k are surjective, then =, is a prolongation of =,
or m, is a reduction of n,.

Y
Pl

FIGURE 23

These notions are important since they occur frequently in
geometry and physics.

_ Examples.

1. The bundle of orthonormal frames of a proper Riemannian
manifold (M, g) is a restriction of the bundle of all linear
Jframes FM = P,. In this case G, = O(n), G, = GL(n, B).
More precisely,

to give a proper Riemannian to restrict FM to a subbundle
metric g an n-dimensional < P; < FM, the structure group
manifold M of P, being O(n).
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If g is given, one defines P; as the set of all orthonormal
frames relative to g; conversely, if P, is given and ee Py,
then one defines the metric tensor at n{e) by

ey = Qe'+ .. +e" Qe

The bundle of affine frames of M is an extension of the bundle
of linear frames P, = FM, corresponding to the injection

k:GL(n, B) > GA(m, B)

of the general linear group into the general affine group defined
as follows:

GA(n, B)=GL(n, B) x R™ (semi-direct product),

if (a, q) € GA(n,R), i.e. ifa = (a}) e GL(n,R) and q = (q") e R",
then (a,q) (a'.q") = (aa’,q +aq’), and k(a)=(a, 0). Alter-
natively, one represents (a,q) by the (n +1) X (n -+ 1) matrix

(%)

The bundle AM of affine frames consists of all pairs (e,u),
where e e F(T,M) and ueT,M. The action of GA(n, ) on
AM is (e,u) (a,q) = (ea,eq + u), where eq = ¢;,q'. In this case,
h: FM — AM is given by h(e) = (e, 0).

. Consider the proper Lorentz bundle P, — FM, i.e. the bundle

whose total space P, is the set of all orthonormal, time- and
space oriented frames of a Lorentz manifold M (= 4-dimen-
sional manifold with metric of signature + — — —); its
structure group G, = Oy (1, 3) is the connected component
of the identity of the Lorentz group O(1,3). Define ’

SL(2,6) — 04(1,3)

in the standard manner:

t+z x-—iy

if X =(txy,2), then {(X)= (X iyt

) is hermitean
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and det ¢(X)=t> —x* —y* —z?; these properties are pre-
served by {(X) — a{(X)a*, where a € SL(2, §); we put

{(k(2)X) = a{(X)a*

and check k(ab) = k(a)k(b); k is surjective, ker k = {I, —I}.
By definition, a spin structure on M is a prolongation r;,
of the proper Lorentz bundle n, : P, — M, associated with k.

Ct. J. Milnor, Spin structures on manifolds, Enseign. Math. 9
(1963) 198.

spin b}nidle
SL(2, 8)
P,
hY 1
P, 0, (1,3)
M
Lorentz manifold FiGURE 24

4. Let P;=FM and consider the bundle P, of all projective

Jrames on M: an element of P, is an equivalence class of linear
frames attached to a point of M, the equivalence being
defined by

e=¢ e n(e)=mn() and 3 . ei=4de,i=1,.,n
Orde e, e'e FM

The structure group G, of P, is the general projective group
PGL(n, B), quotient of GL(n, R) by the multiplicative group
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of the reals. The map h: FM = P, —» P, which sends any ¢
into its equivalence class defines a reduction of the bundle
of linear frames to the bundle of projective frames. This
bundle plays a role in conformal geometry.

Warning. In the literature, the word ‘reduction’ is often used
for what we call here a ‘ restriction’. The names for ‘ extension’
and ‘prolongation’ are also sometimes interchanged.

. A generalization of example 1 along the lines indicated in

Chapter II leads to the notion of a G-structure on a manifold
M: by definition, a G-structure on M is a restriction of FM
to a subbundle P whose structure group G is a closed Lie
subgroup of GL(n, R):

M GL(n, B)
7
M . FIGURE 25

In this case, both h and k are the natural injections i.e.

There are topological obstacles to introducing G-structures
on manifolds; given M and G < GL(n, R), a G-structure
on M may not exist, and, if it does, it need not be unique.

For example, a GL*-structure on M is the same thing as
an- orientation; therefore, it exists on M iff M is orientable
and, in this case, there are two of them. :

A classical theorem asserts that on any (paracompact)
manifold there exists a (proper) Riemannian metric and
therefore there exists an O(n)-structure; this is no longer
true if O(n) is replaced by O(k, {); for example, §, does
not admit a metric of signature + —.
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Canonical form on the bundle of linear frames.

The bundle of linear frames has ‘more structure’, is ‘richer’
than an abstract bundle; there is defined on FM a natural,
canonical 1-form

6:TFM — [°
(one can say that 6 is an RB"-valued 1-form on FM, or that

6=(0"Y, i=1,.,n is a collection of n real-valued 1-forms).
If u € T.FM, then 6'(u) is the i-th component of the projection

<

FM

p 'I?fz(u) FIGURE 26
of u onto M relative to the frame e,
6i(u) = (T m(uw), e').

Consider the behaviour of @ under the action ¥ of GL(n, R)
on FM:

W3 0 () = 65, (T, (W) = (Tam 0 T Y, (u), (ca)') =
= (T,n(u), (ca)') = a™'{ (T m(u), &) = a~ 11 6i (u),

where we have used equation (7) of Chapter III and the ‘chain
rule’:

Team 0 Tepa=Te(n 0 Y,) =T,x.
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By comparing the first and last term of these equalities, one
obtains

(1 y*0=a"10, aeGL(n, R).

The bundle AM of affine frames, has a similar canonical form 8,
and, in addition, a canonical function p : AM — R™ defined by
pi(e, u) = (u, e?). It is easy to check that

Yhaot =210 +4d),

(@, ) e GL(n, B)x R*"= GA(, R).
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CONNECTIONS AND GAUGE FIELDS

Connections are needed in order to transport, from one point
of a manifold to another, geometrical and ‘physical’ objects
such as vectors, tensors, values of wave functions etc. For
geometric objects it is enough to know how the frames are
transported (by parallel transfer). By definition, a geometric
object is parallelly transported if its components with respect
to a parallelly transferred frame are constant.

The notion of a connection — and the associated idea of co-
variant differentiation — may be defined in many equivalent ways.
Here is a partial list:

(1) the coefficients of a linear connection I' i« on a manifold
are defined in local coordinates and are subject to well-known
transformation rules (coordinate definition);

(ii) covariant differentiation is defined in terms of a map V,,
u e V(M), which acts linearly on tensor fields, satisfies the
Leibniz rule and

vfu-i~ ev f.v\x + gvv:
V() =fV,v+u) v,
Vuf=u(f), V(v,a) = (V,v,a) + (v, V,a),
for any f, ge C°(M), u, ve V(M) and o e C!(M).

If (¢} is a field of frames on M, then one defines T in
terms of V:

— Tk

This is an ‘algebraical definition’.
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(iii} ‘a definition with a clear geometric significance is possible
in terms of fibre bundles; its advantages is that it is equally
applicable to linear connections and to connections (= po-
tentials) associated with gauge fields. This will now be
described at some length.

CONNECTIONS ON A PRINCIPAL BUNDLE

This definition is general, but it is useful to think of the bundle
of linear frames.

Heuristic considerations. Given a principal bundle z : P - M
with group G, a point pe M and e € P above p = n(e), we wish
to be able to transport ¢ from p to neighbouring points, along
vectors originating from p, such as ue T,M:

FIGURE 27

The law of parallel transport should:
(a) smoothly depend on p;
(b) allow transfer along all vectors emanating from p;
(c) be linear: if e is transported along u and results in e’, then
ea transported along u results in (ea) = e’a.
More formally, a connection on a principal bundle n: P - M
is a distribution

Pser— H, TP
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lﬁe of vector spaces H, which is:
l)oy : (A) smooth;
‘bé (B) such that Ten: H, » T,(,M is an isomorphism for any

eeP;
(C) invariant under the action of G: T.y,(H,) = H,,.
Clearly, conditions (A)-(C) correspond to similar conditions
(a)-(c). In particular, it follows from (B) that any vector ue T,M
dle lifts to a unique vector:
M (H lift,u € H,, where n(e) = p.
)1;1; The latter vector contains information: (i) about a displacement
in M, namely:

) T.n (lift,u) = u;
(i) about an infinitesimal change in e under this displacement:

lift.u points from e to a neighbouring element of P (frame if
P =FM). '

3
\\‘}J
C

v
1€n
M M E M
; p=r1(e) ,

FIGURE 28 FiGurs 29
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Returning for a while to the general concept of a principal
bundle, one defines at any e € P the wvertical space

ver,P={ve TP |T,n(v)=0};

ver P is the vector space of all vectors tangent to the fibre of
P through e. The action of G in P defines a linear injection
(equation (11) of Chapter 1V),

¥’ G’ = V(P).

Since G acts ‘vertically’: mo ¢, = =, the vector field 4 is
vertical. Therefore, the map

Yl G > ver, P
defined by
Y(A) = yu(e) = value of the vector field ¥, at ee P

is an isomorphism. Equation (2) of Chépter v iinplies the
transformation law

@) Wa=Ty.0 Y. oAd,.

Clearly, if a connection is given on n : P — M, then one has
a direct sum decomposition

TP=H, Pver, P, ecP.

A connection on P allows one to define parallel transport
along a curve ¢ : [0, 1] — M. Given e in the fibre over c(0) e M,
one defines the lift ©:[0, 1] —» P of ¢ to P by

M cO)=e;
(i) moCT=c;
(iii) € is horizontal, i.e. the tangent vector to T at t belongs to
Hg, for all tel0, 1]
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P
(1)

e N

p
. Figure 30

One says that €(1) is obtained by parallel transport of ¢ along c.
In general, even if ¢ is closed, c(0) = ¢(1), T is not: ¢(1) =7¢(0)a
where a € G. The set of all a’s which can be obtained in this
way forms a subgroup of G, called the holonomy group of the
connection at point c(0).

For example, the bundle n : B — U(1), n(s) = 12" admits only
one connection: H, = tangent space to [ ats. Letc [0,1]- U

:

T
um FIGURE 31

be given by c(t) = ¢'>™ and €(0) = 0, then &(t) = t, ¢()=1, and
the holonomy group coincides with the structure group Z of the
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bundle. Clearly, if M is (archwise) connected then the holonomy
group does not depend on ¢(0); a proof of this is obtained by
inspecting fig. 32. More precisely, the groups corresponding to
¢(0) and c’(0) are conjugate to each other.

¢(0) c’(0)

FIGURE 32

If one restricts the loops ¢ to be contractible, then the above
construction leads to the restricted holonomy group, which is a
subgroup of the (full) holonomy group. In the case of the bundle
n: R — U) (fig. 31), the restricted holonomy group is trivial
(i.e. contains only the unit element).

A connection on P is completely integrable if, for any e, € P,
there exists a submanifold S of P passing through e, and such
that, for any e € S, T.S = H,. Clearly, if the connection is com-
pletely integrable, then the restricted holonomy group reduces
to the identity, but not necessarily so the full holonomy group:
an example is provided again by n: R — U(1), fig. 3L

The notion of complete integrability can be contemplated in
the general case of a differential system on a manifold P (not
necessarily on a bundle), defined as a smooth distribution
P> e~ H.cT,P of subspaces of the tangent spaces to P. The
common dimension dim H,=n is called the dimension of the
system. Complete integrability is defined as in the preceding
paragraph.

A vector field u on P is said to belong to the differential system .
H if u, € H, for all ¢ € P. We denote by V(H) the set of all vector
fields on P which belong to the differential system H.

Dually, we define

FH)={weC'(P)|w|H,=0, any eeP}.

A classical theorem due to Frobenius asserts that the following
properties are equivalent:
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(i) the differential system H is completely integrable;

z, (i) V(H) is a Lie algebra; :
o (iii) if (@)= n+1,..,aimp=p is @ frame in the vector space &(H),

then there exist forms o € C'(P) such that:
do* = a* A w';

(v) if J(H) = C(P) is the ideal in the Cartan algebra generated
by & (H) = C!(P) = C(P), then:
7

dJ(H) < I (H).
: Sketch of proof (for details, see R. Narasimhan, Analysis on
© real and complex manifolds, North-Holland, Amsterdam 1968):
t: Q] fnd (i1): Let S be a maximal integral manifold, choose coor-
1l dinates x such that x®*!.. xP = const on S, then

n . a
V H = ! 7
ue VH)<=u i;u e
and check that u, ve V(H) = [u, v]e V(H);
(i) = (1): choose a frame (U)i=1,...,n in V(H): use [u,, u;] e V(H)
to show that one can find v, = Zay; u; such that [v,, v;] =0,
then put

complete the x’s to a coordinate system x', ..., xP, then S
is given by x"*! .. xP= cont.
(i1) = (ii1): use equation (21)in Chapter III.

(i) = (iv) consider the definition of an ideal.

_ Examples of applications.

P=2, n=1: condition (iii) is always trivially satisfied; if
0= p— 1, then (iii) is equivalent to @ A dw = 0 (note that & (H)
is one-dimensional) and also to w = TdS (T is an ‘integrating
actor” of w).
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Carathéodory’s statement of the second law of thermodynamics
says that the distribution defined by the 1-form of heat is com-
pletely integrable.

p=3,n=2: condition w Adw =0 may be written as
@ - curl @ = 0.

Connection form. Motivated by the Frobenius theorem, we
wish to describe the distribution H of the horizontal subspaces
on n:P — M by means of a collection of 1-forms w: At any
e € P we have the direct sum decomposition

T.P=H, @ ver, P.

Therefore, any ueT,P may be uniquely decomposed into its
horizontal and vertical components

‘u=horu+veru, where horueH,.

Using the isomorphism . : G’ — ver, P we define the con-
nection form

“ w:TP - G’

by the following

) @)= ()" (ver ).

It is obvious that
(6) veH eol)=0,

M o(Y'(A) = A,

and it follows from equation (3) that
®) Y¥fw=woTy,=Ad,. ow.

The last property may be also easily shown to be true by checking
it separately on horizontal and vertical vectors: on horizontal
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vectors both sides of (8) vanish because of (6) and the invariance
of H under the action of the group; if u= Y’ .(A) € ver, P then
u is the tangent vector to tr» Vespia (€) at t=0; the right-
hand-side of (8) is then equal to Ad,-: (A), whereas on the left-
hand-side we have Ty,(u)= tangent vector to

t— llba o WexptA (e) = lﬁa—l (exptA)a (ea) = l!’expt Adya A (ea) ‘

because of equation (2) in Chapter IV ; we use now (7) to establish
the equality of both sides of (8).

Conversely, if there is given a G’-valued 1-form w on P such
that (7) and (8) hold, then (6) defines a connection on P (ie.
an invariant horizontal differential system).

According to form (iii) of the Frobenius theorem, the distri-
bution H is completely integrable on P iff, at any eeP:

u,ve H, = do(u, v)=0.
Alternatively, if we define a G'-values 2-form Q on P by
Q(u, v) = dw (hor u, hor v),
then
® complete integrability of H <« Q=0.
The curvature form Q has the following properties
(10) it is horizontal: if u e ver, 4P, then Q(u, v)=0;

(11) YEQ=Ad, ,  Q

(12) dea)+%[w,w] or do+twaAw.

Equation (11) follows from (8) and the definition of Q: equation
(12) may be checked by evaluation of both sides on pairs of
vectors: hor, hor; hor, ver and ver, ver, and using equation (21)
of Chapter IIL
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The definition of  suggests a generalization. Let p be a
representation of G in a vector space V, i.e. let

p: G- GL(V)

be a morphism of Lie groups; a k-form of type p on P is a
V-valued k-form « on P such that

Yra=p, oa.
For example, @ is a 1-form of type Ad, @ is a 2-form of type

Ad and 0 is a 1-form of type id on FM.
We define hor a by

hor a(uy,...,uy) = a (hor u,,..., hor u,).

A form « is horizontal if hor o = «; e.g. Q is horizontal; also
(13 hor w=20.

If o is a k-form of type p then so is hor a. The exterior co-
variant derivative of a k-form of type p on a principal bundle
with a connection is defined as:

14) Do = hor da.

: . k
Clearly, Da is a horizontal (y + 1)-form of type p. Since ddw = 0
and there holds (13), the curvature form satisfies the Bianchi
identity

(15) DQ=0.
The exterior covariant derivative of a horizontal k-form of

type p may be evaluated as follows: consider the derived homo-
morphism of Lie algebras. B

F:G - (V)
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and its composition with w:
p'(w): TP - £(V),
then

(16) Da=da + p'(w) A a,

 where the symbol p'(w) A a implies exterior product of forms

and an evaluation of p’(w), considered as an element of £(V),
on ¢, considered as an element of V. In other words, if one
refers a to a frame (e,) in V and w to a frame (e,) in G', then

an . Da* = do* + p§, 0* A a®.

We may now use (16) to evaluate (15); since Ad’ is given by
Ad, (B)=1[A, B], we have

(18) DQ=dQ + [, Q].

From (17) and the definition of  there follows the formula
for D?

(19) D2a=p' (Q) r«.

Indeed,

D?a = hor d Da = hor d(p'(®) Aa) =
= hor [p’ (dw) Aa — p'(w) Ada]=hor [p'(dw) A a]
=p' (D na.

If « and B are horizontal forms on P of degree k and { re-
spectively, then a A f is horizontal of degree k +4{ and

(20) D@ AB)=[Da) AB+ (- 1*a ADB.

According to Chapter V, if « is a 0-form of type p on P, then
it defines a section of the associated bundle P x V/G and Da
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represents the covariant derivative of that section. Therefore, D
generalizes the notions of both covariant and exterior derivatives:
if p is the trivial representation, p(a)=1, then D = d.

LINEAR CONNECTIONS

A linear connection is a connection on the bundle FM of linear
frames of a manifold M. If the manifold is n-dimensional, then
G=GL(n, B), G'=£(R") and w = (o) is a collection of n?
I-forms. Equations (8), (6), (17), (18) and (19) become, re-
spectively,

@n w} o Ty, =a 'L} al;

(22) Q) = doj + o} Aof;

23) Do® = do® + pg} 0 Ad®;

24 DQj=dQi + wi A QF — Qf Aok,
(25) D?a® = pal Qi A o®.

Since the canonical form 0= (8% is horizontal of type id,
we have the following expression for the forsion 2-form:

(26) O'= D0 = d6' + i A 0.

def

Since both @} and @' are horizontal and 6'(u)=0<u is
vertical, the curvature and torsion forms may be represented as

@n Q)= - Riy 05 7 65 :
(28) 0 = —; QL 6% A0t |

(Rl and (Qi,) are called, respectively, the curvature and the
torsion tensors of the connection. They are defined here as
functions on FM. -

It follows from (21) and ¥ 6 =a 'i6’ that these tensors
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‘transform’ as one would expect, i.e.

Ri(ea)=a '%af af al R% (e),

and similarly for Q. In addition to the Bianchi identity for the
curvature form

(29) DQi =0,

there is a Bianchi identity for torsion which is easily obtained
from (25) for o= 0:

(30) DO = Qi A6,

- If @ = (a*) is a V-valued function (= 0-form) of type p (tensor
of type p), then its covariant derivative may be written as

(31) DOCA = Hi vi (XA or Bi aA;i .
(Since Da* is a horizontal 1-form it may be represented in

this manner). The components of the covariant derivative Vah
correspond to the horizontal part of da?:

id,

(32) de* = 0'V; a* —phl wf o®.

Note that at each point € of FM the set (o, 6%) of n? +n
I-forms constitutes a frame in T* FM: the manifold FM admits
teleparallelism. In other words, for any (paracompact) manifold
M, the bundle F(FM) over FM is trivial.

If we now apply (25) to (31) and use (26)-(28), then we obtain

is
as

(33) Vi Via® —V; Via® = pBf Ry o® — Qf V, ot
Exercise. Use (27) and (28) in (29) and (30) to get an ‘explicit’

form of the Bianchi identities:

(29,) R}[k(; m} + Rzn[m Q{(‘ﬂ = O;

irs G0) Qi[jk; a= Riﬁkl]'
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A metric tensor (field) g on a manifold may be equivalently
defined:

(a) as a section of the bundle of symmetric tensors, associated
with FM;

(b) as a set of ﬂ%t})—

gij(ea) = af af gi(e), aeGL(n, R),

functions g;; : FM — B such that

where g;;(e) is the scalar product of ¢; and e;;
(c) as a restriction of the bundle FM to O(n),

P(M, g)= {ee FM ' gij(é) = 515}-
The bundle P(M,g) = FM of orthonormal frames (for n= 4
called also ‘tetrads’ or * Vierbeins’) defines g: if e = (¢;) € P(M, g)
is given, then at =n(e),

g=¢cl e+ ... +e" Qe

Clearly, for an indefinite (say, Lorentz) metric, O(n) should
be replaced by O(k,¢) (say, O(1, 3)).

A linear connection H on FM is said to be compatzble with
g if, at any e e P(M, g):

H, = T.P(M,g).

FM GL(n,B)

P(M,g) D H, O(n)

M FiGure 33




ntly

ited

that

uld

rith

LINEAR CONNECTIONS 95

According to the definition of H,

H and g are compatible < length is preserved
by parallel transport < Dg; = 0.

(This is so because H, = T,P(M,g) implies that the lift of a curve
through ee P(M,g) is contained in P(M.,g) = an orthonormal
frame remains orthonormal under parallel transport).
Another formulation of compatibility of a connection H and
of a metric g: compatibility of H and g< w is O(n) -valued
on P(M,g).
According to equation (16),

(34) Dg;=dg; —w; ~ @y,  where ;=g of.
Therefore
(35) Dgi=0<ww;+w;=0 on P(M,g).

It follows from equation (19) that

Transformation law of the ‘coefficients’ of a connection form
pulled back from P to M by a (local) section.

For any connection defined by @ on P over M, and any local
section f: U — P one defines:

I = f*e.

The s are G'-valued 1-forms on U; depending on the details
of P, G and f,they are called ‘ Christoffel symbols’ and °Ricci
rotation coefficients’ (in geometry) or ‘potentials of a gauge
field’ (in physics). It is important to recognize how they change
under a transformation of the section.

Let ¥ : Px G — P be the action of the group G on P; in
agreement with previous chapters we put

Va(e)=Yle,a)=y (a)=ea for any ¢€P, aeG:
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The property of the connection form expressed by (7) is equi-
valent to

(37D woTy,=a,

where @ is the canonical form on G. Let
S:U-G

and let f' : U — P be the section obtained from f by transforming
it by means of S, i.e.

f'(p)= ¥ (), Sp)), pel.

U M FiGURE 34

We ask for the relation between I' and I'" = {"*w. The rule
for differentiation of composite functions,

d _ OF dx  0OF dy
dt F&®, yt) = ax dt dy dt

leads to the

Lemma. If h: X XY — Z is smooth, (e T, X, neT,Y, then
T(x, ¥} h(é,?’]) = Ty hx(”) + Txhy(é)a

where
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To X XY is identified with T, X DT, Y (&),
h,: Y- Z,

h, : X —» Z,

and h,(y) = h(x,y) = h,(x).

X 7 FiGure 35
Therefore
MN=f*o=0oTf=woTy({,S)=w o (T(Y 0 S) +T(Ys o)),

w dwa =@  according to (37),

w0 Tyg=Adg+ ow according to (8);
thus

(38) I"=Ads: ol +@oTS.

If « is a horizontal k-form on P of type p, A = f*a, A’ = %,
then

(39) A'=pgi 0A.

This is so because «, as a horizontal form, is annihilated by
any vertical vector such as Ti; o TS(v). The inhomogeneous
transformation law (38) of I' is due to the fact that w is not a
horizontal form. (For this reason, horizontal forms are often
called tensorial forms). For example

R = {*Q transforms according to R’= Adg-: o R (p= Ad),
fi=f*¢' transforms according to "= STH (p =1id),

and similarly for the torsion form.
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If G < GL(W) for some vector space W — as is always the
case for classical groups — then G’ is identified with a subspace
of Q(W), @ =a"'da (cf. Chapter IV) where the a’s are now
understood as coordinates on G. In this case (38) becomes:

(40) "=S87!rs + S71dS,
and
41 R’= S !RS.

Exercises. Derive (41) from (40) by using R=dI"'+ T AT.

2. Define DA = f*Dua, where « is a horizontal k-form of type p,
then, from (16), derive

DA =dA +p'(T') A A,
and prove
DA’ = pg- DA.
3. In particular,
DR=dR+TAR —-RAT.
Check DR=0 from R=dl + A T.
The coefficients T of a linear connection compatible with a
metric tensor g may be determined as follows. Let f=U - FM

be a field of frames on an-dimensional manifold M, g; : FM - &
its’ metric tensor, and ‘

w= () : TFM - £ (R
a linear connection compatible with g. We denote, as before,

* ol T
f* ol = T, f*,
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and have
f*0'=1f' (check from the definition of 8),
but we also abuse the notation by writing

g; on M for f*g;=g; of;
Qi on M for Qi of, etc.

Therefore, Dg;; = 0 becomes

42) dgy; = (8 F:’(l + 8k o on M,

and the definition of torsion is

(43) df‘+l’§kf"/\f5=%Q§kfjAfk on M.

Put

dg; = 8ijx f, Bijix = Bji/k»

. | IRV . .
dfi= -0 Atk fo= —f,

and solve (42) and (43) to obtain

44 2 r'k =g (gjl/k + Buy; gjk/l) g (Ql)k + Q,m + Qk]l)
+ g (fl_;k + f;kl + fkjl)

where

an Eu ija fljk = 8i f;k'

In a Riemannian space, Qi, =0, and
(a) if f'=dx!, then df'=0 and T} is the Chrzstojfel symbol;
(b) if f is orthonormal, then dg; =0 and T}, is the Ricci ro-
tation coefficient.
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Another example of a manifold with a linear connection is a
Lie group G, where parallel transport is defined by left translations.
Let (fY) be a frame in G', then the connection form pulled back by
f vanishes, I' = f*w = 0, therefore R = U, whereas torsion may
be obtained from the Maurer-Cartan equation (7) in Chapter IV:

| S i
K= .—Cjk A
In a Riemannian space,

Dg‘.’ P 0 Eeg Q‘J + Qll == 0 = Rijkl + Rjikl e 0’ (a)
Ol=0=0Q A0 =0=Ri; =0, 8)

and for any curvature tensor,
Rijkl + Rijlk =0. »
Exercise. Form
Rigir 1 Ry T Ricpiyy + Rugin = 4R = 0
and use () and (y) to prove
Ry = Ry 6)
Example. Compute curvature of the Riemannian metric
45)  ds?=2dudv —dx? —dy? —2H (x, y, u) du?.
First step: introduce an ‘orthonormal null’ field of frames:
! =dx, f?=dy, f>=du, {*=dv — Hdu;
then

d? =P QM+ R PR 1 & £%;
thus

|
|
|
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and
dng = 0.

Second step: compute dff and use (44) to evaluate the con-
nection:

rij == rijk fk (z f*wu 5
dff=0 for i=1,2,3; df*= —H,f'Af* ~H > Af%

therefore
fi30= —fy3=H,, G, = —f5,;=H,, otherf’'s=10

thus

Third step: compute the curvature two-form

i
‘E" Rijklfk /\fl = dru + rik A FJ 5
o | Huf +H ) Af, 0
1 B (H f +H, ) A, 0
“2T‘ Rijklfk A fl == dru = < T l Oyy

Read off the essential components of Rjyy:
Rys13 = Hyy, Rysos = Hyy, Rygz=H,y,.

The Ricel tensor
R;; = g Riy;

has only one non-vanishing component, Ry, = H,, + Hz,i,There—
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fore: if F(z,u) is an arbitrary function analytic in z=xX + 1y,
then (45) with

H(x,y,u) = ReF(x + iy, u)

satisfies the Einstein equations in empty space, R;;= 0; this
solution is non-flat iff 82F/dz? # 0. For example

F= (A(u) + iB(u))z*

corresponds to a plane gravitational wave (these results are due
to Ivor Robinson, 1956).

GAUGE FIELDS

We define a gauge configuration of type G to be a connection
on a principal bundle P over space-time M; G is the structure
group of the bundle. Thus, to define a gauge configuration on
a given space-time, one should:

1. specify a group G; e.g.

G=U() corresponds to electromagnetism,
Sp(1) = SU(2) corresponds to a Yang-Mills field;

5 describe the G-bundle P —» M; in many cases, P is the trivial
bundle, isomorphic to M x G, but there are gauge configu-
rations (at least among those considered by theoreticians)
which require non-trivial bundles;

3. specify the field equation to be satisfied by the gauge field;
these equations will restrict the class of all connections which
can be introduced on P; a standard procedure is to derive
the field equations from a variational principle; .

4. the gauge field should be coupled to other particles; if
they are described by wave functions, then one can use a
generalized principle of minimal coupling. Any representation
p: G — GL(V) defines ‘particles of type p’: their wave
functions are maps ¢ : P — V such that ¢ o ¢, = p,-+ 0 0,
and Do =dg + p'(@)¢ (cf. equation (16)) is used to write
an equation of motion for ¢.
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In fact, 3. and 4. cannot be considered separately, because
the ‘particles’ play the role of sources for the gauge field.

In both Maxwell and Yang-Mills theories, the field equations
are of the form

(46) D*R = — dn*j,

where R=f*Q and *R is the dual of R with respect to the
(Riemannian) metric g on M; *j is the dual of the G’-valued
current 1-form j. In general, the current j is not conserved by
itself; from (46) and (19) follows:

D*j =0,

and also
d (*j + L [F,*R]) ~0.
4n

To summarize the correspondance between the terminology
of fibre bundles and that of current physical literature, we give
the following table, adapted, with modifications, from T. T. Wu
and C. N. Yang (Physical Review D 12 (1975), 3845).

total space of the bundle P space of phase factors
base space M space-time
" structure group G gauge group
local section of the prin-
cipal bundle f local gauge
M>U-—P, nof=id,
connection form on P w “gauge potential
curvature form on P 2 gauge field

pull-back of w by f T = f*w potentials in gauge f
pull-back of Q by f R=1f*Q field strengths in gauge f -
action of G in P, 1/ gauge transformation of
aeG, ¢y, P—-P, the first kind
Wa o ':l’b = l//baa ete.
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V-valued functionoftypep, @ wave function
p:P-V, (of a particle of type p)
@ C t;bat:pzr‘ ° o,
p: G- GL(V)

pull-back of ¢ by f ¢ =9 of wave function in gauge f
S:U - G,U < M, defines S gauge transformation of

a change of section from f the second kind:
to f: f'(p)= y({(p - S(p)) I"=8"!'TS + S 'ds
¢ =ps-10¢
Bianchi identity DQ =0 Faraday part of the field
equations.
\
{o
G
el
-
e
At
b
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According to what has been said in Chapter V, a wave function
of a particle interacting with a gauge field may be represented
~either as a map

¢o: P>V
satisfying

@ O Wa:pa'l cQ,
or as a section

d:M—E
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of the bundle ng: FE— M associated with n:P—> M by p,
E = P x V/G. (The notation here differs from that of Chapter V;
present ¢ correspond to what was previously denoted by §, etc.).

Gravitation may be — to some extent — considered as cor-
responding to a gauge field with the Lorentz group O(1,3) as
the structure group. The bundle P is then the bundle of all or-
thonormal frames (tetrads, Vierbeins) on M. Since P = FM, this
bundle has more structure than an abstract principal bundle:
there is the canonical I-form 6 on P and, in addition to the
curvature: ’

Q) = do} + o} Aok,
one has the torsion:

O'=do' + oAb
(which may be zero - but being zero is different from not existing
at all: such is the status of torsion on the electromagnetic or
Yang-Mills bundles). By analogy with other gauge theories,
C. N. Yang and other authors have proposed to consider *Qi A Q!

as the gravitational Lagrangian. Another possibility is to consider

Qi A Q1+ 5 8,0 A O,

Examples. In electromagnetism, all irreducible representations
of U(1) are of the form

P U -»UQW), p,(w=1u", nel.

A particle of type p, is simply a particle of electric charge n,
Dep=d¢ +nwe (because p,=n"id).

The Lie algebra of U(1) is i}, therefore w is pure imaginary.

In an SU(N) theory (N = 2), one often takes p = Ad, and ¢
is then called a Higgs field. In this case, equations of motions
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are usually obtained from a principle of least action associated
with the form on P:

h(*Q A Q) +k(*Do ADo) + Uk(e, @) 1,

where h is a biinvariant metric on G (e.g. the Killing metric),
k is an invariant metric on V (in fact, for p = Ad, V= G/, and
one takes k= h),and # is a volume element associated with a
Riemannian metric on M, which is also used to define the duals.

Given a connection @ on P, a biinvariant metric h on G, and
a Riemannian metric g on M, one defines a Riemannian metric y
on P as follows. Let X € TP; then

(X, X) = g(Tn(X), Tr(X)) + h(@(X), @(X)).

The metric y on P is invariant under the action of G and
defines a generalized Kaluza-Klein geometry on P (the classical
K — K geometry, considered in attempts to ‘unify’ gravitation
with electromagnetism, corresponds to G = U(1)).

Conversely, a metric y on P, invariant under the action of G,
leads to a connection on P: H, « TP is defined as the vector
space of all vectors at e € P orthogonal to ver, P.

P G
metric y e metric h

M
metric g
Relative to y, the horizontal substance
Hc<cT.P
is orthogonal to the vertical substance
ver, P.

FiGurs 37
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Exercise. Consider the Ricci scalar RAB,; = & corresponding
to the Riemannian curvature tensor (Rpgcp) associated with
the metric y = yap dx*dx®, where A,B=1,...,dim P. Vary the
action (f& - volume element on P) with respect to g and @ to
obtain the combined set of Einstein’s equations (with a cosmo-
logical term) and the equation for the gauge field D*Q = 0. Show
that the cosmological term vanishes for an Abelian gauge group.
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EXAMPLES OF NON TRIVIAL BUNDLES
OCCURRING IN PHYSICS

Several examples of non-trivial bundles are given in Chapter V;
it is interesting that some of these bundles are relevant to physics.
To see this, consider first the theorem due to C.N. Yang: If
P— M is a trivial U(1)-bundle, £ a closed 2-surface in M,

= and F any electromagnetic field on M corresponding to a con-
nection @ on P, then the flux of the magnetic field through ¥
“vanishes,

JE=0.

z

e e e e

Proof: since P — M is trivial, it has a section f: M — P, and
iF = *Q = *dw :J(f*w); therefore, by Stokes’ theorem

JiF=[d(f*w)= [ *o=0.
z % 0%

The last equality holds because Z is closed, i.e. compact and
has no boundary, 0X = ¢.

A classical theorem in topology says that if M is contractible,
then P — M is trivial. (A topological space M is contractible
if the identity map idy is homotopic to a constant map, i.e.
if there exists h:[0,1]x M — M which is continuous and such
that h(0,p) =p (any pe M) and h(1,p) =p, for any p and a
fixed point py; for instance B” is contractible, h(t,p) = (1 — t)p,
pPo =0, but §, is not).

Therefore, if a magnetic pole is found in nature, then at least
one of the following is true:

(1) the interpretation of electromagnetism as a connection
in a U(1)-bundle is incorrect;
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(ii) space-time is not contractible; therefore, in particular, it
is not homeomorphic to B*;
(iii) differentiable manifolds do not provide satisfactory mo-
dels of space-time.
In the theoretical considerations of magnetic poles one as-
sumes (ii) and constructs non-trivial bundles over the space-time:

M=R*-  {world-line of the pole},
~ B2 x§, which is not contractible.

The U(l)-bundléé over §, are known; they are labelled by
integers; the simplest non-trivial among them is described in
Chapter V:

UQ) - U@)/u) =8, - §,.

The sphere § 4 ‘may be represented by pairs of complex numbers
(24, 2,) subject to

OF |20 P+ 1]z P =1,

and the map U(2) — S, sends the coset consisting of all elements
of U(2) of the form:

= (2)

into (z¢, z,) €8,. Therefore, the canonical form on U(2)

(Zo dzy +72,dz; . )

d=a'da=atda=

defines a 1-form on §;
(2) w = _Z-o dZO + 2—1 le
which, expressed in terms of the Euler angles, becomes

o= -;(dx + cos 8dg) = ia.
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This is a connection form on the principal U(1)-bundle §; - §,
and the corresponding electromagnetic field

Q=do= —%—sin&d(p AdS,

or rather

1

F= E-Sin Sdo AdS,

describes a magnetic pole of strength g = —%— (the units are such

that the charge of the electron equals the fine structure constant).

The singularities (‘strings’) of the electromagnetic potentials
corresponding to a magnetic pole are due to the non-trivial
nature of the bundle §; — §,. If one removes from §, the north
pole (3 = 0), then

8,3 (8, o) (zo = ¢!® cos f-;—, z; = sin %) €S,

is a local section, and
fro = %(1 +cos 9)do=A

14cos8

is the potential whose essential component, A, = Srsin g

1s singular at 3 = 0.
A completely analogous construction leads to the Belavin

et al. instanton (pseudoparticle) solution of the Yang-Mills

equations. Consider

Sp(2) — Sp(2)/Sp(1) =8, = § 4

and replace in both formulae (1) and (2) the complex numbers

" Zo, Z; by quaternions. Equation (1) then defines §,. Instead
of the Euler angles we introduce a unit quaternion u e Sp(1),
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i =u"!, and one more quaternion {=z7;"; then
Zo = pu, 7, = plu, where p*= —~I]———r
5 5 1_{__ Cz b

and the connection form (2) becomes

w=utdu+ lg:—pz ({dl = (@D u.

The corresponding curvature form Q = do + @ A w is given by
uQul=p*dl Ad(,

and describes the BPST instanton on §, with line-element
given by

Since the Yang-Mills equations are conformally invariant for
dim M = 4, the solution on §, may be transformed, by the
stereographic projection, into a solution on R*. .

Note an interesting analogy: Maxwell theory is to complex
numbers what Yang-Mills theory is to quaternions.

Another example is provided by the Hopf fibration
U3 - U@B)/UuRQ)=8-06P,.
A construction similar té the one for the magnetic pole leads to
o =7, dzy +7Z; dz, + 7, dz, = ia,
where z,, Z;, Z, €, and
|20 P+ |z P+ ]2z P=1
is the equation of §;. The parametrization

Zo = e cos §, z; = e'**# sin § cos @, z, = **” sin Y sin ¢
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leads to the ‘ electromagnetic instanton’ solution

F = sin 29d3 A (cos® @du + sin? @dv)
—sin? 9 sin 29d¢ A (dy — dv)

defined over B[P, with the metric given by

ds? = d9? + sin? 9 [de? + cos? § (cos? @du +
+ sin? @dv)? + sin? @ cos? ¢ (du — dv)?].
The general case is described in my paper, “ Solutions of the

Maxwell and Yang-Mills Equations Associated with Hopf
Fibrings’, Intern. J. Theor. Phys, 16 (1977), 561-565.







VIII

TOPOLOGICAL INVARIANTS
AND CHARACTERISTIC CLASSES

Basic reference: Characteristic Classes by J. W. Milnor and
J. D. Stasheff, Princeton University Press, Princeton, N.J. 1974
(contains a comprehensive bibliography).

It is desirable to distinguish between conserved quantities,
invariants, and topological invariants:

Example 1. Consider an isolated hypothetical family of electric
and magnetic charges and the following statements about the
system:

Statement (a)  at any given instant of time, t= const, the
electric charge inside

% equals - § BdS = [ divEdV
equals 41:? = I J div

and is independent of X (provided all charges
are enclosed).

This statement is equivalent to:
e 2
divE =0

in- empty space.

charges and currents j(x,4) FiGURE 38
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Statement (b)  electric charge is conserved in time,

—3
d = JE —
— ¢ E = = .
s f ds <> ot ccurl B

Assume now that the distribution of charges depends, in a
continuous manner, on a parameter A, labelling the system, then

4§ Bd8 =g,

may depend arbitrarily on 4.

Statement (c)
I

5 M M= integer;

1 ey

but an integer depending continuously on A must be constant,
therefore

¢ _}32 dS is a constant.

Among these three statements, only the last refers to a
‘topological’ invariant!

Sometimes it is asserted that a ‘ topological invariant is obtained
by integrating a total divergence’. This is not so; the electric
charge is a counter example. Moreover, locally any function
may be represented as a divergence, whereas globally, the in-
tegral of a true divergence over a closed manifold is zero.

Example 2. Consider a 2-sphere of radius r, then
¢ dS=4nr? isaninvariant (area of the sphere);
but ¢ kdS=4n is a topological invariant (does not
, change under smooth deformations
of the sphere).
Here k denotes the Gaussian curvature, and the invariance
and value of the integral follows from the Gauss-Bonnet theorem.
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CLOSED AND EXACT FORMS; DE RHAM COHOMOLOGY

Consider an n-dimensional differential manifold M and the
vector spaces C¥(M) of k-forms on M. Closed k-forms on M
constitute a space

Z¥(M) = {a € C¥(M) | da = 0},
and the exact k-forms constitute a subspace of Z¥(M),
B*(M) = {df | e C*"'(M)}.
The quotient vector space
HE(M) = ZK(M)/B*(M) (k=0,1,...,n)
is the k-th cohomology vector space of M.
Example. Consider M = 8, and the form « € C'(8,) defined by

a=xdy —ydx on x>+ y*=1.
y

§={xy:x*+y =1}

¢ i1s a smooth function on §,—{(1,0)}

and also on §,—{(—1,0)} but not on FIGURE 39
all §,; a=de/S;—{(1,0)} etc.
Clearly,
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but « is not exact because
$oa=[*"do=2n,

S 0

whereas for any exact form a = df, the integral over a closed
manifold is zero by Stokes’ theorem. Note that

—> —>
B = curl A means . exact
divB —0 means B,dyA dz+B,dzA dx +B,dxA dy is closed.
Let we Z'@,) = C'§,), then w e B'§,)<>¢ @ =0; in fact,
P
if §w =0, then a(p) =f w is well defined on §,, a(2n) = a(0) =0,
0

and = da. Therefore, for any w e Z'(§,), we have

w:.——z?‘;ﬁw—%da for some aeC°8,),

and this shows

H'(S)=R.

Since §, is connected, constants are the only closed O—forms,’
B°@,) = {0}, and

HO(§1) =0

The dimension b, (M) of HX(M) is called the kth Betti number
of M.

Poincaré Lemma. If M is smooth and contractible, then
b, =b,=..=b, =0 (ie. all closed forms on M are exact).

Sketch of proof: M is smooth contractible if there is a one-
parameter group (¢,) of transformations of M such that ¢, =idy
and lim ¢@(p)=po (any pe M, fixed p, e M). Let u be the

vector field on M induced by (¢,); then

L,=doi(u)+i(u) od, dogr=0¢fod
d

TS ofa=L,pfa=ofLa for any a € C(M).
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Define
h, : C¥(M) - C*"{(M)

he(o) = ——Ofw(p:* (W) dt;
then

(hy,y od+doh) (@)= ——fmqo;“ (i(u) do +
4]

. © d
+ di(w)a) dt = ——Of FT3 oFadt = a.
Therefore
hk+1 Od+d Ohkzid,

and

if @eZ"(M),then a= —d[ ¢} (i(w)a) dt € BE(M).
0

u(py) =0 FIGURE 40

Exercise. Assuming M =B" and « € Z*@®"), find # such that

a = df. Hint: take u = —x 6. ,
. ox!
dinates.

where(x") are Cartesian coor-
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SINGULAR HOMOLOGY, CHAINS AND INTEGRATION ON MANIFOLDS

(No proofs are given here, very sketchy presentation).
The standard k-simplex in B* is

k
4*={(q", ..., g9 eR*|Y ¢'<1; 0<q}.
i=1

2

A2
FIGURE 41

A differentiable (singular) k-simplex in a manifold M is a
smooth map

g:4% > M.

Rk
Ficure 42
(extendable to a smooth map of a neighbourhood od 4%).
A k-chain in M is:

C=Zai0‘i,
i
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where a; € R and o, are k-simplices in M.
Face maps

Pk gk o gi+ i=0,., k+1

are defined in an obvious manner (cf. figures):
1

F}T . / /:\F%
r] I 2

0
P —— 0
0 A i 4
0 SN i
F
FiGURE 43

F¥q',...q9=("..q4750,4,..,9%;

fori=1,..., k, and with a suitable definition of F¥. Furthermore,
the ith face of a simplex ¢: 4*—>M is 6’ =00 FX.

(first face of o)

FIGURE 44
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. k
The boundary of o is a (k — 1)-chain do = Y (- 1)'¢’ (look
at the arrows to appreciate the signs). i=0
If ¢ = Xa, 0, then dc = Xa, do;.

Theorem. dod=0.

Proof: compute or inspect the following figure.

cancel 5
because ¢! occurs g
with a minus sign in do FIGURE 45

If @ € CX(M) and ¢ is a k-simplex on M, then:

fw:fo*cu.
o Ax

If c=) a,0; is a k-chain on M, then
f“):zaifw-

Sfokes Theorem.

k
0 fo=do for any w e C*(M)
dc c

and any k-chain ¢ on M.

The set of all k-chains on M forms a vector space: the boundary
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operatbr singles out the subspace of k-cycles
Z,(M)= {c is a k-chain |dc =0}
and k-boundaries
B, (M) = {dc | c is a (k + 1) —chain} = Z, (M)
by dod =0. The quotie[nt
H, (M) = Z,(M)/B(M)

is the k-th (singular, real, differentiable) homology group of M
(in fact, it is a real vector space).

If o € Z¥(M),then we denote by @ its image in H*(M). In other
words, & is the equivalence class of all k-forms which differ
from o by an exact form. Similarly, if c € Z (M) then T is its
image in H,(M). There is a bilinear map

H*(M) x H, (M) - R
given by
@C) - fa=1;©)

(this is well defined by Stokes’ theorem). [ « is called the period
of o € ZX(M) over ¢ € Z,(M). °

The de Rham theorem. The linear map.
)] HY(M) - H(M)*

given by

&’-’f&

is an isomorphism of vector spaces.
Corollary. If all periods of a closed form are zero, then the
form is exact (injectiveness of (2)), moreover (2) is surjective:
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given a set of periods for the generators of Z, (M), there is a
closed form which assumes these periods as values.

Exercise. Show that if o« eZ¥(M) and fe€Z' (M), then
aABeZET (M),

H, moreover, either a or § is exact, then so is a A . Therefore
one can define a bilinear map

HE(M) x H{(M) — HE* (M)
by

(&,E)eaAﬁz&AB_.

def

Therefore, H¥(M) = @ HX(M) is an algebra (the cohomology
algebra of M). .

The Poincaré duality theorem. If M is compact, oriented, n-di-
mensional, then the bilinear map

(3) HE(M) x H5(M) — B
given by
@ B~ o nB=rpsB) (e Zk BeZ™™)

is non-singular, i.e.
H*(M)3 & — pz e H* ¥(M)*

is an isomorphism.
By comparing (2) and (3) one obtains the isomorphism

HY(M) - H,- (M),

THE CHERN-WEIL CONSTRUCTION

Reference: S. S. Chern and J. Simons, Annals of Math. 99
(1974), 48.
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Consider two smooth connections on P - M with structure
group G:
w and o, =w-+da

W,y G

M FIGURE 46

The I-form « is G'-valued and horizontal. Construct a one-
family of connections linking w and o 0, =0+ ta (0 <t < 1.
Using

“@ [[o a],a]=0

which is a consequence of the Jacobi identity and holds for any
G’-valued 1-form a, one computes

Qt:dwﬂr—%[w,,w,]: Q+tDoc+~:,];—t2 [a, a];

(5 DQ,=t[Q2 a] +t*[Da, a]=1t[Q, a];

dQ,

:D 5 W
I o+ tle, al

©

Consider a k-linear symmetric map
w:G' xXG x.xG —-R
which is invariant under the adjoint action of G in G’:

w(Ad, Ay, Ad, A=W (A, A),any aeG, A, eG’;

put a=expt B, then T%“ gives
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(7) w ([Ala B]a AZ:"" Ak) + w (Ala [A25 B]a'-w Ak) +
+ Ve + w (Al’ AZ""’{Ak’ B]) = O.

If (a;) are G’-valued forms on P, a; = afi e, where (g;) is a
frame in G’, then

W0y, 0,y ) =0l AGR A L AagEW(E,, €5 €5)
is a B-valued form on P.

We shall consider forms such as

wio) =w(a, a, a,..., &);
w (d, ﬁ) = W(O‘a Ba 16"“» ﬂ)s
w(a, B, y)=w(a B, v, V)

If o« is a 1-form and B is a 2-form, then the invariance condition
(7) applied to w(a, B) gives

®) w(la, o], B) + (k =) w(a, [B, a], /)= 0.
We can now prove

Theorem 1.

©) S w(@)=kdw(e, @) on P.
Proof:

The L.H.S. is

d do
E?W(Q‘) = kw (—a‘—, Q') = kw(Da + tla, a], 2,);

the R.H.S. may be evaluated as follows (use D = d for scalar-
valued forms):

dw(a, Q)= Dw(e, Q) =w(Da ) —(k —1)w(x, DQ, Q)=
= W(Dd, Qt) - (k - 1) tW(tZ, [Qv a]v Qt) =
=w(Da + t{a, a], Q).
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This coincides with L.H.S.

Consider now local sections f, f'=U - P and R,=*Q,,
R;=1f*Q, A=10{%, A =f{*y then R,=S"!'R,S, and
A’=S"'AS where S: U —» G is the ‘gauge transformation’
from f to f".

The invariance of w gives w(R,) = w(R)), and

w(A, Ry =w(A’, R).
Therefore (9) projects to M

—d@t—w(Rt)zkdw(A, R) on M.

If ¢ is a closed 2k-chain in M, dc = @ then Stokes’ theorem
gives ‘

d o L
“at-cf w{R) =0 implies
10y JwR) = [w(R).

In words: a topological invariant is obtained by integrating
over a cycle a closed form whose variation is exact.

Theorem 2.

The 2k-form w(Q) on P is exact:

(11) w(Q) = kd gw(w, v dt,
where

¥ =tQ +%(t2 - 1) [, @]

Proof: Consider w(¥,) and compute

d N dy, o 1
—dt—w('f’,)-— kw ( TR ‘I’,) = kw (Q + (t 2) [w, o], ‘Pt).
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On the other hand (use O =dw + «% [w, ®], and d¥, = t[¥,, ®]),
dw(w, ¥)=w(do, ¥) —(k - D w(w,d¥, ¥Y)=

— w (Q '_'%_{wa w],.‘{’,l) __(k "— I)W((l), t[ipt’ CO}, III!):

w (9+ (t -%~> [0, w], qft).

Note: equation (11) does not project, in general, to M because
w and ¥, are not horizontal forms: their pull-backs to M by
f: U — P have a ‘bad’ transformation law, e.g.

I"'=S§"'rs+s7'ds.

Corollary of Theorem 2: the form w(R) on M is closed.

Examples

1. In electromagnetism, all the k-fold exterior products

O, QN QAQAL AL (ks%dimM>

lead to topological invariants. If dim M = 4, then only the
first two are relevant

e —
[Q ~¢BdS, [QAQ~ [E-Bd*x.

2. In an SU(N)-theory over a 4-dimensional space-time M, the
only topological invariants formed from curvature are

w(Q)=h;; Q' A Q4

where h;; is an invariant metric on G'. By evaluating (11)
one finds

hy Q' A Q'=d (hij W' A Q3+ —1—cijk o' Al Awk>,
3

S O R S I RN
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where  h; = h(e;, ¢;), w=w'e, Q=0Ql, [e,e]=cke,
Cije = hy ¢}, Note that invariance of h implies

h(le;, ej]» e) + h(eja [e, D=0 = Ciix = Crijky-

. Pontryagin classes. Consider a real, n-dimensional vector

bundle E — M associated with a principal bundle P — M with

structure group G = GL(n, B). The Lie algebra G’ may be

identified with £@®"), the space of all nx n real matrices.
Consider the polynomial in 1€R,

1 n
det (Z.In o —— A) == 2 An«k fk/Z (A),
2n k=0

where A € £(@"). From the polynomial f,;, (A) one can obtain
by ‘ polarization’ a k-linear symmetric map fi , (Ay, A,,..., Ay).
Since

1
det { AL, ~—1—A =deta ! {Al, ~——Aja=
2n 2n

= det (}tIn L a! Aa)
2n

for any a € GL(n, ), the k-linear map f,, is invariant under
the action of GL(n, B) in £L@&".

Let [y] denote the cohomology class of a form on M cor-
responding to a closed, invariant and horizontal form y on P.
If Q is the curvature form of a connection on P - M, then

Pk/z(E) = [fk/z(Q)] € HZk(Ms ®)

is the (k/2)th Pontryagin class of the bundle E. The structure
group G of P — M can be restricted to O(n) (by the in-
troduction of a smooth metric in the fibres of E — M). There-
fore, any connection on P — M can be smoothly deformed
into a Euclidean, i.e. O(n)’-valued connection. For such a
connection, the curvature form Q is also O(n)’-valued, i.e.
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represented by 2-forms with values in the Lie algebra -of
n x n skew-symmetric matrices. If ‘A = — A, then the equality

i 1
det (/’LIn “—2—7? A) = det (A.In -+ —2“7‘{ A)
shows that f,,(A) is an even function of A. Since for odd k
it is also an odd function,

Therefore, all Pontryagin classes with odd k are zero, and
one can put

K=2s5=0,1, ., B—dim M];

(12) p(B) = [£,(2)] e H*(M, B).

. Chern classes. Similarly, if E—> M is a complex n-dimen-

sional vector bundle associated with a (faithful) representation

"~ of G= GL(n, B) and a principal G-bundle P — M, then one

can define its Chern classes as follows. One first defines the
invariant polynomials g, (k=0, ..., n) by

det (Hn _ L A) = i kg (A), AefEM,
k=0

2ni

and puts
ci(B) = [&(2)] e H*(M, B).

The structure group G of the bundle may be restricted to

U(n) by the introduction of a hermitean metric on the bundle .

E — M. Therefore, it is sufficient to consider U(n)-valued
curvature forms Q. Since the polynomials g, restricted to
U(n)’ are real, so are the Chern classes

(13) ¢ (E) = [g,(Q)] € H*(M, B), k=0,..., - dim M.

:
|
.
|
|
%
|
%
|
|
!
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There is a simple relation between Pontryagin and Chern
classes resulting from the possibility of complexifying any real
vector bundle and embedding, in a trivial way, GL(n, §)
into GL(n, B). It follows from the formula

f(A) = 82,(1A) = 1782, (A) = (— 1)'ga,(A)

that

(14) p(B) = (-1)¢,,C QE),
and

(15) -~ ¢uC ®E)=0.

The last relation provides a simple obstruction to restricting
GL(n, B) to GL(n, B): if one of the odd Chern classes of
a complex vector bundle is non-zero, then the bundle cannot
be made into a real bundle of the same dimension. (It can
always be made, in a trivial manner, into a real bundle of
double real dimension). For example, the first Chern class
of the I-dimensional complex vector bundle associated with
the Hopf U(1)-bundle §; — 8, is different from zero. (In fact,
its period corresponds to the Dirac monopole of lowest
strength, cf. T. T. Wu and C. N. Yang, Physical Rev. D 14
(1976), 437).

Therefore this bundle cannot be restricted to a real line
bundle. Magnetic poles, if found in nature, would justify
the necessity of using complex wave functions to describe the
quantum-mechanical behaviour of particles interacting with
the. poles.

. The Euler class. Consider now the even-dimensional real

vector space B*™ with the canonical frame ¢!, 2,...., e?™ Let
o be a 2-form on §°™,

1 R .
a=-—A e e, Ay

5 5+ A;=0.

13
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One defines the Pfaffian of A by the formula

g A A... na=m! Pf(A)e! Ae? A...ne®™

m factors

If Be £(@®2™), then Pf ('BAB) = Pf(A) det B, so that the Pfaf-
fian is invariant under the action of G = SO(2m). Moreover,

Pf(A)? = det A.

If E — M is a real, oriented, 2m-dimensional vector bundle
and Q@ a curvature form on its principal bundle, then

(16) o(E) — [Pf (—2-1—7; Q)} e H2"(M, R)

is its Euler class. In particular, if E=TM is the tangent
bundle of an oriented 2m-dimensional manifold M, then the
period of e(E) over M is equal to the Euler-Poincaré character-
istic of M. For m = 1 this reduces to the classical Gauss-Bonnet
theorem: if Q,, is the component of the curvature 2-form
of a closed oriented surface M, referred to a (local) field of
orthonormal frames (e',e*) on M, then

1
2n

(17) f lezbo ""bl +b2.
M

There is a simple relation between the top (= highest degree)
Chern class and the Euler class of the real form of a complex
vector bundle E — M. Let E be m-dimensional and consider
the embedding k of GL(m, ) in GL(2m, B) given by

a+ibis (i ""‘;)

where a and b are real m X m matrices. The map k is a homo-
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morphism of groups, and

det(i ":): | det(a +ib) |> > 0.

This shows that the real form of a complex vector bundle
E is orientable. Moreover, if the structure group of E is
restricted to U(m), then its real form comes with a structure
group restricted to SO(2m). If a + ib is in the Lie algebra
of U(m),

(a+ib)* +a+ib=0,
then the matrix k(a +ib) is in the Lie algebra of SO(2m),
(13) ‘at+a=0 and ‘b=b.

Moreover, if the matrices a and b satisfy (18), then

. . a —b
(19) det i(a + ib) = Pf(b . )

On the other hand, one has

g..(a + ib) = det (-‘— (a + ib)).

2m

By comparing (13), (16) and taking into account (19), one
obtains the formula
20) Cm(E)=¢e(Era )
relating the mth Chern class of an m-dimensional complex
vector bundle E to the Euler class of its real form E..

For example, the U(1)-bundle

g%3/22 - @2
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has its first Chern class equal to the Euler class of the tangent
bundle of §,, because

§3/22 = S0(3)

is the total space of the bundle of (oriented) orthonormal
frames of §,.
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