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Abstract. This paper contains a review and comparison of geometri-
cal hypotheses underlying Newtonian and relativistic theories of
space and time. The similarity between the Newtonian and the Ein-
stein cosmologies is explained and the field equations for a class of
Riemannian space-times with close Newtonian analogues are writ-
ten explicitly.

Introduction

In lectures and texts on relativity it is customary to emphasize the dif-
ferences between the Newtonian theory on the one hand and special and
general relativity on the other. The theory of general relativity is often
said to be beautiful but difficult: its equations are hard to solve and the
absence of inertial frames in Einstein's theory complicates the physical
interpretation of its results. This is certainly true; however, in this
paper; we should like to emphasize the similarities among all theories
of space, time, and gravitation, and to show that from the point of view of
economy of hypotheses, Newton's theory of gravitation is much more com-
plicated than Einstein's theory. Moreover, already in the Newtonian
theory, the notion of inertial frames, when applied to strong gravitational
fields, requires an essential modification.

To every physical theory there corresponds a certain mathematical
formalism in which the theory is usually expressed. In many cases, the
formalism was developed at the same time as the physical bases of the
theory were discovered. If one wishes to compare different theories, it
is desirable to formulate them in the same mathematical language.
Otherwise it is rather difficult to ascertain what are the relationships
between the basic assumptions underlying these theories. As stressed
by Bondi, 1 there are often hidden, "self-evident" hypotheses that are con-
sidered to be no hypotheses at all. The simplicity of a theory should not
be judged only on the ground of what its basic assumptions are explicitly
said to be.

There are essentially two groups of theories of space-time: the Newtoni-
an and the relativistic ones. All relativistic theories are most naturally
expressed in terms of concepts from differential geometry. The Newto-
nian theory was given a geometric formulation by Cartan,2 and Fried-
richs.3 Recently, several authors have analyzed in some detail the geometry
of space-time according to Newton's theory and the relation of that
theory to general relativity.4-7 It emerges from these analyses that
there is a number of geometrical structures common to all theories of
space-time. First of all, space-time is always assumed to be a four-
dimensional differentiable manifold (continuum). This is true even in
multidimensional unified field theories such as those of Kaluza and

* This paper was written in 1964, during the author's visit at the South-
west Center for Advanced Studies, Dallas, Texas.
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Klein, or Jordan and Thiry. In these theories, space-time is a four-
dimensional quotient of a bigger space by some equivalence relation.
There were several attempts to replace the physical continuum by a
space with discrete topology, but none of them was successful. Even
speculations on quantized general relativity take a differentiable mani-
fold as a starting point.

Another feature common to all present physical theories is that they
assume the existence of an affine connection in space time. This is
closely related to the fact that the fundamental laws of physics have a
local character and can be expressed by means of differential equations.
Usually, the affine connection is thought to be symmetric. The possibility
of a space-time with torsion was considered by Einstein,8 Schrédinger, 9

and others in connection with attempts to unify gravitation with electro-
magnetism, and also by Sciamal0 in a different context. Hlavatyl! has
made a profound and exhaustive study of the various possibilities offered
by affinely connected spaces with a generalized metric field.

The metric structure of space-time according to the Newtonian theory is
rather different from that in relativity. The Newtonian metric is degener-
ate; clearly, it is the limit as ¢ »®, of the relativistic metric. Accord-
ingly, the Newtonian metric has those properties of the relativistic gab
which are preserved by the limiting process. In particular, it is invariant
by parallel transport.

The First Law of Dynamics

The Newtonian mechanics is based on the assumption that there exists
an absolute time, t, and that the hypersurfaces (spaces) t = const. are
three-dimensional Euclidean. The time t can be taken as one of the co-
ordinates; if (x, y, z,t) is a system of coordinates in space-time, , the
motion of a particle can be represented by x = £(t), y = n(t), z = ¢(t), i.e.,
by a curve (world-line) in space-time. Neglecting gravitation, the first
law of dynamics may be formulated as follows: there exists a family of
privileged motions, called free motions, and a System of coordinates
(x,y,2,t),such that the free motions are characterized by

dx _dy _dz_ g
dt2

at2  dt2

Coordinate systems whose existence is asserted by the first law are
called inertial. A transformation leading from one inertial system to
another is called Galilean. Clearly, if we agree to consider the world-
lines of free motions as geodesics, the Newtonian space-time becomes
endowed with an integrable affine connection. In other words, in the
absence of gravitation, the first law says the following: the Newtonian
space-time is an affine space whose straight lines correspond to free
motions. 12, 13

The formulation of the first law is not so straightforward when one wants
to take gravitation into account. Since the inertial and gravitational
masses are always equal, all particles in a given gravitational field move
in the same way if their initial positions and velocities are the same.

In a gravitational field, there are no free motions in the previous sense.
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The best one can do is to remove all nongravitational interactions and to
consider free falls as the family of privileged motions. Accordingly,
Newton's first law may be rephrased as follows: there exists a family of
privileged motions, called free falls, a system of coordinates (x,y, z, t),
and a function ¢(x, y, z,t), such that the free falls are characterized by

?x __ op d%y _ 3¢ d%Zz_ oy 1)

= ) =

dt2 ax’ dtz2 a9y’ dt2 oz

Clearly, the class of coordinate changes preserving eq. (1) is much larger
than the class of Galilean transformations. For example, if a is an arbi-
trary function of time, then the transformation

2
x’:x+a(t),y’:y,z':z,(p’:q)—xg—t; (2)

preserves eq. (1) but is not Galilean unless d2a/dt2 = 0. Usually, one con-
siders gravitational fields produced by bounded sources. One then can
normalize ¢ by requiring that it vanish at large distances. This elimin-
ates the possibility of transformations like eq. (2) and restores the pri-
vileged role of the Galileo group. This cannot be done, however, when
there is a strong gravitational field extending all over space, as in cosmo-
logy. In that case, we are faced with the choice of either abandoning the
concept of inertial systems altogether or calling inertial all systems in
which free falls are characterized by eq. (1). Most authors1,15 favor the
latter possibility, which has been adopted in this paper. Again, we may
call world-lines corresponding to free falls geodesics and thereby in-
troduce an affine connection in space-time.

Geometry of the Newtonian Space-Time

The general geometrical structure of space-time in relativity is very

well known. €-8-» 16 The basic assumptions are outlined in the following
table.

Comparison of hypotheses underlying Newtonian and relativistic theories
of space, time, and gravitation.

Newtonian Relativistic

Space-time is a four-dimensional differentiable manifold.
Space-time is endowed with a symmetric affine connection.

World-lines of free falls are geodetic.

In every tangent space to the manifold, there is given:

(a) A non-zero form t,, A metric tensor g,),, of
signature + + + —,

(b) A symmetric contravariant
tensor hab, of signature
++ + 0, such that habt, = 0.
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Newtonian Relativistic

v h#P =0 Ve gab =0

Vi, tp=0
The last equation implies: This implies that s, defined by
ty = 9 4t, t is an affine parameter ds2 = —g ab dxa gxP ,is an affine para-
along time-like geodesics. meter along time-like geodesics.
Ideal clocks measure t. Ideal clocks measure s.

treR?pjcd = 0
hadecde + hbdRaedc =0

Condition for empty space: R,y = 0

Condition for absence of gravitational forces: R3y.4 = 0.

In the Newtonian theory the space-time is a differentiable manifold

N of class C% homeomorphic to R4. The Newtonian notion of absolute
simultaneity implies the existence of a family T of hypersurfaces in
space-time. Distinct elements of T do not intersect, through every event
(point of N) there passes an element of T; all these hypersurfaces have
the topology of R3. Let t = const.be the equation of T. Without loss of
generality, one can assume that the form t, = @ 5t is nowhere zero.* For
the moment, the function t is determined only up to t — f(t), where f is
differentiable and f’ # 0. A vector v® tangent to a hypersurface of simul-
taneity,

vata =0

will be called space-like (one also might call it null); other vectors are
called time-like. A regular curve is called time-like if all its tangent
vectors are time-like. In this case,t may be used to parametrize the
curve.

The family of all free falls determines a symmetric affine connection on
N. It follows from the first law of dynamics, eq. (1), that t can be chosen
so as to be an affine parameter along all time-like geodesics. This
implies

Vatp = 0 (3)

* The following notation is used in this paper: local coordinates in space-
time are (x?, x2, x3,x4); Latin indices range and sum from 1 to 4; Greek
indices range and sum from 1 to 3;all vectors, tensors, affine connec-
tions etc.,are represented by their components with respect to the
natural bases in tangent spaces;ordinary and covariant derivatives are
denoted by 84 and V, respectively; and square index-brackets denote
antisymmetrization over the indices enclosed. Note that there are
differences between these conventions and those employed by the author
in a previous work.5
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and defines t up to linear transformations. Every such t is called the
absolute time. Equation (3) may be looked upon as a condition on the con-
nection I' | ;it implies

taRydg =0 (4)

where R4 is the curvature tensor constructed from T .

Let (y1, y2, y3) be a system of local coordinates in a hypersurface belong-
ing to T. The hypersurface can be represented in a parametric form,

xa = Xa(yls y2’ Ys)-
Let h@f denote the components with respect to (0/0y®) of the Euclidean

metric tensor of the hypersurface. Its components with respect to
(0/2x2) are

hab — pop [2.53 M
3y ayf

Clearly,

haby — o (5)

and the canonical form of the matrix (hab) jg diagonal (1,1, 1, 0). The
tensor hab may be used to define the square of any form and of any space-
like vector but not of time-like vectors. According to what was said in
the introduction,

vehab = 0. (6)

The remaining information contained in the first law of dynamics may be
expressed by

tieRpjcd = 0 (1)
and

hadrRy. + hbd R3 . = 0. (8)

Alternatively and equivalently, 5 one can assume the existence of a
scalar field ¢ such that

0
T =T + ty, te hdd gq¢ 9)

0
where I"b% is anintegrable affine connection. The splitting, eq. (9), is not
unique. Indeed, if ¥ is any solution of

taVbio e =0
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then
0
I — tytch?d gy (10)

is also integrable. It follows from eq. (9) that the curvature tensor is

Ridq = 2tpwaicta, (11)
where
of = hadg,a40 (12)

and the equation of time-like geodesics may be written as

d2xa 0 _dxb dxc d
+ T — — = _hady,e. (13)
dt2 bR dt dt e

Given a definite splitting of the connection, eq. (9), one can introduce
coordinates in N such that

0

N2 = 0. (14)
By virtue of eq. (3), (5), (6), and (9) this implies

929pt £ 0 and 3.h2b X o,

Linear coordinate transformations preserve eq. (14) and may be used to
reduce hab to the canonical form,

- 4
pab * : (15)
0 @

Because of eq. (5), t becomes a linear function of x4 only, and one can
further specialize the coordinate system by taking

2 x4, (16)
With x, y, and z instead of x1, x2, and x3, the geodetic equation (13) reduces
to eq. (1). This shows that ¢ may be identified with the gravitational po-
tential and that the special coordinates defined by eq. (14), (15), and (16)

are inertial. Clearly, in these coordinates, habVaVb<P reduces to the
Laplacian of ¢.

The Ricci tensor, R,y = RSpe is
Ryp = —tatphCdv oge.
Therefore, the Poisson equation of the Newtonian theory of gravitation,

Ap = 4mnkp, (1m)
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(where p is the density of matter and k the gravitational constant) is equi-
valent to ©

Ry = —47kpt,ty. (18)

It is now clear what the geometrical significance of Galilean transforma-
tions is: they preserve egs. (14) and (15). A necessary and sufficient
condition for a vector field £2 to be a generator of the Galileo group of
transformations is

0
grbaé:Oand Ehab:o,

where £ denotes the Lie derivative. The group generated by vector fields
subject only to

¢ hab =0
¢

is larger than the Galileo group; it contains the "transformations to
accelerated frames" of classical mechanics. Note that the difference
between these two groups is due to the non-Riemannian character of
Newton's space-time and has no counterpart in special relativity.

We should like to emphasize again that it is the connection I'\, rather
than 1" a ,that can be determined by local physical experiments. In

bc
general the integrable connection l“bc is defined only up to replacements

of Fbc by eq. (10), accompanied by ¢ — ¢ + {. In special cases, such as
that of a gravitational field produced by a bounded system of masses, we
can single out a particular solution ¢ of eq. (18) by a global requirement,
and define thereby a preferred integrable connection and the correspond-
ing family of inertial frames. In other words, we can construct inertial
frames by performing experiments with free motions far away from the
source, where the gravitational field is negligibly weak, and then extend-
ing the coordinate system into the region of strong field.

Ether and Electrodynamics

The Newtonian structure described in the preceding section is not suffi-
cient to build a theory of electromagnetism. As is well known, this
necessitates the introduction on the manifold N of a new element called
the ether. For our purposes, the ether may be defined as a rigging of
the hypersurfaces t = const. A rigging associates with every point of a
hypersurface a direction not tangent to the hypersurface. In our case,
this direction may be thought of as tangent to the world-line of a privi-
leged observer. Therefore, the ether determines a state of absolute
rest at every point of N.

For historical reasons and for the sake of simplicity, we shall assume
in this section that the basic connection I'i} is integrable. Given an
ether on N, let u2 be the vector field tangent to the directions of rigging
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and normalized so that

udt, =1,
and let us introduce the tensor

gab — pab _ uaub/c2, (19)
where c is the velocity of light. If u2 is covariantly constant,

Vaub = 0, (20)
then
and

VpF2P = 0, where Fab = gacgbdp

are equivalent to the usual Maxwell equations for the vacuum. In the
post, various assumptions about u?, other than eq. (20), were considered.
They led to theories according to which the ether was dragged—or
partially dragged—by the motion of the medium or by the motion of
sources of radiation.

In the optical limit, Maxwell's equations imply the eikonal equation

gabk ky = 0, kg = 95

A Newtonian observer whose world-line is x2 = xa(t) ascribes the
following value to the speed of light:

Ikava| a0 Ikaval

/PPkgky - [kud] 1)

where va = dx3/dt. In general, eq. (21) does not equal ¢ unless v® = u?.
Because of eq. (20), the connection I'i& is metric relative to g2

vegP = 0.
Moreover, the matrix gaP is nonsingular. Its inverse, g b together with
e, defmes a flat indefinite Riemannian (Mmkowsklan)geometry in N.
In prerelativistic electrodynamics this geometry coexisted with

the Newtonian structure. It has been used to define the Lorentz groupl?:
the condition for £2 to be a generator of the Lorentz group is

The essential step taken by Einstein in 1905 consisted in denying any
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physical significance to the Newtonian structure (t, hab). In special
relativity, the geometry of space-time is fully determined by the Minkow-
ski elements (gab, Tid). Accordingly, all equations of physics may con-
tain only these elements in addition to quantities describing the state of
the system.* For example, the formula giving the velocity of propagation
of electromagnetic waves becomes

Ik, val

= ¢, for any v2. (22)

\/(gab + vavb/c2) k ky

(in order to obtain a similarity between eq. (21) and eq. (22), the velocity
vector of the observer has been normalized so that gabvavb = —c2).

Cosmology

When one attempts to apply Newtonian mechanics in cosmology, one en-
counters the following apparent difficulty: assume that the Universe is
spatially homogeneous and let p(t) be the mean density of matter. A
typical solution of Poisson's equation (17) is

@ =25 nkpr2. (23)

The corresponding gravitational field, —gradg, seems to contradict the
cosmological principle: the particle at r = 0 is unaccelerated while all
others are accelerated. This difficulty disappears if it is remembered
that, in this case, it is impossible to introduce a preferred set of inertial
frames defined up to Galilean transformations. The set of all inertial
frames is essentially larger and for every galaxy there is one such frame
with respect to which the galaxy is at rest. Moreover, there are motions
of the substratum compatible with eq. (23) and satisfying the cosmological
principle. 1, 14,15 The homogeneous and isotropic character of the gravi-
tational field corresponding to eq. (23) is best seen in the expression for
the curvature tensor, as calculated from eqgs. (11) and (12):

Ryfed = 85 1k ptpddcty;,

The assumption of homogeneity and isotropy leads to the following ex-
pression for the velocity field of the substratum, referred to a certain
inertial frame,

v = rR1 dR/dt, (24)

where R is an arbitrary function of the absolute time. The motion of the
substratum provides a natural choice for the ether: the rigging is defined
by the tangents to the world-lines of elements of the substratum. As can
be shown easily, this assumption leads to an expression for the Doppler
shift of light coming from distant galaxies,

v R(ts)
et — t21 (25)
Va

* This statement is often called the "principle of relativity".
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which is identical with the corresponding expression obtained in relativis-
tic cosmology!. It is not hard to understand the origin of this coincidence:
the assumption about the ether is equivalent to writing the eikonal equa-
tion with gab given by eq. (19), hab by eq. (15) and

ud — (V, 1) (26)
For such a gab, a straightforward calculation gives
8ap dxqdxP = dr2 — 2v - dr dt — (c2 — v2) dt2, (27)

where

x% = (r, t),dr2 = dx2 + dy2 + dz2, etc.,
and a simple coordinate transformation reduces eq. (27), with v of the
form given in eq. (24), to a Friedmann line-element,

R2dr'2 — c2dt2, (28)
which is known to lead to eq. (25) as the formula for the Doppler shift.

A Class of Riemannian Space-Timeswith Close Newtonian Analogues

In addition to giving the same formula for the Doppler shift, Newtonian
and relativistic cosmologies lead to similar equations for the expansion
function R(t). This interesting fact was noticed for the first time by
Milne and McCrea in 1934.14,als0 1,15 I this section the following
problem is considered: what are the physical situations for which the
Newtonian and relativistic descriptions are as close as they are in cos-
mology ?

Let v(r, t) be a (sufficiently regular) Newtonian velocity field and r =
F (r’,t) a family of solutions of

d_r =v(r,t)
dt

satisfying some initial conditions, say,F(r’, 0) = r'.

The coordinate transformation r = r’, with t unchanged, reduces the line-
element of eq. (27) to

oF OF e S

where x1’, x2”, x3' are the components of r’. Clearly eq. (28) is a special
case of eq. (29).

Consider the Einstein field equations with the cosmological term for a
dust of density p and four-velocity ud/c = —cgabtb,

A
Rap — % gapR + T 8ab = —8rkpt,ty,. (30)
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For a metric of the form of eq. (27), eq. (30) implies
curl curl v = 0.

For the sake of simplicity, all further considerations will be restricted
to irrotational motions,

curl v = 0. (31)
The strain tensor then may be written as

aavﬁ == 1/3 60169 + OaB
where

6 =divv
gives the rate of expansion, and 0,z describes the velocity of shear. If

we denote udd,a = da/ot + v- grada by @,the remaining field equation
(30) assumes the form

L oaﬁoaﬁ — Vs 62 + X = —81kp, Pog ‘ ;}' + A (32)
20+ 62 + 3 0,00%F — A =0, (33)
gop T 004p = 0. (34)

They imply the equation of continuity,

5+ p6=0. (35)
o

On the other hand, the Newtonian equations with a cosmological term,

v = — gradg (36)
Ag=4rkp — 2, - ' : (37)
rd "’") '7 ot = 4 f{.})’# ;-
ap e &/
=>4 diy (pv) = 0, '\\\:A - (38)
are equivalent to eq. (35) and
é + 1/3 62 + Tap o0B — x = —4nkp. 3 (39)

More precisely, if v is an irrotational vector field which, together with p,
satisfies eqs. (35) and (39), then there exists a function ¢ such that eqs.
(36) through (38) hold.

It is seen by inspection that the relativistic equations (32) and (33) imply
the Newtonian equation (39). Therefore, to any metric equation (27),
solution of Einstein's equation (30) with irrotational v there corresponds
an analogous solution of Newton's equations, the functions v being the

same in both cases. The converse is not true: the system of equations
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(32) through (34) is essentially stronger than that of equation (39).

As examples of solutions of equations (36) through (38), which lead to
Einstein spaces, we give the following:

i. Consider a system of test particles (p = 0) falling radially towards the
center of a spherically symmetric body of mass m. If the velocities of
the particles vanish at infinity, then, according to Newtonian mechanics.

N = — kaz
I r
Substituting this into eq. (27), we obtain the Schwarzschild line-element,

r? (ds? + sin2s dg2) + dr2 + 20/ 250 gpqp _ (c2 — 2Km ) 4o
B r

The co-moving form, eq. (29), of the Schwarzschild metric is
r2(d¢2 + sin2¢ d¢?) + (r’/r) dr’2 — c2 dt2,

where
r = (r’3/2 Lo 3/2 m t)z/s.

2. In a Newtonian world with a cosmic repulsive force (A > 0), a possible
motion of test particles is given by

v:*/)73r .

The corresponding Riemannian metric is that of the de Sitter space.
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