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Summary. Gauge transformations are defined as automorphisms of a principal bundle preserving
the absolute elements of a gauge theory. Pure gauge transformations correspond to vertical auto-
morphisms. A symmetry of a gauge configuration is a gauge transformation preserving the correspon-
ding connection form. It is shown that Coleman’s generic non-Abelian plane-fronted waves have
less symmetry than plane electromagnetic waves. In the theory of gravitation, because of soldering,
the group of pure gauge transformations is trivial, and the full gauge group is isomorphic to Diff M,
the group of all diffeomorphisms of the spacetime manifold M. An explicit formula is given for the
natural Iift of a vector field on M to the bundle LM of linear frames of M. =

L. Introduction. Principal fibre bundles with connections provide a mathe-
matical framework for classsical gauge theories such as electromagnetism and
the Yang-Mills theory. There is also a “gauge ingredient” in the relativistic theory
of gravitation. The bundle of frames is “soldered’’ to its base manifold; the soldering
makes gravitation richer and rather different from other gauge theories [1, 2]. This
note contains definitions of groups of gauge transformations and of symmetries
of a gauge configuration given by a connection form in a principal bundle. Accor-
ding to these definitions, a generic, non-Abelian ‘plane’ wave in the Minkowski
spacetime is less symmetric than a plane electromagnetic wave. The lack of full
plane symmetry easily follows from my infinitesimal definition whereas Coleman
attributes it to global properties [3]. In the last‘section, I summarize some of the
special features of the gauge approach to gravitation which are due to soldering.

To a large extent, this paper follows the standard notation and terminology
used in differential geometry [4] and applications of fibre bundle theory to physics
[5-7]. All manifolds and maps are of class C*. A principal fibre bundle includes
in its definition a projection 7 of the total space of the bundle P on the base M and

an action of a Lie group G on P to the right, The action is free and transitive on the

fibres of 7. If 3: PX G—P is the map defining this action, then 703 (a)=n, 3 (@) o
06 (b)=0 (ba), J (e)=id, where a, b € G, e is the unit of G and d(p, a)=4 (a) p=pa
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for any p € P. A connection on P is given by a one-form w, defined on P and with
values in G', the Lie algebra of G, such that

) &* ©) (p, A)=Ad (@) o0 (p) +8(a),

Hlerw 5* w=woTs

is the pullback of @ by 4, and @ is the canonical form on G. Assuming that G is
a group of matrices, one can write

a=(aj') ’ LO=(CO§) ’ a=(6_:) ’
and
o} (@=(a"1)! daf;.
Suppressing the indices, one may now write condition (1) as

) (6* ) (p, a)=a~' w (p) a+a™" da.

The curvature two-form is Q=dw+} [w, @], where the bracket implies both
the exterior and the Lie algebra product.

2. Automorphisms and gauge transformations. A diffeomorphism u: P—P is an
automorphism of the principal bundle 2, if there is a diffeomorphism v=j(u): M—>M
such that rou=vox and u(pa)=u(p)a for any pe P and ae G. The set Aut P
of all automorphisms forms a group under composition. An automorphism u is
called vertical if j(u)=id; the set Auty P of all vertical automorphisms of P is a
normal subgroup of Aut P, and there is the exact sequence of homomorphisms
of groups

3) 0—Aut, P, Aut P, Diff M,

where 7 is the canonical injection. If u € Aut,, P, then both p and u(p) lie in the
same fibre. There exists, therefore, an element U(p) of G such that u(p)=pU(p) and

1)) U(pa)=a~' U(p)a

for any p € P and a € G. Conversely, given a map U: P—G satisfying condition (4),
there is a vertical automorphism u=@o(id, U). Putting U=k (u), one has

k(u ouy)=k(u,) k(uy) for wuy,u,ecAutyP,

where the product on the right is induced from G. The map & is a natural isomorphism
of Aut,, P on the multiplicative group of maps, from P to G, subject to condition (4).

The group Aut P acts on (local) sections of m. If s: N=P is a section, N =M,
then so is s'=wuosov™':v(N)—P, v=j (u). If u is vertical, then s’ is a section over
N, and

e s ()=5(x) U(s(¥)) for xeN

In a physical theory of a gauge field, besides the dynamical variables, such as
o and the Higgs field, there may occur absolute elements, such as the metric tensor
in special relativity [8]. By definition, the gauge group of such a theory is the sub-
group % of Aut P, consisting of all automorphisms of P which preserve the absolute




d with

t Gis

both

is an
[—M
wat P

u is
'is a
1isms

1 the
1and

“,

1 as
1801
sub-
lute

On Gauge Transformations and Symmetries 9

elements. The elements of ¢ are called gauge transformations. A pure gauge transfor-
mation is a vertical element of &. The pure gauge group

%,=%n Aut, P
is a normal subgroup of ¥, and (3) induces the exact sequence
{5) 0%, % 1. %/%,-0,

where %/%, is identified with the group j (%)< Diff M.

For example, if M is the Minkowski space, then P is isomorphic to M x G and
% is a semi-direct product of %, by the Poincaré group %/%,. For the Hopf bundle
S53-»S,, the gauge sequence (3) is U(1)-2, U(2)—S0(3), where i is the diagonal

embedding.
If @ is a connection form on P and u € Aut P, then the pullback o'=u* w is

also a connection form on P. If u e Aut, P, then
u* o=00dx U)* 05* w,

and by virtue of (2)

(6) ©'=U"'oU+U-1dU.

The curvature form corresponding to u* @ is

) Q=U-1QU.

In theoretical physics, one usually works with a “gauge potential” 4 which
may be identified with a pullback of w by a local section s,

A=s5* w.
Similarly, the “field strengths” are
F=s* Q.
The gauge transformed potential
A'=s'* o=5* @’

may be interpreted as obtained either by a pullback of @ by the transformed section
8'=wuos or by a pullback of w'=u* @ by the original section. Putting S=Uosys,
one obtains from (6) and (7) the physicist’s formulae

A'=8"1 AS+85-1dS, F'=S8"1'FS.
3. Symmetries. Generally speaking, a symmetry of a physical configuration w

is a transformation preserving both w and the absolute elements of the theory. If @
1s a connection form on P, then a symmetry of w is a gauge transformation u such that

®) u* o=o0.

A symmetry of w preserves also the curvature form, i.e. condition (8) implies
u* Q=Q, but the converse is not true. A one-parameter group (x,), t € R, of auto-
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morphisms of P induces a vector field Z on P which is projectable to M ; its projection
¢ is a vector field on M generating the one-parameter group (v,), #,=j (4,). The con--
nection form is preserved by (i), if and only if its Lie derivative with respect to
Z vanishes, '

) L, 0=0.
The corresponding condition for the curvature is
(10) Fy 2=0,
Let ¥ (p) be the value of w(p) on Z(p); the map
Y=(Z, »): P=G’
is equivariant under the action of G,
Yod (a)=Ad (@ 1)o7,
and its covariant derivative,
(11) DY=dY+[w, Y],

is a horizontal one-form of type Ad. By virtue of ¥, w=d(Z_|w)+Z_Jdw and
Eq. (11), one obtains
(12) Fro=Z_|2+DY,

and, similarly,
P, 2=D(Z _12D)+[Q, Y]

A (local) section s of = may now be used to translate Egs. (9) and (10) for
infinitesimal symmetries into conditions containing the gauge potential 4, field
strengths F, the generator & of (v,), and #=Yos. Namely, (9) and (10) become:

(13) ¢ A F+Dn=0,
and
(14) DA F)+[F, n]=0,

respectively. Here D denotes the “gauge derivative”, e.g. Dy=dn+[4, y]; explicitly
Dy'i=dn’ + A, n’—n, A,

or

Dr*=dif*+ ¢, A® 1,
depending on the notation used for the components of elements of G'. In the latter
notation, A=A*E,, F=F*FE,, (£,) is a basis in G’,

[Ee Eﬁ]=c:ﬂ E,

and (13) reduces to

(51) F &4V, n*=0,
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-where
D=V, n* dx®,

1
F= =5 Fy dx"adx® and E=&"0foxm

4. A simple example. As an example, consider the following plane-fronted wave
in the Minkowski space M [3]

(16) A=(ax+by) dz,
where a and b are arbitrary G'-valued functions of t=t—z. The field strengths
F=(adx+bdy) ndr
satisfy the sourcefree equation D+F=0 because
¥ F=(ady—bdx)ndcr and [A, «F]=0.

Since here P=M X G, £ must be the generator of a Poincaré transformation. If Z;’-=
=d[dx, then {_| F=adr, and D ({_| F)=0.Eq. (14) implies [F, #]=0, or

(17) [a,7]=0 and [b, #]=0,
and Eq. (13) reduces to
(18) dn+a dr=0.

The last three equations are necessary and sufficient for the pair (¢=4/dx, ) to
generate a symmetry of (16). If a=0, then #=0is a solution: a wave linearly polarized
.along the y axis is invariant under translations in the x direction. However, a generic
non-Abelian plane-fronted wave is not invariant under translations in the plane
perpendicular to the direction of propagation. E. g., if G=50(3) and [a, b]520,
then Eqgs. (17) imply #=0, in contradiction to (18).

5. Gravitation. In the theory of gravitation, w is a linear connection, i.e. a connec-
tion on the bundle LM/ of linear frames of M. Since L is a functor for diffeomorphisms,
there is a [ift :
L: Diff M—>Aut LM
such that joL=id and

u € L (Diff M)<u* §=3,

where 3=(9) is the canonical (soldering) form on LM. The group Aut LM is an
inessential extension of Diff M by Aut, LM. The soldering should be considered
as an “absolute element” of the theory of gravitation. Therefore, in this case,
%o={id}, and the gauge group ¥ is isomorphic to Diff M.

The nature of the gauge group in the theory of gravitation is rather different
from that in a Yang-Mills theory over the Minkowski space. In the latter case,
Yo is “large” and %/%, “small” (finite-dimensional), in the former, %, is trivial
and ¥=%/%, large.
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As a result of soldering, and unlike in the Yang-Mills theory, the generator Z
of a one-parameter group (u,) of gauge transformations of LM is uniquely determined
by the generator ¢ of (v,), v.=j(u,). Indeed, let p=(p,) e LM be a frame at a point
x=m (p) of an n-dimensional manifold M. Define

X=(X"): LM-R"
by
X=X, pH=<Z(p), 0*(P)).
Let (P,, M,?) be the basis of the module of vector fields on LM, dual to the basis
of differential forms (0%, w}), where (w)) is a linear connection
<Pu: 9u>=5::’ (Mvps 9u>=0
<Ppa w:>=07 <M:= CO:>=5:: 53 d
The vector field Z may now be written as
(19) Z=X"P,+ Y M},
where
Yi={Z, 00,
Since @ is invariant by (u,), the Lie derivative of ¢ with respect to Z should vanish.
This gives N
Z_|@*+ DX =YY" 0",

where

1
O*=df* + ] A" =2 B g

is the torsion two-form. Writing DX*=#" V, X*, one obtains

Yi=V, X4+ 0L, X°,
or
(20) Y=y, X*,
where V is the covariant derivative with respect to the transposed (associated)
connection @ [9],

wh =0y +0Y, 6°.

Formula (19), together with (20), is useful in computing the Lie derivatives and stu-

dying symmetry properties of geometric objects: For example, Eq. (12) gives
directly the explicit expression for the Lie derivative of a linear connection,

RH'

vap

X°+%, V. X¥,

where R* is the curvature tensor.

voo

The work reported in this paper was carried out as a part of the Polish Research
Project MR-I-7.
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A. Tpayrmag, O npeo0pa3oBaHHsX XapaKTepHIAUHH H CHMMETPHAX

Conepxanne, TIpeoGpasoBadds XapakTepR3alHH ONpelleneHE! B HACTOsmlel pafoTe Kak aBTO-
MOp(H3MBL TIABHOTO Ty4Ka, COXpaHsonme abCoMIOTHRIE 3TIEMEHTH TEOPHH C XapaKTepu3aumei,
Yucreie npeobpa3oBaHus XapaKTepH3alHM COOTBETCTBYIOT BCPTHKAIBHBIM aBTOMOpPHHIMaM.
CrvmMeTpreil HaspiBacTCA npeoOpas’oBaHHE XapaKTEpH3AlHM, COXpaHsiomee (GOpMY KOHEKCHH,
COOTBETCTBYIONIYIO TAHHON KOHMHTrypalud IMONsA XapakTepwsauumd. Iloka3aHO, YTO HalOeHHBIS
Konemanom obmime, we abeneBbl NIIOCKHE BOJHBI ABJIAIOTCA MEHEe CHMMETDHYHBIMH, HEKENW
ITOCKHE JJIEKTPOMATHHTHEIE BOJIHBL. B TEOPHY IpaBATAIAH, H3-3a MIOABICHAS KAHOHHIECKOH (ho pMEI
(dhopma cBapkm), IpyIna YHCTHIX IPeoOpa30OBAHKM XapaKTepH3alMy ABNACTCH TPUBHAJILHOMH, a IMoJ-
Has TPYIOma YMCTHIX IIPeoBpa3oBaHMii XapaKTepusauud sBisercs wioMopuoit rpynme Hubda
M Beex madeumopdusMoB npocrpaHcTBa-epeMend M. JlaHo BrIpaXXeHHE B S€HOM BHOC 074 MOMI-
HATHA BEKTOPHOTO moJid H3 M x myuky M nmmeliHbix pemepoB mpocTpaHcTBa M.




