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"',,Mdtion and Radiation According to the Thebry,
) of General Relativity®

Andrzej . Trautman

. The problem of gravitational motion and radiation was'a major topic in Leopold
Infeld’s scientific activity. He started-working on it in 1936; in collaboration with
Albert Einstein, and continued this line of research until his very last days. Asa result,
he published ‘over 25 papers and a monograph [91]* on the problem of motion in
the theory of géneral relativity: Einstein, Infeld and Hoffmann [34] have laid down
the foundations of a “new approximation method”, nowadays known as the EIH
method: The method is admirably adapted to solving all: problems related to' the
motion of slowly moving, gravitating bodies. The post-Newtonian equations of
motion ‘for-the two-body problem; obtained by Einstein, Infeld and Hoffmann,
were integrated in an accompanying paper by H. P. Robertson [1]. The EIH method
has been improved and generalized [37], and later modified [51] by the introduction
of fictitious pole and dipole sources. Their role was to satisfy automatically the
integrability conditions of the field equations. The equations of motion were obtained
by setting, the additional sources equal to zero, at the end of the computation:

. The connection between the gravitational field equations and the equations of
motion-had been recognized ‘before the publication of ‘the series of fundamental
papers by Einstein and Infeld. Essentially, the connection is as follows: for a continu-
ous medium with a simple structure (e.g., a perfect fluid) the equations of motien are
equivalent to the (differential) consetvation law of energy and momentum. Because
of general invariance, the left side of the field equatlons

G¥ = —875T°""
satxsﬁes the (contracted) Blanchl ldentlty,
G =0,
ThlS 1mp11es T“ﬁ =0 and the equations of motxon ‘For example if matter con51sts

o 1 Based in part on the authcr s Lectures on General Reiatmty, ng s College, London, 1958
(unpubhshed) and Gravitational waves and radlatlon, a review presented at the International Con-
c;e'on Relativistic Theories of Gravitation, London 1965 (unpublished).

2 Fhe boldface numbers correspond to Leopold Trfeld’s bibliography, pp. 165-179 of this
volume; The lighface fiumbérs in square brackets tefer to thie literature listed at the end of thisessay.
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of dust, T*% = gu®u’, then condition T% = 0 reduces to the geodetic equation

u?ﬂuﬁ = 0
supplemented by the law of conservation of ma'ss,
(Qua);az = 0.

This result may be generalized [2]: consider a classical field, other than g,s, inter-
acting with pole particles and assume that the field equations are derivable from
a Lorentz-invariant principle of least action. From arguments based on invariance
alone, one obtains the identity

TS+ M*+N* =0,

where T is the total energy-momentum tensor. M* and N* are linear homogeneous
functions of the left sides of the equations of motion and of the field equations,
respectively. Moreover, M* = 0 implies the equations of motion. In the theory of
special relativity, one infers the conservation laws from M* = 0 = N° In the general
theory, where 7% acts as a source of the gravitational field, T% = 0 must hold and,
if N* = 0, then also M* = 0. It is not necessary to postulate separately a dynamical
principle for the motion of particles in the theory of general relativity. A different
derivation of the geodetic equation for test particles was given by Infeld and Schild
[52].

Einstein regarded the energy-momentum tensor as a temporary means for the
description of matter and sought for a representation of nature in terms of purely
geometrical fields. One of the provisional solutions was to treat particles as singular-
ities in empty space-time. The paper by Einstein, Infeld and Hoffmann was motiv-
ated by a desire to show that the motion of singularities is also determined by the
field equations and to work out an approximation method suited to the calculations
of relativistic corrections to the Newtonian motion of celestial bodies. The equations
of motion were obtained from the vanishing of some surface integrals surrounding
singularities which expressed the integrability conditions for the approximate field
equations.

The problem of motion was attacked also by V. A. Fock [3-5], and his students
[6-9]. They used the same approximation method as Finstein and Infeld did, but the
bodies were represented not by singularities but by a continuous energy-momentum
tensor. Fock fixed the space-time coordinate system by the de Donder condition and
obtained the equations of motion of the centre of inertia of a body by integrating
the equations g7 = 0 over the three-dimensional region occupied by it. He obtained
also some equations for the internal motion of rotating bodies. A similar approach
was used by A. Papapetrou [10], who also gave a new derivation [11] of the Mathisson
equation of motion of spinning particles [12]. S. Chandrasekhar and his school made
substantial progress in general relativistic hydrodynamics [13, 14]. They simplified
the formalism so as to make possible an actual derivation of the second post-Newton-
ian equations [15] and clarified the reaction of a fluid to the emission of gravitational
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radiation [16]. Chandrasekhar made a thorough study of the post-Newtonian effecs
of general relativity on the equilibrium of uniformly rotating bodies [17], and on the
stability of axisymmetric systems to axisymmetric perturbations [18].

A novel approach to the problem of motion was initiated by Infeld, who intro-
duced an energy-momentum tensor involving Dirac é-functions for the description
of pole particles [69]. This produced a great simplification in the derivation of the
post-Newtonian equations of motion which were obtained directly from 77 = 0.

Finstein, Infeld and Hoffmann had assumed certain forms of series expansion
of the metric tensor which, by analogy with electrodynamics, they interpreted as
corresponding to the choice of the symmetric (half-advanced, half-retarded) Green’s
function. Infeld [35] wrote down the first terms in g,z corresponding to the choice
of a retarded Green’s function and showed that they did not give any contribution
to the equations of motion up to the 7th order (the Newtonian equations are of the
4th order and the post-Newtonian ones—found by EIH-—of the 6th order). N. Hu
[19] worked out the radiation terms in the next step and found “anti-damping”—
the energy of a system of two bodies appeared to increase when the radiation was
taken into account. The first radiation terms are functions of the time alone and
several papers dealt with the problem whether they represent a true gravitational
field or could be annihilated by a coordinate transformation [58, 89]. An answer
to this question was given by J. N. Goldberg [20] and is summarized in a later
section. ‘ -

The theory of gravitational waves and radiation was the subject of much research
done between 1955 and 1970; good reviews of that research may be found in [21]
and [22]. Within the framework of the EIH method, a satisfactory account of the
influence of radiation on the motion of bodies was given by Infeld and Michalska-
Trautman [101-104] and by Chandrasekhar and Esposito [16].

In the subsequent parts of this essay, we present in elementary form some of the
main issues raised in connection with the problem of motion treated by the EIH
method.

The new approximation method
Consider the scalar wave equation,
1) . O = AQU'—(P,OO =0,

and introduce “time” instead of the coordinate x° = ct. Ifa solution p(x°, x¥, ¢) =
= g(ct, x¥, ¢) of the wave equation can be expanded into a power series in 1/c,

o0

© g = cTglt, XY,
n=0 n
_ then the functions ¢ satisfy
3) do =0, dp=0, dp=¢p,.., dp=9,..
o 1 2 o k k—2
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(the dots over the ¢’s stand for derivatives with respect to ). The structure of the
system (3) is such that we can, if we wish, find solutions (2) containing only even or
only odd terms. If we put (p =0, =0 (m =1, 2, ..:),start with-the pole solution

in the second order = a(t)/r and take the simple solutions ¢ = ;idr,
) 2 : : 4 .
9= @n- 17'341"’%1/0]1‘4 ., then we obtain the standing wave solution:

2 =a(t=rlcy¥alt+ric):

A retarded solution can be obtained by introducing a first radiation term in the 3rd

order: ;
p=0, =0, g@=afr, ¢=-a, ¢=3idr,

o 1 2 3 4

9= (BN ar2; ..., P = a(t—rfo)fr.

It is important to note that ¢ = 0(r"~3) for r — 0 and this is also a general propérty
of solutions of the inhomogeneous wave equation with a spatially bounded source.
If 1 is the characteristic wavelength: of the field, then one can safely stop after the
few first:terms of the series (2) only in the region where

1G] ' F& . :

In other words, the new approximation method is not well suited for the description
of a field in the wave zone. If we write Maxwell’s equations in the form '
(5) : A4* = —4m%, . A% =0, . j% =0,

and assume that j° is of order 2 and j* of order 3, then the retarded solution of (5)
can be expanded into a power seties as follows (in future we shall put'c = 1):

A%(r, 1) = S o, t)R“lde~S deV'+_1-S RV +
2 2,0 2 J200

A¥(x, 1) = Sjk(r', t)R“ldV’—~S‘j" de+——%—Sj" RAV'+

3 00
The conservation of charge 1mpl1es A° = ( and the first radiation term appears in
the 4th order (A") For large values of r and for n > 3 we have A"’ = O(r"%).

In the hnearlzed theory of gravitation the situation is s1mxlar but the radiation
terms are shifted still further along the series. If we write g = J/ —g g = y#*—p**
and assume de Donder’s conditions y*4 = 0, then the linearized Einstein equations
become. , .

(6) Oy* = 16aT*, T* = 0.

790 can be assumed to be of order 2, T of order 3 and T of order 4. This corres-
ponds to the EIH assumption that the mass is of 2nd order. Expandmg into a power
series the retarded solution :

M ' i, 1) = ——4SdV’T”‘(r', {~R)/R
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of equation ’(6), we find that

(8) 7004 T% =@ implies y°° =0, and
2,0 3.k 3 .
TR L. 7# = 0 implies = %% = 0.
3,0 4,1 4
Thus: y”‘ is the first non-vanishing radiation term, and from (7) and (8):
© ; *y”" = 0("" %) n>4.

In the theory of gravitation we have
10 | W—Zm,
\%&here o = My and 8ur = 0. Expanding R, into a power series we obtain equations

for g,‘a whxch in empty space-time, have the form

0 = R,; = linear function of B, b g,m,i, Bt
n -1 -2
‘nonlinear function of g, ..., &1
n—2 2

... Thus a solution for any g,M will contain both terms of linear origin and terms of

nonlinear origin. For example ~
goo = term coming from g+ terms coming from g g

The first terms give rise to the same limitation as in electrodynamlcs r€ . If we
apply the EIH method to a system of bodies whose masses are of order m, then the
nonlinear terms in goo contain expressions like m?/r? and we must have r > m.

Further, if v is a charactemstlc velocity and / dénotes a distance between the bodies
we tnust have = | < 4 or o < 1. Therefore, the applicability of the EIH method is
limited by the following conditions:
m<Lr<i, v<l.

The first of these inequalities, which is connected with the non linearity of Einstein’s
equations, is common to this and other approximation methods. The second and
third limitations are due to the distinguished role played by time in the ETH method.

‘The linear. part of g,M can easily be calculated from (7). We may expect g,m also

fo goilike ¥ (> 4) unless soine nonlinear terms in g,,l cancel out the r*~ £ terms

in the linear part. In general, we cannot impose on the expanded metric the condition
lim gM = 0. However, this does not necessarily mean that the metric is curved at

P00

mﬁmty.
Equations of motion

The basic idea of the EIH method can be explained by considering electrodynamics
as a model theory; there, the conservation of charge is an equation of motion which
follows from the field equations alone. Assuming that 4, has been expanded into
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a power series, we can write Maxwell’s equations in the form:

(lla) Ao, ss = ﬁiis,so:
{11b) Ar 55— Ag,rs = Ar, 00— Ao, or-
nt1 n+1 n=1 n

If, as before, we put 4, = 4, = 0, then 4, satisfies the Laplace equation and we
V] 1 2 g
may take A, = e(t)/r, where e(t) is an arbitrary function of time. Equations (11b),
2

which in the present case become
(11c) rotrotA = —gradd,, A = (4, 4,, 43),
3 2

are not independent; the divergence of the left hand side of (11¢) vanishes identically
(strongly). The divergence of the right hand side also vanishes, by virtue of (11a).
However, this is not sufficient to ensure the integrability of (11b) or (11c). The
flux of rotrot% through a closed surface vanishes, and so also must the flux of

gradA,. The equation 44, = 0 tells us that the flux of grad 4, does not depend on
2 2 2 .

the shape of the surface (provided that we do not cross the singularity when deform-

ing the surface). This means that the vanishing of the flux imposes a condition only

on the singularity itself. We can calculate the flux of— grad/io through a sphere

2

r = const; this turns out to be 4mé. Therefore e must be a constant. ‘
The situation is analogous in Einstein’s theory and can be presented in a concise

form if one uses the superpotentials U [23). The empty spece field equations

G} = 0 may be written:

(12) Uk + U+t = 0.

Contracting with », and integrating over a closed surface we obtain (since U¥ is

skew in k and s!)

(13) 7?2‘§ Uk dS+ 3§ thndS=0. u=0,123.

If we have an exact solution of the field equations, then (13) is identically satisfied
and does not tell us anything. But if we use the EIH approximation method, and if
we expand (12), then the conditions (13) written up to the Ith order will contain
only known fields (of order < /) and will give nontrivial equations of motion (for
# =1,2,3). Equation (13) for 4 = 0 gives the conservation of energy.

Let us illustrate this by the simplest case, the Newtonian equations. From Ry = 0
2

we have

14 Agoo = 0;

as a solution of this equation we may take

(15) * goo = =) 2m]r,
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where m denotes the mass of a body and r is the distance from it; the summation is
to be carried out over all particles. 1;ik = 0 gives the equation for g ; it appears that
2

a possible solution is

=0 .
(16) §k k%oo

The lowest order fields are linear in the masses and therefore can also be evaluated
from (7); gox is at least of order 3 and the problem of radiation does not appear
before the 5th order. The knowledge of goo and glk is sufficient for wrmng down the

following surface integral

—%45 Utn,ds = 0

(t is of order 5 at least). Evaluating this integral around each of the singularities,
we get
m = const.

Since m = const, the field equations for go
) 3
8ok, ss—Los, ks = Bks, 0s ™ s, 0k
3 3 2 2

are now integrable and lead to
an goc = ) 4mE'jr

where £%(¢) are the coordinates of a particle, as yet arbitrary. The following surface
integrals give the Newtonian equations of motion :

i§ U’,‘Onde+§ tfnde = 0.
dt J 3 P

Infeld [68, 84] developed a formalism in which particles are treated as singular-
ities described by means of é-functions. In this formalism it is necessary to define
the value of singular functions on the world-lines of the particles. If ¢ (¢, Xk E1))
" is a function depending on a world-line & and singular on this world-line (e.g.,
@ = [r—E(?)|™!) then Infeld puts

@(t) = (p—part of @ singular at k = &),_gxq)-

For a regular function ¢ we can write:
@s) 7= {0, ¥ £ (x—EVaV.

Infeld and Plebaniski [79, 83, 91] introduce “good” 3 functions which allow them
to write an equation like this even for singular functions ¢. The ~ operation is not
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distributive in general but Infeld and Plebarniski assume it to be. so when apphed to

functions occurring in their work: &8 = &8,
The energy-momentum tensor density of a system of pole particles is now written

as

(19 1% = Z S 1P b a3 — EX(5)) df = Z 1 By (6k — EX()) d5

' where 5 .is deﬁned by d5? = gaigdfadfﬁ By adapung an argument due to Mathlsson
it was shown by W. Tulczyjew that u*® = m, &*E8 (&% = dg*/d5) and m, = const.
He also generalized (19) so as to provide a description of bodies with internal rota-
tion and structure [12, 24]. Equation (19) may be written in the form

T = Zmé“éﬁé\(s)(xk—'—fk), m = myodi[ds, & = devdr.

o
The equations of motion are obtalned by integrating T""g = T%+T+ {M A} = 0 over

the neighbourhood of one particle:

0= ST‘”% S[(mf fﬂé(s)) ﬁ‘*‘m{:”f { }6(3)] av =

_ (mé“)'f%m{ o;} g 45 ol

It follows from this that mds /dt = mg, = const and that

d2& d§" d&t o
,(20) m°(d§2 +{yl} a7 ds) 0.
According to Infeld, the equations of motion of heavy bodies have thus also the

form of ¢ geodetic equatlons One can eliminate ds from (20) and write the 3 equa-
tions of mo’uon in the form o :

‘ (R T 5 oo
K A
ey “({M}"{M}"&k)gﬂf =0.

In this notation the Newtonian equations read 5"+{ } = 0. It can be easily seen

00
2
from (21) that if we know the equations of motion of the n-th order, then we will
be able to write (n+ Dth order equatlons if we calculate gik, gOk and goo However,

it has been shown by Plebanslq and Bazafiski [25] that m a Lagrangmn formalism
[85], it is sufficient to know the explicit form of g, and gox (and not necessarily §°°)’
‘ ; H moLs &ok:

in order to write down the post-Newtonian equations of motion.
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The arbitrariness in the choice of coordinates
:‘rform the coordmate transformation
x0 =X +a°(x/‘),

xF =¥ +a" X4).

 The ﬁrst terms to be dffected by it are:
Zoo = g00+2a0 0>

n+2 n+2 n+

(22b) e 8ok = Zok +ao k+ak 05

nt+1 n+1 B
gir = i Tt
n n n n .
where gz = Yap aP. Tt can easily be seen that if (gi, Sox» £oo) is a solution of the field
n n+l n+2
equations, then (gvik, §ok, jg?oo) is also a solution of the same equations representing

the same phys10al sftuatxon m a different coordinate system. The form of the equations
of motion considered as functions of the &'s obviously depends on the coordinate
system used. Similarly, in the ordinary geodetic equation,

‘E”a'{“rz},(f)g’”f’z = Ga(é-rm’ E/z, 59) - 0’ e
the form of the function G* depends on the coordinate system. More precisely, the
equations.of motion of order n+4 (n = 0,2, .. .) depend on a° and ¢* (and also on
n—1 n

coordinate changes of lower orders). The form of the Newtonian equations cannot be
affected unless the Galilean character of g, is destroyed by the transformation.
0

The post-Newtonian equations depend on the choice of a" in g,-k = 6ikgoo +ai X +ak i
The case a = 0 corresponds to the choice of harmonic coordmates in thls approxuna-

tion. Itis poss1ble to simplify the equations of motion of a given order; but only at the
price of complicating the metric [S8, 61].

Radiation according to the EIH method

The structure of Einstein’s equations is such that we can choose solutions of
the form
- . oo = 1+goo+goo+Zoo+ -

2 4 6 :

(23) Zox

Sl

Zok +&ox+Zort
3 5 7
Sk = —'6ik+gik +gik+g"ik+

By analogy with the scalar wave equation and Maxwell’s theory we can interpret
solutions of the form (23) as representing standing wave fields (no secular losses of
energy by radiation). It is only these solutions which were considered in the classical
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papers on the EIH method. In order to get solutions corresponding to “retarded”
or “advanced” fields we must supplement the series (23) with the missing terms:
odd in goo and gy and even in g, (“radiation terms”). The first of these radiation
terms satisfy linear homogeneous equations and we may expect them to be linear in the
masses and hence their form can be derived from the linearized theory. The electro-
magnetic analogy suggests that the first radiation terms depend only on time and
apparently can be removed by a coordinate transformation (22a); e.g., if Loo = J@®

and gy = —%S f(t)dt then gy = O [58]. However, the entire field (g, Zok, Zoo) Can
4 5 n n+l n+2
be annihilated by means of (22a) when the following conditions are satisfied:

Lo, 1k+glk 00~ 8i0,k0~ Eko,t0 = 0,

(24 Zom, ikt &ik, om ™ &oi, km = Zkm, 0i = 0,
n+1 n n+1l n

gim,kz+gkz,im”‘giz,km“‘gkm,il = 0.

That is to say, equations (24) constitute a system of necessary and sufficient condx-
tions for the existence of functions

ao and ak such that g = gox = €oo = 0.
n+1 n B+l - n+2

It was remarked by Goldberg [20] that starting with g, = fi(t) we can choose

solutions of the field equations in the (n+1)th and (n+2)th orders such that the
conditions (24) will not be satisfied. However, it must be noted that since the solu-
tions of the field equations are not unique, we can also start with the same gik and

obtain functions gq; and goo which can be annihilated. For example the ﬁeld
n+1

g = fu(t), 8gox = %xsfsk, 8oo =0
. n nt+1 n+2
is flat, but the field
g =fult), 8ok =0, goo = —1usf6
n B4 1 n+2
is empty and nonflat unlessf,-k =1 6,.,‘};” (spherical symmetry) namely

goo zk+g1k 00~ gzo ko™ gko o —-fzk ;kfss

The form of the linear part of the ﬁrst radiation terms for a system of point particles
can be obtained from (7). The linear part of gc,ﬁ is connected to y*? by the equation

@

(25) §.lmeav' — ,)7 ,ﬁ?m(}’”l n/‘lnne;yng)'
From (7) and (25) we have ‘
(26a) g =0,
3 -
= 0k . e
(26b) _ gor =~y Z4m§ 0.
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The last equality holds by virtue of the Newtonian equations of motion and is to

be read: D, mé* is at least of order 6.
The linearized equation (6) is not accurate enough for the calculation of gqq
5

and of the next triple of radiative fields (,gik, §0,¢, Zo0). In any case, since gqo is
7 5

2 function of the time only, the triple (g, gox, oo) is trivial in the sense that it can
3 4 5 .

be annihilated by a coordinate transformation and does not contribute to the equa-
tions of motion [35]. Correcting an earlier computation [26] and complementing
the work of A. Peres [27], Infeld and Michalska-Trautman [104] evaluate the fields

2k Sor and goo, find their contribution to the equations of motion of a system of
5 6 7

particles and establish a complete agreement between the predictions of the linearized
theory, the megnitude of the radiative damping force and the amount of energy
emanating from the system in the form of gravitational waves (see also the work
of I. Ryten [28]). A little later, as a result of an independent investigation, Chand-
rasekhar and Esposito [16] publish a study of gravitational radiation in the frame-
work of general relativistic hydrodynamics. The rates of dissipation of energy and
angular momentum they obtain are also in agreement with the linearized theory of
gravitational radiation.

A mechanical description of radiation damping

The equations of motion obtained by the EIH method are of a “mechanical”
type: they contain quentities referring only to particles. Up to a certain order these
equations may be derived from a Lagrangian which is invariant under space’ and
time translations. This implies that to that order the total energy and momentum
are conserved and the system does not radiate. A similar connection between radia-
tion and motion is familiar from electrodynamics: for a system of interacting charges
a mechanicel Lagrangian exists giving their motion with a post-Coulombian
accuracy [29]. In general, a conservative and more accurate electromagnetic La-
grangian does not exist; it can be introduced only when the interactions are assumed
to be of the half-retarded, half-advanced type [30, 31]. In general relativity this
problem was considered by Fock [5], Infeld [85], Infeld and Plebafski [91] and
Plebanski and Bazanski [25]. ‘

Infeld and Michalska-Trautman [101] have analyzed in considerable detail
the connection between radiation and the possibility of introducing a generalized
mechanical Lagrangian for a particle. They propose a method which may be used
in conjunction with the EIH technique to evaluate the energy and momentum radia-
ted by a particle in the form of gravitational electromagnetic or other waves [103].
The following lines contain a brief description of the method.

To alleviate the formulae, a symbolic notation is used here: y denotes a field
or a set of fields with indices suppressed; ' represents the set of first partial deri-
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vatives of ¢ with respect to the coordinates x#; & stands for the three spatial coordi-
nates of a particle. In many expressions a summation over the suppressed indices
is taken for granted. It is assumed that there is given a privileged time coordinate ¢;

e.g., it may be defined by an external static field. Let the action for the system con-
sxstmg of a partlcle and the field be :

W= S dt (A+ S.,sﬂdV)
where & )

o A=AE ¢y, £ =20y,
V is a three-dimensional region which will later be assumed to coincide with the
whole space t = const.; dV is an element of volume in ¥ and £ = dg/ds. By varying W
with respect to & and y one obtains the equations of motion '

@n 2=0, where 0&Ev,v)- ‘”;’
and the ﬁeld equatiqhs‘, - ‘
@) & o) whsie B, By, Y & ‘56’;’

The ¢'s occurring in 0 should be evaluated at the point x = & The equations (27)
and (28) are coupled and should be solved simultaneously; in fact, in general rela-
tivity they cannot be solved otherwise. In special relativity, and also in general rela-
tivity.- when an apprepriate approxxmanon scheme-is: employed, it is possible to find
a solution of the field equation @ = 0 corresponding to an arbitrary motion &(#).
Let ‘ ST E I $ i ; CE LT ; o
@9 | Y=V 8§ ‘
be such a solution. Following Infeld, we assume here that y does not depend expli-
citly on 7and is a rather simple function of the motlon of the pamcle These assump-
tions are fulfilled within the framework of the EIH method. Upon substituting (29)
into (27) one obtains what is called an equation of motion of third kind [91]:
G0 . 8=0. ;
Here and in the rest of this section a bar ‘above a function of v will signify that y
is to be replaced by the righthand side of (29). Clearly, @ = 0. The equations (30)
contain only the coordinates of the particle and one may enquxre as to Whether
they can be deduced from a mechamcal” Lagranglan
Put : : ~

LEEH =A+(Zar

2. o

and

W= tSZLdi. |

L
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Let 6% be a variation of the &'s, vanishing at 7, and ¢, ;"the corresponding variation

of the solution is 4 ; ;
. ‘ o L
Sy = ——06+—— 0

Oy = g O

a/ndkﬁeed not vanish on the boundary FV of V. A straightforward computation gives

ty T g JEENREN
S = S d (’Qas+g@awdv+ S 29 51pdS)
i1 12 - FV o

where the notation is self-explanatory. One thus obtains a sufficient condition for
the existence of a variational principle

(22

o SydS =0= (W =0< 2=0).

3
FV

Since O contains no derivatives of & of order higher than the second, if the surface

integral (31) vanishes then the dependence of L on £ is inessential.

The quantity
N o _py b g O g
o0& o0&
is conserved if (31) holds and may be interpreted as the total energy pf the system.
T general o o ‘ '

dE ;o
(32) ‘ — = — ¢ SFEndS,
~ where L L
G 02 6‘1’_;__{( 0L alp’)
’ oy 05 dt \ oy, 0F :
The quantity
j)Sf‘nde
Fv

may be shown to correspond to the damping force acting on the particle. For simple
systems the amount of radiation computed on the basis of (32) is in agreement with
that obtained by other methods. This method has been successfully employed by
Infeld and Michalska-Trautman to evaluate the amount of electromagnetic and
gravitational radiation [101, 104]. '
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