Theory of Gravitation

Andrzej Trautman

1. INTRODUCTION

The work on, and the understanding of, gravitation greatly influenced not only the
physicist’s conception of nature but also the development of all exact sciences. Newton
invented the method of fluxions, and thereby laid down the foundations of calculus,
in connection with his research on the motion of bodies and on the law of universal
attraction.! The calculus of variations, the theory of differential equations and the
perturbation methods of solving them arose directly from the needs of mechanics and
astronomy. Through the work of Poincaré?, the consideration of global and stable
properties of motions stimulated the birth of topology. The relativistic theory of
gravitation of Einstein3, and his search for a unified theory?, enhanced the develop-
ment of differential geometry. The notion of a superspace introduced recently by
J. A. Wheeler5 provides us with a concrete example of an infinite-dimensional
manifold and leads to a number of difficult problems in the theory of Banach
manifolds.

The theory of gravitation has had successes in all the fields where gravitational
interactions are expected to play a dominant role. The laws of gravitation, very ac-
curately checked within the solar system, seem to be applicable also on a much larger
scale. It is amazing — and encouraging — that a simple theory of gravitation provides
us with models of the entire Universe, some of which are at least in a qualitative agree-
ment with the observations.

The achievements of the Newtonian theory of gravitation were later overshadowed
by those of Maxwell’s electromagnetic theory, by the discovery of the atomic nature
of matter and by the development of quantum mechanics and relativity. The theory
of general relativity although initially poor in experimentally verifiable predictions,
greatly influenced our picture of the Universe and the understanding of space and
time. It also gave rise to a hope — which is now believed to be false — of constructing a
unified, geometric theory of electromagnetism and gravitation. In spite of its profound
implications, for a long time Einstein’s theory was being developed with little contact
with the natural sciences. The situation has changed during the last years, thanks to
the startling discoveries in astronomy, the progress in radio and radar measurements
and the patient efforts to detect gravitational waves.6 The theorists have followed suit
and done relevant work on the process of collapse and formation of black holes, on
new general relativistic effects, on the mechanisms of emission and absorption of
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gravitational radiation, and on the stability of relativistic, gravitating systems. The
significance of the new discoveries and observations, as well as the role of general
relativity in astrophysics, astronomy and cosmology, have been admirably presented
in the lectures of S. Chandrasekhar and D. W. Sciama which are printed in the same
volume.

Much excitement and justified interest surrounds the experiments performed with
the purpose of measuring the flux of gravitational waves falling on the surface of the
Earth. According to J. Weber, who initiated this field of research over a decade ago,
there are sporadic pulses of radiation which seem to come from the centre of the
Galaxy.” This result would constitute a beautiful confirmation of Einstein’s predic-
tions if it were not for the fact that its interpretation in terms of gravitational waves
requires the existence of extremely powerful, hard-to-find sources of radiation. Al-
though the issue is important and interesting, it is more relevant for astrophysics and
cosmology than for the theory of gravitation as such. If Weber is right, then we are
faced with the challenge to find the sources of the powerful radiation; if he is not,
then this only confirms the earlier, conservative estimates of the amount of gravita-
tional radiation in the Universe. In the latter case, more refined techniques than those
available now will be needed to detect gravitational waves of cosmic origin. In either
case, there does not seem to be any need for a change in the fundamental assumption
of the general theory of relativity. Moreover, the recent accurate measurements of
the time delay of radar signals passing near the surface of the Sun, and also those of
the deflection of radio waves, seem to confirm the theory fairly well and favour the
conventional theory rather than its modifications, such as those requiring an addi-
tional flat metric or a scalar field.8

An outstanding problem of theoretical physics is to build a quantum theory of space,
time, and gravitation. For brevity, the problem is often formulated by stating that the
gravitational field should be quantized. Such a description is not entirely adequate
because it presupposes a quantum theory of gravity along the lines of quantum elec-
trodynamics. Gravitation is so closely related to the structure of space-time that it
is hard to conceive a profound modification of the description of the former without
introducing drastic changes in the nature of the latter.

A pioneering work on the quantum theory of gravity was done in 1930 by L. Rosen-
feld and a satisfactory Hamiltonian form of Einstein’s equations was given by P. A. M.
Dirac. Extensive research on various methods of quantizing general relativity and on
possible quantum effects of gravitation has been carried out since 1950.%-10 Assuming
that it is correct to describe gravitational interactions in terms of their quanta, the
main quantitative result is that gravitons may produce observable effects only at
extremely high energies, corresponding to the Planck length

(AG/c*)/* ~ 107 ** cm. 6))

For example, according to L. Parker!l, R. U. Sexl and H. K. Urbantke!2, Ya. B.
Zeldovich and his co-workers13, one can expect creation of pairs of particles by very
strong gravitational fields, with curvatures of the order of 10* cm™'. It is presumed
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that such curvatures may occur during gravitational collapse, be it cosmological or
local. However, as S. Hawking and R. Penrose!4 point out, and A. Salam predicts
on the basis of his theory, extraordinary local effects should take place already at
curvatures of the order of 10!3 cm™2. It is difficult to imagine how a particle such as
an electron, whose radius is of the order of 10™!3 ¢cm, can survive in a space with a
(local) radius of curvature 10%° times smaller. A different point of view, advanced
by J. A. Wheeler, is to consider elementary particles as having a foam-like structure,
the foam consisting of highly curved, quantum-fluctuating space-time with a charac-
teristic length given by Equation (1).

The theoretical studies indicate the importance of the Planck length but so far
there is no experimental evidence that this quantity is physically relevant in a similar
sense as the fine structure constant, the classical radius of the electron, the Chandrase-
khar mass or the gravitational radius of the Sun are known to be. In other words,
can we be confident that nothing drastic happens when we consider the range of
distances from 1073 cm down to 10733 ¢cm (or rather the corresponding range of
energies)? In this unexplored region there may occur completely new phenomena
which will eventually mask over the quantum gravitational effects, as calculated from
the present theory.

A short lecture on a broad subject cannot be comprehensive. It would not be ap-
propriate to review here the fundamentals of the theory of gravitation. The article by
J. Mehra, appearing in this volume, contains a lucid account of how the modern
theory of gravitation was created, with an emphasis on the role played by Hilbert. In
this lecture, I shall restrict myself to a few basic problems connected with the devel-
opment of general relativity theory and to the Einstein-Cartan theory of gravitation.

2. THE PRINCIPLES

The principles which are associated with the theory of relativity and gravitation were
the subject of many controversies and misunderstandings. One of the best known
among them has been the discussion on the significance of the ‘principle of general
covariance’, a polemic which started around 191715 and has been revived during the
recent years by V. A. Fock.16

In part, the difficulties are due to a lack of clarity as to what is a principle in
theoretical physics. We accept the following definition: a principle is a statement about
physical theories, formulated on the basis of experiments or by extrapolation from
known theories. If the principle is a true statement for any particular theory, then the
theory is said to satisfy the principle. As a rule, a principle is meaningful (true or
false) for a class of physical theories and not for all theories. In other words, a prin-
ciple selects a set of theories, namely those for which it is true. These remarks may
sound trivial but, if accepted, they show that such familiar arguments as ‘it follows
from the principle of equivalence alone that light propagating in a gravitational field
changes its frequency’ cannot stand good. It requires a definite physical theory to
investigate the propagation of light. The principle of equivalence is satisfied by several
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theories, including the Newtonian theory of gravitation?, which does not allow any
reasonable description of electromagnetism.

To illustrate the general definition by a well-understood example, let us consider the
principle of (special) relativity. It refers to the class of theories which assume an affine
(flat) space as a model of space-time. Each theory is characterized by some additional
non-dynamical structure (integrable linear connection, metric tensor, absolute time,
ether, etc.). Moreover, free motions of point particles are described by a family of
straight lines in the affine space, and this family is an open and non-void subset of the
space of all straight lines. With every theory there is associated a group of auto-
morphisms: it is the group of all these affine transformations which preserve the
additional structure of space-time. The principle of relativity says that the group of
automorphisms acts transitively in the family of free motions. Clearly, the principle of
relativity, as defined here, is satisfied in Einstein’s special theory and in Galilean
physics, fails in pre-relativistic electrodynamics, and is meaningless in theories based
on a curved space-time.

The principle of equivalence refers to classical theories of gravitation which assume
an affinely connected space-time (i.e., a differentiable manifold with a linear connec-
tion). The principle says that, in the vacuum, the geometry of space-time defines
locally only one linear connection. It implies that there is really no such thing as a
gravitational force. Indeed, a force is described by a vector field which can be used to
build a new linear connection from any given one, in contradiction with the principle
of equivalence. Therefore, the equality of inertial and gravitational masses is a con-
sequence of the principle.

I am tempted at this point to make the following remark which goes a little beyond
the subject of my talk. As soon as one realizes that the gravitational force is not a
correct concept, it becomes clear that any classical force, everything that can be
legitimately put on the right-hand side of Newton’s law of motion, is of electromag-
netic origin. On the other hand, most of theoretical physics, except for general rela-
tivity but including quantum theory, is based on concepts such as the energy, a
Hamiltonian or a Lagrangian, which all can be traced back to the notion of force.
We are not so naive as to try to reduce all phenomena to electromagnetism, as were
the nineteenth-century physicists with respect to ‘mechanical forces’ but we attempt
to model all theories after electrodynamics, classical or quantum. It may be that this
is one of the reasons of the slow progress in our understanding of the fundamental
processes.

In order to formulate the principle of general invariance (or the principle of general
relativity as it is sometimes called), it is desirable to distinguish between the dynamical
and the absolute (non-dynamical) elements of a theory.18:1% The dynamical elements
characterize the history of a physical system described by the theory and are subject
to equations of motion. In any given theory, the absolute elements are the same for
all histories. For example, the metric tensor is an absolute element in the theory of
special relativity and acquires a dynamical character in Einstein’s theory of gravitation.
The automorphisms or symmetries of a theory are the transformations which pre-
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serve the absolute. According to the principle of general invariance, the automorphism
group of a relativistic theory of gravitation consists of all diffecomorphisms of space-
time. This is a highly non-trivial and strong statement; it has nothing to do with the
possibility of going over to curvilinear coordinates.

The following is a list of the absolute elements in the known classical theories,
supplemented by a conjecture about the future theory of space, time, and gravitation:

Theory of Absolute elements
Time Metric and Topology and
flat linear differential
connection structure
Galilean mechanics yes yes yes
special relativity no yes yes
general relativity no no yes
the future no no no

The topological and differential structures of space-time do not seem to possess a
well-defined operational meaning. Therefore, it is likely that they will have to be
abandoned, or rather replaced by another structure which will be more closely related
to, and influenced by, physical phenomena than the absolute, locally Euclidean mani-
fold structure of space-time assumed in all current theories. In my opinion, a satis-
factory quantum theory of space, time, and gravitation will have to do away with
the notion of a differentiable manifold as a model of space-time.

The principle of locality in classical physics can also be precisely stated in the
language of differential geometry. Roughly, it says that all fundamental laws of
physics can be reduced to equations involving only local differential operators of
finite order. The principle of Mach is a negation of the principle of locality. Of course,
there is nothing unique or final about the formulation of any of the principles. The
definitions given here should be considered as tentative examples of how the subject
can be approached. In particular, Mach’s principle ought to be sharpened to become
significant.

3. CATEGORIES, FIBRE BUNDLES AND GAUGE INVARIANCE

The purpose of a physical theory is to construct mathematical models of nature,
models that can be used to explain and predict physical phenomena and events. Any
particular theory, perhaps with the exception of cosmology, provides us with many
models, each of them adapted to a specific situation and giving a good description of
events within a bounded region of space and time and with an accuracy characteristic
of the theory. The details change from one model to another but all models of a
theory have certain common features, determined by the basic assumptions of the
theory. This remark leads at once to the idea that it should be possible to organize
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the mathematical models used in a physical theory into what is nowadays called a
category.20

To establish the terminology and notation, let me recall that a category </ consists
of a class of objects A, B, C,..., and a class of sets Mor (4, B), Mor(B, C),... of
elements called morphisms of </. If feMor (4, B) and geMor(B, C), then there
exists the composite morphism gofeMor (4, C) and the composition of morphisms
is associative. For any object B there is a morphism 1zeMor (B, B) such that

if feMor(4,B) and geMor(B,C), then lzof =f and golz=g.
In most cases, morphisms are certain mappings and one writes
f:A—> B instead of feMor(4, B).

A morphism f: 4 — B is called an isomorphism if there exists a morphism 1 ~1: B— 4,
called its inverse, such that

fofTl=1p and f7lef =1,.

From any category </ one can form the category .7 whose objects coincide with
those of o/ and whose morphisms are isomorphisms of 7.

For example, the category of sets, &4, has sets as objects and mappings as mor-
phisms; bijections are isomorphisms. The category of (real) vector spaces ¥ ¢cs has
linear mappings as morphisms. In physics, of importance is the category ity of
finite-dimensional differential manifolds, with differentiable mappings as morphisms,
and the category 7 /¢ of affine spaces, which may be considered as a subcategory of
Diff. Let A;=(Ey, V4, +) and 4,=(E,, V,, +) be two affine spaces, where E, and
E, are the underlying sets, ¥; and ¥, are the associated vector spaces and + in both
cases denotes the transitive and free action of the additive groups ¥; and ¥, in E,
and E,, respectively. By definition, a morphism in =7 //is a map f: E; — E, such that
there exists a linear map tf: ¥, —» ¥, and

f(+p)=1f(v) + f(p)

for any peE, and veV;. If g: E, - E; is another affine morphism, then
t(gof)=1g01f.

We have here an example of a correspondence between categories, referred to as a
Sfunctor.
More generally, if o and Z are categories, a law 7 associating to objects 4, B and
morphisms f,g of o/ certain objects and morphisms of %, and such that
if fiA->B, then t(f):t(4)->1(B),
T(]'A)=11(A)a T(gOf)=T(g)°T(f)

is called a covariant functor. (Here 1, denotes the identity morphism of 4.) A contra-
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variant functor 7:./ — & is characterized by

if f:A-B, then t(f):7(B)—1(4),
t(14) =L and t(gef)=1(f)°1(9)-

Clearly, t: 2/ £/— ¥ ect defined, in the notation of the previous paragraph, by
t(A)y=E, = t(f)=1f

is a covariant functor.
For any category 7 and any object C in 7 one defines the contravariant functor

1€ - Ens
by
7€(4) = Mor (4, C)
and

(f) (@) =9g°f

for any f: 4 — B and g: B— C. For example, if &7 is the category of vector spaces and
C= R then 7€ associates to any vector space V its dual V'*; this defines a contravariant
functor * : ¥ ect >V ect.

One of the important applications of categories and functors is to define the concept
of naturality. Given two categories, %7 and %, and two functors of the same variance
T4, T,/ — %, a natural transformation N associates to each object 4 of &7 a morphism
in 2, N(A):1,(4)—>1,(4) such that the diagram

T (f)
T (A)%TH(B)

N(A) ‘N(B)

commutes for any f:4 — B. If N(A) is an isomorphism for any A4, one says that N
establishes a natural equivalence of the functors 7, and 7,. For example, let &/ =% =
=¥ ect and 1, =id, 7,=** (double dual). The mapping N(V): ¥V — V**, defined for
any vector space V by

S NW)o) =<(v,v*), veV, v*eV®,

is a natural transformation. It becomes a natural equivalence when restricted to the
subcategory of finite-dimensional vector spaces.

Functors may be thought of as general constructions. The existence of a natural
equivalence between a pair of functors means that these constructions lead to essen-
tially the same result.
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An important mathematical concept whose relevance for theoretical physics has
been recently recognized is that of a fibre bundle.?! Fibre bundles generalize the notion
of a Cartesian product; locally, they can always be represented as Cartesian products.
One may see the need for such a generalization by considering the development of our
ideas of space and time.

According to the Ancient Greeks’ picture of the world, space-time' E was a Carte-
sian product of time 7 and space S22: to any event one could associate an instant of
time ¢ and a location in space s; both time and space were absolute.

In Newtonian physics, space-time E may be represented as a product 7'x.S in
many ways; none of these representations are natural in a sense, which can be easily
related to the notation of natural transformations. Space is relative because there is
no absolute method of ascertaining whether or not two non-simultaneous events
happen at the same place. In other words, there is no natural horizontal slicing of E;
there is only a vertical fibring corresponding to the projection 7: E—T which asso-
ciates to any event pe E the corresponding instant of time ¢ =7 (p); or, time is absolute.

The last example provides us with the essential set-theoretic ingredients of a bundle
A: it consists of two sets, say M and E, called respectively the bundle space (or the
total space) and the base space, and of a surjective map n: M — E, called the projection;
shortly A= (M, E n). The sets M and E usually have some additional structure, such
as that of a topological space or a differential manifold, and = is then assumed to be
compatible with these structures (i.e., to be a morphism in the corresponding category).
In most cases, the spaces ' (p), peE, are all alike, i.e., isomorphic (in that category)
to a space F, called the typical fibre; the set n~'(p) is then called the fibre over p.
For any peE, there is usually more than one isomorphism of ™! (p) onto F (other-
wise M would admit a natural representation as E x F); if f and f’ are two such
isomorphisms, then f’of ~! is an automorphism of F; the set of all automorphisms
of F which are of this form constitutes a group, called the structure group G of the
bundle.

In physics, we are most often interested in differential bundles: M, E and F are
differential manifolds, = is differentiable and for any pe E there exists a neighbourhood
U of p and a differential isomorphism (diffeomorphism) 4:7n~! (U) - U x F such that
prich=m.

The class of all differential bundles forms a category B« ; its morphisms are pairs
(f; a) of mappings such that r,of=aemn, with (M, Ey, n,) and (M,, E,, 7,) denoting
the bundles. A product bundle is (E x F, E, pr, ), where pr, (p, g)=p. A bundle Buz-
isomorphic to a product bundle is called zrival.

Among differential bundles especially important are vector bundles and principal
bundles. Roughly speaking, a vector bundle is a differential bundle with a vector space
playing the role of the typical fibre. For example, the tangent bundle T(E ) and the

t Strictly speaking, one should distinguish between the physical space-time and models used to de-
scribe it. A sentence like ‘according to Einstein, space-time is a Riemannian manifold’ should really
read ‘in Einstein’s theory a Riemannian manifold is used as a model of space-time’. We shall adhere,
however, to the convenient abuses of language which prevail in the physical literature.
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cotangent bundle 7*(E) of a manifold E are vector bundles over E. There is a co-
variant functor T from 2¢// into the category of vector bundles ¥ PBusw; T(f) is
the tangent mapping of the differentiable map f. A principal bundle has a Lie group
as typical fibre and structure group at the same time; the group acts freely in the
bundle and transitively on its fibres. For example, the bundle of frames B(E) of a
manifold E is a principal bundle with structure group GL (n), where n=dim E. There
is a covariant functor B from S %; /¢ into the category of principal bundles ZZ«x.
The functors T, 7:.o/ /f— ¥ Bun, where T is the tangent functor and

A y=Ex VY, Ad=(E ¥ +)
are naturally equivalent to each other. The natural transformation
N(A):Ex V->T(E) @)

associates to (p, v)eE x V the vector XeT(E) tangent to the curve t—fv+p at p.

We may now list a number of categories that are frequently used in physics. In
most cases, it is possible to restrict the category by specifying the number of dimen-
sions of its objects; this will not be done here because the dimensionality of space-time
does not enter our elementary considerations. We shall only assume that all manifolds
and vector spaces are finite dimensional.

I. The Galilean category 9.«¢ has Galilean spaces as objects. A Galilean space is an
affine space (E, V, +) endowed with a bilinear map

h:V*x V* >R
which is (@) symmetric, (b) positive, and (c) of rank n— 1, where n=dim V. If (E;, V4, +»
hy) and (E,, V,, +, h,) are two Galilean spaces, the affine morphism f is a Galilean
morphism if hyo(tf)*=h,. A Galilean automorphism is called a Galilean trans-
formation.

Let < V'* be the null space of # and S< V the subspace of all vectors orthogonal
to X. For any Galilean space 4= (E, V, +, h) the quotient space T=E/S is called the
absolute time of A4. If

n:E->T

is the canonical projection, then (E, T, =) is a fibre bundle with S as the typical fibre.
The relation of absolute time to Galilean transformations is described by the following
proposition: There is a covariant functor ¢: Yaf — Bu» defined by

U(A) = (E’ T, 7"') 3
and

a(f)=(f.a)
where f: E; = E, is a Galilean morphism and a: T, — T, is the unique map satisfying
Myof=aom,.

II. The category of phase spaces, P/4.aqe, plays a role in classical mechanics. A phase
space is a pair (M, p) consisting of an even-dimensional differential manifold M and
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a non-degenerate two-form field 8 on M. Morphisms of 27«4 are defined as differ-
entiable maps carrying one two-form into another. Automorphisms of Z%4ase are
called canonical transformations. In classical mechanics, one makes frequent use of
the existence of the following two functors:

j@j//s Phase I—1> Lie Aty 4

T* associates with a differential manifold E the phase space (T* (E), B), where fz=do
and « is the canonical form on T*(E); IT is the Poisson functor mapping (M, B)
into the Lie algebra of differentiable functions on M, with a bracket defined by f;
the images of morphisms under 7* and IT are defined in an obvious way.

III. The classical theory of fields has ¥ %Bu«» as the underlying category. Let o denote
a differentiable action of GL(n) in R™; ¢:GL(n)—> GL(m), 0,,=id and 6,°0,=0,
for any a, be GL(n). One defines the functor : J D¢ /f, — ¥ Bun by introducing in
the set

5(E) = (B(E) x R"/GL (n)

the structure of a vector bundle over the n-dimensional differential manifold E; the
action of GL(n) in B(E) xR™ is defined by (e, g)— (ea, 0,-1(q)) for any aeGL(n),
eeB(E) and geR™. A cross-section of G (E) is called a field of quantities of type o.
For example, if ¢ is the obvious representation of GL(n) in the space of k-forms,
R™=A*R"*, then G (E)=A**(E) is the bundle of k-forms over E.

Let ¥ %un, denote the category of vector bundles over n-dimensional differential
manifolds. If (M,-, E,, ni), i=1, 2, are two such bundles, then f: M; - M, is a mor-
phism of ¥ ZBun, if it is differentiable, admits a differentiable isomorphism a: E; — E,
such that n,0f=aom, and is linear on each fibre. For any integer k one defines the
kth jet extension functor23

J A Buny, -V Baun,

which plays a basic role in the theory of partial differential equations and in partic-
ular for classical fields. A ¥ %@ «»g-morphism

A:J*G(E) - A™(E)

is called a Lagrangian for the field of quantities of type o. The fundamental relations
between Lagrangians, Euler-Lagrange equations, invariant transformations and con-
servation laws may be given a natural and simple formulation in this framework.

IV. The underlying category of quantum physics is that of complex Hilbert spaces,
Hit6. Its morphisms are unitary mappings. Let (E, ) be a manifold E with a differ-
entiable measure u; one associates to it the Hilbert space L? (E, u) of square integrable
complex functions, with a scalar product defined by

()= [ fon.



THEORY OF GRAVITATION 189

The class of all manifolds with differentiable measures constitutes a category .#; its
morphisms are measure-preserving diffeomorphisms. There is a covariant functor
L?*:M — (6 which assigns to an .#-morphism 4 the unitary transformation L (k)
defined by L?(h)(f)=f>h~'. Moreover, to a vector field X on E which preserves u,

Lxp=0.

the functor L? associates the antihermitean operator £y on L?(E, ), i.e., the Lie
derivative with respect to X. In other words, L? gives rise to a functor A4 — Lie AL g.
The study of its relation to the functor IT-T* defined by (4), is known as the problem
of quantizing a mechanical system.

The principle of relativity as formulated in the preceding section, implies that there
are no privileged inertial systems and this, in turn, may be interpreted to mean that
Galilean space-time is not a Cartesian product of space and time (cf. Fig. 1). The
principle of general invariance has a similar consequence. In the theory of special
relativity, space-time is a flat (affine) space, i.e., a Riemannian space with an integrable
linear connection. The existence of distant parallelism in this case implies that B(E),
the bundle of frames, is a Cartesian product. This is no longer so in general relativity
where the result of transferring a vector from one point to another by parallel trans-
port along a curve depends on that curve. One is tempted to say that the bundle of
frames of space-time in general relativity is not trivial. However, according to the
precise definition given above, B(E) is trivial unless E has a non-Euclidean topology.
Any global coordinate system on E induces an isomorphism of B(E) onto E x GL(n).
Nevertheless, the intuitive property of ‘B(E) not being a product’ may be given a
precise formulation in terms of categories.

On the category £/ /¢, which is appropriate for both Galilean physics and special
relativity, one can define two functors to #%«». One of them is the functor B as-
sociating to Ee.f%: /¢, the bundle of frames B(E), the second, C, is a functor of
constructing the product bundle

C(4)=Ex B(V),

where A= (E, V, +) and B(V') denotes the set of all vector frames of V. These functors
are naturally equivalent, as may be seen from the commutative diagram

ser-20 550

BN(A4y) TR S BN(Ay)

E,xB —>F,xB



‘awp) pue 20eds JO 2INJONI)S Y} WO SLIPI JO JuSWdO[oAdp [BOLIOISTH  °T Sig

*3|punq *$21WweudpoJ3dajd d13siAlze
3onpoud e ojul ((3)g)g suana ydaiym  3anpoud e s (3)g seweuy jo ajpunq ‘(pwi3) | oseq ays  -joJa4d uj Osje pawnsse s 34n3dNJIS Siy| ‘d3Injosqe
wsijojjededajel syiwpe 3ng onpoud & 3yl Ing "Sulaqy [BINIBU B SABY USA®  JOAO 9|punq aiquy eS| 242 w3 pue adeds yjog ‘s adeds pue j swi JO
30U S| SOWeJ) JO I|PUNQ BY) ‘YD U]  I0U SIOP dwir-adeds PISMOUIL By  J Swp-adeds uesjie  3onpoud ueslie) dy3 s J dwil-ededs uej|)oISIY

Dm (@x=1 4 3 1 Buwn
i

(38 | s| |4 18
L] Hw@e

W
:
3
5

190



THEORY OF GRAVITATION 191

where f'is any affine isomorphism and BN (4) is the % «n-isomorphism induced from
the ¥"Bun-isomorphism N (4) described in Equation (2). Nothing analogous exists for
the larger category .#2¢ /¢; the bundles B(E) and E x B(R") may be isomorphic but
there is no natural equivalence of the corresponding functors.

A similar analysis may be applied to show that, in the Galilean category, the functor
o occurring in Equation (3) is not naturally equivalent to the ‘product functor’
Yal — Bun, associating with AeZa/ the product bundle (Tx S, T, pry).

Keeping in mind that all statements about spaces being or not being products
should be understood as referring to the natural equivalence of appropriate functors,
we may now compare the meaning of the two principles of relativity:

(a) the special principle implies that space-time E is not a product;

(b) the general principle implies that the bundle of frames B(E) is not a product.
These are analogous statements but they refer to different spaces and no wonder that
this has led to numerous controversies in the past.

In the theory of general relativity, one can take as the underlying category that of
differential manifolds with linear connections. A linear connection on E induces a
privileged field of linear bases on B(E) and thus turns B(B(E)) into a product.2’
One may speculate as to the existence of a theory of space-time in which B(B(E)) is
not a product.t Even if it should turn out that this generalization is physically un-
interesting, it is clear that fibre bundles provide us with a deep insight into the struc-
ture of space-time and the nature of its theories.

For a long time, it has been recognized that ‘gauge-invariant theories’, such as
electrodynamics, are conveniently described in terms of principal bundles with con-
nections. If P is a principal bundle over the base E, with structure group G and a
connection form w, the group G may be interpreted as the group of gauge transforma-
tions of the first kind. For any cross-section ¢: E— P, the form on E

A=¢*0
is the ‘potential’, whereas the two-form

F = ¢*Q

Q=do+oAo

is the ‘field’ arising from gauge invariance. A change of the cross-section of P induces
a change in A4 interpreted as a gauge transformation of the second kind. For G=S0(2)
and SO (3) one obtains, in this way, the potentials and the fields of the Maxwell and
Yang-Mills theories, respectively.26

An infinitesimal connection in P may be used to define covariant differentiation
in vector bundles associated to P. In particular, if one constructs a complex vector

t D. D. Ivanenko suggested that the construction of such a theory should be referred to as the second
relativization. It has been pointed out by F. A. E. Pirani that a theory of space-time based on con-
formal geometry is of this type.
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bundle associated to the electromagnetic bundle by the homomorphism
o(e*)=¢™, aeR, neN,
he obtains for the covariant derivative, expressed in terms of local coordinates,
V,=0,—ind,, (k=1,2,3,4),

and this may be used to justify the known form of the minimal electromagnetic
coupling.

It is clear that the underlying category for the theory of fields connected with gauge
invariance with respect to a Lie group G is that of principal bundles over space-time,
with G as the structure group. A choice of a particular physical situation implies
the choice of an object in the category, together with an infinitesimal connection;
choosing a gauge is equivalent to picking up a cross-section of the bundle. All gauges
are on the same footing (principle of relativity of gauges) because a bundle P over E
is not naturally isomorphic to E x G, in the sense explained above.

It is sometimes asserted that the general theory of relativity may also be obtained
in this way, by taking G to be the Lorentz group or the Poincaré group.2? This is not
quite the case: the general-relativistic principal bundle has a structure richer than
that of a bundle with the Lorentz group O(1, 3) as the typical fibre. In other words,
the underlying category of general relativity is essentially narrower than that of prin-
cipal bundles with O (1, 3) as the structure group. This is due to the following theorem:
a principal fibre bundle P over an n-dimensional manifold E and with structure group
GL (n) is ?%B«n-isomorphic to B(E) if and only if there exists an R"-valued one-form
0 on P, such that

0(X)=0«T(r)X =0,
*9=a"'9,

where 7:P— E is the projection and y,: P — P denotes the action of ae GL(n) in P.
The form 0 is often called the ‘soldering form’ of P; the bundle B(E ) is ‘soldered’ to
E rather than being loosely connected to E, as general principal bundles are. The
covariant exterior differential of 0 is the torsion form of the connection. Note also,
that, for any manifold E, one can introduce the product bundle E x GL (n) In general,
not only there is no natural isomorphism of B(E) on E x GL(n) but no global iso-
morphism whatsoever (e.g., if E is a two-sphere).

A disadvantage of the gauge approach to electrodynamics is that it does not provide
a natural method of deriving the other half of Maxwell equations (i.e., other than
dF=0). The full set of Maxwell equations is known to follow from a simple action
principle in the Kaluza-Klein theory, or one of its modifications.28 It is interesting
to know that, in fact, there is a definite isomorphism between the theory based on
an infinitesimal connection and the Kaluza—Klein five-dimensional theory. This iso-
morphism may be extended to a large class of theories with gauge invariant fields.
In other words, for any such theory it is possible to construct a multidimensional,
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Riemannian space which bears the same relation to that theory as the Kaluza-Klein
space to electrodynamics.2®

Let G be a Lie group, possessing an invariant metric 4, i.e., a symmetric non-degen-
erate covariant tensor field of second order, defined on G and invariant with respect
to both left and right translations. For example, if G is semi-simple, then one can
define 4 by h,(A4, B)=Tr(Ad, Adg) where Ad,(C)=[4, C], 4, B, C belong to the
Lie algebra of G and e is the unit of G. An abelian group, such as SO (2), also has an
invariant metric. Given a principal fibre bundle P with structure group G, over a base
manifold E (space-time) with a Riemannian metric g, one can define a Riemannian
metric y on P as follows. Let X be a vector tangent to P at r and write y(X), h(A4),
etc., instead of y (X, X), h(4, 4), etc. We put

e (X) = Guir (T (1) X) + b (0 (X)).
It follows from the properties of 4 that y is non-singular and invariant with respect to G,
Y¥y=y forany aeG.

In particular, if G=S0O(2), its Lie algebra can be identified with R and /# may be
taken to be the Euclidean metric on R (possibly, with a numerical coefficient), then y
on P is the Riemannian metric of the five-dimensional Kaluza-Klein theory. It is
also clear how one can construct a principal fibre bundle from the Kaluza—Klein space.

This construction, when applied to the theory of a general field arising from gauge
invariance, leads to the following possibility. One can consider the action integral
jn_l(Q)K where K is the Ricci form, corresponding to the metric y, and Q< E. By
varying this action, with due care not to spoil the invariance of y with respect to G,
one obtains a set of field equations, analogous to the Einstein-Maxwell set that
one gets in the Kaluza-Klein theory.

4. THE EINSTEIN-CARTAN THEORY

In 1922 Elie Cartan3? proposed a slight modification of Einstein’s theory of gravita-
tion. According to Cartan, space-time corresponding to a distribution of matter with
an intrinsic angular momentum should be represented by a curved manifold with
torsion, the latter being related to the density of spin. This idea may be made plausible by
the following considerations.

In the theory of special relativity, the group of inhomogeneous Lorentz transfor-
mations (the Poincaré group) plays a fundamental role in the description of elemen-
tary physical phenomena. In Cartesian coordinates (x°), an infinitesimal Poincaré
transformation is of the form

ox' =i+’ (1,7=1,2,3,4) (52)
where

The Lie algebra of the Poincaré group has two basic invariants, interpreted physically
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as mass and spin. In Einstein’s theory of general relativity, mass directly influences
curvature but spin has no similar dynamical effect. On the other hand, curvature and
torsion are related, respectively, to the groups of homogeneous transformations and
of translations in the tangent spaces of a manifold endowed with a linear connection.
Indeed, let (6°) be a field of co-frames, i.e. a set of four fields of one-forms which are
linearly independent at each point of the manifold. If (';) are the one-forms of the
linear connection with respect to (6°), then the curvature and torsion two-forms are,
respectively,

Q' = do'; + 0} A ©*; =10 A R, = 1R} 05 A 0,
and
' =db + o'; A 0/ =367 A Q' =130,6° A 6.

Denoting by D the exterior covariant derivative23, one can define a radius-vector as
a field (x*) such that
Dx'=¢. @)

In a general curved space Equation (7) has no solutions but it can always be inte-
grated along a curve. When this is done for a loop, one finds that the vector (x*) does
not return to its initial value. For an infinitesimal closed curve, the change in the
radius-vector is

ox' = (@';x’ — ©') x surface element. (5b)

If the linear connection is metric,

Dg;; = s ®
then
Q;+Q,=0. (6b)

In other words, the curvature and torsion induce, respectively, a Lorentz transforma-
tion and a translation of the radius-vector field constructed along a closed curve in
a space with a metric linear connection.

Cartan’s basic idea has been developed by several authors.3! The generalization
due to Cartan constitutes a slight departure from Einsteins’ theory: the field equations
in empty space remain unchanged. In our opinion, the Einstein-Cartan theory is the
simplest and the most natural modification of the original, Einstein’s theory of gravi-
tation. This modification deserves to be analyzed in detail, in precedence over the
theories requiring an additional scalar field to describe gravitational phenomena.

The desirability of such an analysis may be related to recent discoveries in astrono-
my. It is conceivable that torsion may produce observable effects inside those objects
which, as the neutron stars, have built-in strong magnetic fields, possibly accom-
panied by a substantial average value of the density of spin. One is tempted to spec-
ulate that the intrinsic angular momentum may influence — or even prevent — the
occurrence of singularities in gravitational collapse and cosmology. A recent result
of W. Kopczynskis2 supports this idea.

For a body with given values of spin and mass, the dimensionless numbers char-
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acterizing the order of magnitude of the effects of torsion and of curvature are,
respectively,
spin/(radius)2 and mass/radius.

(We use a system of units in which the gravitational constant and the velocity of light
are equal to 1.) For an electron, the ratio of these two (very small) numbers is of the
order of 1/a=x137; the influence of spin on geometry is larger than that of mass.
This is no longer so for matter in bulk because mass is essentially additive whereas
in most circumstances spins cancel out one another.

The field equations of the Einstein—-Cartan theory can be derived from a variational
principle,

5f(K+L)=0,

where L is the Lagrangian (four-form) of matter and K is the Ricci four-form,

16ﬂ:K = f’k, A Qk 1
and
i = 16" A Nijk = %”ijklgk U
Mije = Ngjays  N123a = ldet g, '/2.
If the sources of the gravitational field are described by a tensor or spinor field (¢,),
then, by varying with respect to 6°, »*, and ¢, and assuming Equation (8), one ar-
rives at the system of equations

ij A * = — 8nt;, ©)
r’ijk A @k = 87tsij, (10)
L,=0, (11)

where #; and s;; are the densities (three-forms) of energy-momentum and of spin,
respectively. In the absence of spin, the energy-momentum density is symmetric

At=0At
and Equation (9) goes over into the Einstein equation. In the general case, there is
a symmetric energy-momentum tensor
TV =@/ At —1Ds".
In the approximation of special relativity there is a radius vector (x') subject to

Equation (7) and the conservation law of energy-momentum, Dt;=0, together with
the symmetry of 7, implies that the total angular momentum is conserved:

if L,=0, then D(x't —x't+s5Y)=0.
Similarly as in Einstein’s theory, the equations of motion can be deduced, in simple

cases, directly from the field Equations (9) and (10), without using Equation (11).
The Bianchi identities for a curved space with torsion, applied to Equations (9) and
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(10) yield the relations -
DY =G, A G~ 1R A s (12)

DSH = 91 A tk == Bk A tl' (13)

In the absence of spin, Equation (12) reduces to the usual covariant conservation
law Dt;=0.

To derive the equations of motion of a spinning fluid or dust, it is convenient to
introduce a ‘particle derivative’ defined as follows.33 Let u=0v'; be the three-form
dual with respect to the velocity vector field (v°), n;=%46’ An;;. The particle derivative
of a tensor field (¢,) with respect to (v') is given by the formula

¢A’1 =D (¢Au)5

where n=10" Ay, is the volume element in space-time. A spinning dust may be defined
as a continuous medium characterized by its velocity (v'), the density of energy and
momentum (P;), and the density of spin (S;;). The three-forms of energy-momentum
and of spin are

t;=Pu and s;;=S;u,

respectively. From Equation (13) there follows the relation
P = ov' 4+ v, 8%, (14)

where ¢=g,;P'v/ and S is the particle derivative of S* with respect to (v'). Equa-
tion (13) is equivalent to the system consisting of Equation (14) and the equation of
motion of spin,

8 = o M — v/ S,

The modified conservation law given by Equation (12) gives rise to the equation of
translatory motion
P, = 0fv’'P, + 4RY, 'Su (15)

which is a generalization, to the Riemann-Cartan space of an equation derived by
Mathisson34 and Papapetrou35 for point particles with an intrinsic angular momen-
tum. If the dust has no spin, S,;=0, then there is no torsion, and the equations of
motion are simply

6=0 and P,=0.

The Einstein—Cartan theory gives rise to a number of interesting possiblitities.
According to F. Hehl36 the new theory may contribute to an explanation of weak
interactions. A more conservative attitude is to look for new macroscopic effects in
regions with strong magnetic fields. M. A. Melvin37 has suggested that torsion may
play a significant role during the early stage of the development of the Universe.
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