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Introduction

These notes contain a review of some recent papers on
tﬁe theory of gravitational waves and radiation. No attempt has
been made to describe here any of the proposals and endeavours
to generate and detect gravitational waves. The interested reader
should consult the works of Weber (1961) and Braginski (Mirianashvili,
1965).

It was a rather hard task to decide which papers should
be reviewed. A well-balanced survey of all research done on gravita-
tional waves since 1916 was beyond the author's possibilities. On
the other hand, it reemed unwise to restrict oneself only to what
has been done since the last conference. The most recent papers,
important as they'are, appear tb be too specialized to form by them-
selves the core of a general survey. As a compromise, we decided to
present a selection of classical results on waves, with emphasis on
those that have a bearing on recent research. Many important papers
are not even mentioned here; in any particular case this may be due
to one of the two reasons: 1. a conviction that the paper in question
is a classic and its content is Widely known or readily available
in the existing reviews; 2. the present author's ignorance. More-
over, we consciously avoid those tppics that will be covered by other
reviewers at this conference: exact radiative solutions, conserva-
tion laws, énd the relation between clagsical and gquantum descriptions
of radiation.

The first two sections contain some elementary arguments
and estimates of the magnitude and nature of gravitational radiation.
No definite theory of gravitation is assumed there. The rest of the

text is devoted to waves within the framework of Einstein's theory.
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1. Gravitational radiation is at least of the guadrupole type.

The origin of our ideas on gravitational waves and radiation may be

traced to the similarity between electromagnetic and gravitational

interactions. As emphasized by Feynman (1957), it is possible to

draw a mumber of conclusions about the gravitational field by applying

to it the conventional methods of field theory in flat space. There

are indications that general relativity, in a certain sense, may be

derived from field theory (Thirring, 1959; Sexl, 1961; Halpern, 1963) .

The similarity between electromagnetism and gravitation

is most striking for non-relotivistic phenomena. Since gravitation

exists as a clagsical (macrosoopic) field, omne expects it to be

2 s :
describable by a tensor field. From the 1/r” and attractive character
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of the gravitational force one infers that it corresponds to a mass-

zero, even spin field. & further elementary fact is the equality of

gravitational and inertial masses, i.e., the experimentally established

proportionality between inertial masses and gravitational "charges'.

This, together with the Newtonian law of conservation of mass,

implies the absence of gravitational monopole and dipole radiation

and substantiates the choice of a spin-two field to describe gravita-

tion. Indeed, let ?ébe that component of the gravitation&l field

which in the non relativistic limit goes over into the Newtonian

potential. For not too large velocities and not too strong fields,

one can expect gﬁto satisfy
ﬂL

(1) Agﬁ N Tﬁ:#'ﬁ“é?

where k is the gravitational constant and f} the density of mass.

The expansion into multipoles of a retarded solution of (1) is

(2) - - @ — % Wi”E + higher multipoles.
: 3 cyr

Here M and P are the total mass and momentum, respectively. For an

isolated system these quantities are constant. They would not have

to be such if the source of the gravitational field had not been

identified with the distribubion of inertial mass. It follows from

field theory that the flux of radiated energy is given by 8 exXpress-

ion quadratic in the first derivatives of the potentials. Accordingly,
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to be of the order of

(5) Zblou)

where the coefficient c¢/k hzs been irtroduced to ensure the correct
dimensions the integral is extended over the surface of a large
sphere surrounding the system. The monopole and dipole terms, as
given by’(?), have derivatives behaving like l/r2 and do not
contribute to (3). Gravitational radiation is predominantly of

the quadrupole type; if Dij (i,3= 1,2,3) is the tensor of

quadrupole moment, then

L RIS
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(plus contributions from higher muitipoles). Formula {(4) is a

simple consequence of (2) and (3) and does not depend on any
particular theory of gravitation (Weber, 1961). Such a theory

is necessary to fit the numeiical coefficient in (4). It is
sometimes argusd that the absence of gravitational dipole radiation
is due to the non-existence of negative masses. The above

argument shows that tihis iz not so and that the equality of gravi-
tational and inevtial mesces is escontial. There would be no
dipole radiation, »ven with negative masses, provided this

equality held. It is also possible to give an argument to support

£ .

the converse: +the sourcez ¢ mass-zero field must

0

be identified with the distribution of energy and momentum. When
applied to point particles *his gives the equality of gravitational

mass and inertial mess (Weinberg 1964).

2. Smallness of gravitational radii.

The amount of gravitational radiation predicted by theory is known
to be notoriously small. One reason why this is so has been given
in the preceding section. A more important reason is the smallness
; . e 2
of gravitational racdii, km/o s
For a gravitating system consisting of two bodies of

equal mass m moving abcut one another along circular orbits of
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radius r, formula (4) gives

?i:)rv ’m.cl’ ﬁ‘rn >Q’
- r/c i 1A

For a similar system in electrodynamics (two particles

of equal mass m and opposite charges e and -e, moving in circular
orbits under their own attraction, with a velocity v <& c), the
amount of electromagnetic (dipole) radiation is
S \3

; ‘f%‘u‘: /‘e- )
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em = /e \mert
and the amount of gravitational radiation

P AT W—%%m
{’:fmvr € W

As another example we may quote the non-relativistic
motion of a charge in an external, constant magnetic field. If
v is the velocity and r the radius of the orbit, one obtains for
the power of the electromagnebic

and gravitational radiation

™ v 0 & E
E ”"ﬂ:/c( “m.c*r b PM%QW

"n "%
respeotively (Postovoit and Gercenstein, 1962).

From these and similar examples one can infer that the
magnitude of radiation depends in an essential way on the ratio
of the gravitetional (respectively, electromagnetio) radius of the
source to a length characterizing the dimensions of the system.

For atomic systems

2

e ? -
mc T

kn S 10747,
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(e and m refer to the electron and r is the radius of an atom) .

A double-star system may radiate a very significant
amounf’of gravitational energy provided that its‘components are
super dense (km/czr,myl on the surface of the star) and move graz-

ing one another.

Approximative methods of finding

gravitational waves

Laaimine a definite theorv of gravitation, it is possible



gravitational waves from a bounded material system. This is quite
easy in the linear theory of a mass-zero, spin-two field. One then
takes the canonical energy-momentum tensor to determine the flux of

energy and obtains the formula
1y tn

(5) - Li@
} 4u :[>L£P ]:)LA,

where higher order multipoles have been neglected.

The situation is not so straightforward in general
relativity where the field equationre are so complicated that no exact,
realistic radiative solutions could have been found. Moreover, the
notion of gravitational energy in that theory is somewhat abscure.

To evaluate the radiated power it is necessary to set up an approxi-
mate method of solving the field equations and to give a preseription
how to compute the change in the total energy of the system. Various
approaches to gravitational radiation can be classified according

to the methods used to solve these two problems.

3, Weak-field solutions.

Einstein (1916, 1918) gave a prescription how to construct approximate
solutions of the field equations valid for weak fields: he normalized
the co-ordinates in a certain way, put g ‘Vpuv (#,F 0515243)

and neglected all terms in G non-linear in the h's, Taking a

Y
retarded solution of the linearized equations, introducing it into
the canonical energy-momentum "pseudotensor", and integrating the
resulting Poynting vector over a large sphere gives again (5). This
approach has been criticized on several grounds: The weak-field
approximation neglects an essential feature of Einstein's equations,
their non-linearity and is really equivalent to replacing general
relativity by a linear theory of gravitation in flat space. This
theory allows strictly periodic radiative fields whereas it‘is clear vi
that radiation in general relativity must be accompanied by secular ;
effects. In a different context, Synge (1960) proposed the

following interpretation of the approximate solutions: consider

them as exact solutions for a different matter distribution, to be

determined from Einstein's equations. If this is done for a

radiative weak-field solution, one finds that the corresponding



flux of matter exactly counterbalances the outflow of gravitational
radiation, as computed from the pseudotensor.

Tt seems that a sound point of view is to consider the
weak-field solutions as a first step of a consistent approximation
scheme -("fast motion approximation"). The foundations of such a
scheme have been developed by several authors (Bertotti and Plebanski,
1960, Goldberg and Havas, 1962). In the second approximation, the
radiative corrections to the motion of point particles have been
obtained (Havas, 1957). However, it is far from clear whether the
method converges or even whether it can be continued, in the general
case beyond the first step. To substantiate these doubts, one may
argue as follows: a typical component of ?FLV has the form of an
outgoing wave, a(t-r)/r; assume that a(t) vanishes outside the
interval (to, tl). In harmonic co—ord%nates, the equation for the
second ordep correction 2_%4’ is, symbolically,
ot Ok = Q(K)

o L
where Q(?) is an expression quadratic in h and its derivatives,
and [:] is the wave operator in flat space. If we put
h #Vr, introduce null coordinates u = t-r and v = t+r and

neglect in Q@ terms of the order O(l/r ), then (6) may be written as

Py F)
) v T U= W

where T ~» a°. The last equation may be integrated to yield

. LL

Y = oW+ b@) + t £4) B5(r - t)de,

where a and b are arbitrary functions. We may rule b out on the

2 2 2
ground. that it corresponds to an incoming wave. For u = const. ;;to
and large v, V };>t - t_, one has (Fock, 19553 Trautman, 1958)

QR w&%@fw‘&‘)f{(t)diﬁ

In other words, for large r and t-r = const., the second order
correction may behave like log r/r. If this behaviour were to be
characteristic also of the exact metric, it would contradict the
Sommerfeld radiation condition and make it impossible to compute
the flux of radiation. It may very well be so that this difficulty

can be resolved by choosing coordinate conditions other than the
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4. The Einstein-Infeld-Hoffmann approximation method.

‘The fast motion approximation method is not well suited for systems
consisting of freely gravitating bodies such as the planetary system.
In the first order, the equations of motion obtained by this method
are trivial (no interaction). Einstein, Infeld and Hoffmann (1938)
and Fock (1939) devised a new approximation method which gives the
Newtonian equations of motion in the first step. This is achieved by

1

considering terms such as

(7) (v/c)2 and km/ch

as being of the same (second) order of magnitude. Formally, the
EIH approach consists in expanding all functions in power series in
1/c. The EIH method is suitabie (i.e; it converges fast) for
situations such that both expressions (7) are small., This implies,

in particular, that one should have

km/02 <& T <& :X
where T==A/b is a time interval characteristic for the system
~under consideration. It follows that the method is not well
suited to evaluate radiation by means of a surface integral such
as (3): the integral should be taken over the surface of a sphere
in the wave zone, i.e., for r‘>g>f} . From simple heuristic
arguments one infers that the first few terms of the expansion of

the'components of the metric tensor are

g =1 + g +'g8 + ...
00 500 4oo
g = g + g T ees
ok ok ok

3 5
8ix ~ ‘%ﬁ%ik t By T o

and that the first terms which may correspond to gravitational

rafiablon are gik’ Sox? ?oo (Infeld, 1938; Hu, 1947; Goldberg 1955;

Trautman 1958b). Whether these terms are genuine or trivial, i.e.,
reducible to zero by a coordinate transformation, depends on whether

the linearized curvature tensor

?oo,ik T gik,oo —gio,ko —gko,io
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arbitration in the choice of these radiative fields; this
corresponds to the freedom in boundary conditious. Once the
fields up to a certain order are given, it is possible to derive
the corresponding equations of motion (see, e.g., Infeld and

Plebanski, 1960). The radiative fields (gik’ 8ok’ goo) lead
7

to a damping force in the 9th order, the %ewtoiian equations

being considered as of the 4th order. A reasonable choice of the
radiétive terms for a two-body system gives ‘a damping force whose
magnitude is in agreement with the loss of energy for this system,
as evaluated from (5). This result, due to Peres (1960), sub-
stantiates the validity of the weak-field approach to gravitational

radiation.

5. A mechanical description of radiation damping

The equations of motion obtained by the EIH method are of a
mechanical type: they contain quantities referring only to
particles. Up to a certain order these equations may be derived
from a lgrangian which is invariant under space and time translations.
This implies that to that order the total energy and momentum are
conserved and the system does not radiate. A similar connection
between radiation and motion is familiar from electrodynamics: for
a system of interacting charges there exists a mechanical lagrangian
giving their motion with a "post-Coulombian" accuracy (Darwin,

1920). 1In general, a conservative and more accurate electromagnetic
lagrangian does not exist; it can be infroduoed only when the inter-
actions are assumed to be of the half-retarded, half-advanced type.

( Fokker, 1929; Wheeler and Feynman, 1949). In general relativity
this problem was considered by Fock (1955), Infeld (1957), Infeld
and Plebanski (1960) and Plebanski and Bazanski (1959).

Recently, L. Infeld end R. Trautman (1965) have analyzed
in considerable detail the comnection between radiation and the
possibility of introducing a generalized mechanical lagrangian
for a particle. They propose a method which may be used, in

conjunction with the EIH technique, to evaluate the energy and

il = AE el B A roer wemdiad ) W e o Faswes = secceceed@ilos B8 BAomnex D
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electromagnetic or other waves. The following lines contain a brief
description of the method.

To alleviate the formulae, a symbolic notation will be

used here:ﬂyﬁ'will denote a field or o set of fields with indices
suppressed;'yﬁ‘ will represent the set of first partial derivatives
of Fﬂ'with respect to the coordinates Xéﬁg § will stand for the
three spatial coordinates of a particle. In many expressions a
summation over the suppressed indiccs will be taken for granted.
Tt will be assumed that there is given a privileged time coordinate
t; e.g., it may be defined by an external static field. Let the
action for the systemiponsisting of a particle and the field Dbe

W= [ “"'2-5{{_—('/\ ok f { . ) ’ ,
4 J

1
where

S
: : 0 ,:f( ] ;’)
P ] {/\% ?C- 1) F ot ,L
A"“/X \§})31’§’J1)£;L”e>£\';/)\{/ )
V is a three-dimensional region which will later be assumed to

coincide with the whole space t = const.; dx is an element of volume

ol

in V and E = ~~§- s By varying W with respect tor§? and 1¢§« one

ot
obtains the equations of motion 1 %; K 2 é§”!A/
(8) {l= O , vhere ,__@--(f} >, JIIV,J W )“’” 5’5

e,

L

and the field equations, . ‘ ES‘VV
o E=0 , we SET,YYVW)= 5
~The @ﬁgocourring in.J:}«should be evaluated at the point x =j$ 3
The equationé (8) and (9) are coupled and should be solved
simultaneously: in fact, in general relativity they cannot be
splved otherwise. In special relativity, and also in general
relativity Whep an appropriate approximation scheme is employed,
it s possible to find a solution of the field equation é¥;= 0
corresponding to an arbitrary motion.'§ (t).

Let | ) . s\

(1) ’\“[f = U;s:f (‘ﬁ"’ 5, §/

be such a solution. Following Infeld, we assume here that Sﬂ does
not depend explicitly on t and is a rather simple function éf the
motion of the particle. These assumptions are fulfilled within

the framework of the ETH mathod. Uvon substitutine (10) into (8)

-
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one obtains what is called an equation of motion of third kind
(Infeld and Plebanski, 1960):

(11) =0},

Here and in the rest of this section a bar above a function ofifWill
signify that \y is to be replaced by the right-hand side of (10).
Clearly, § = @, The equations (11) contain only the coordinates
of the particle and one may enquire as to whether they can be deduced

from-a '"mechanical'' lagrangian.

(e E) = A+ LA
and .tYL ¢

W = | L dt,

5 - Ul
Let g;be a variation of the_f'g, vanishing at tl and tz; the

corresponding variation of the solutlon is

Fp- 3T B
and need not vanish on the boundary FV of V A straightforward
computation glves .?Bde
IW = f olt _Q —f—f’;ﬁ' spdx + 8 de
where the notatlon is self- explanatory. One thus obtains a

sufficient oond1t¢on for the existence of a variational principle

(32) )‘f &ydg @:}(5{/\/»—@(::5&—0)

Since {} contalns no derlvatlves of jf of order higher than the

second, if the surface integral (12) vanishes then the dependence of
-
L on ;r is inessential.

The quantity
L oL =
IE:“s—-—L-l—(a — X &

; .
is conserved if (12) holds and may'be interpreted as the total

energy of the system. In general

(13) - _36 ], & n, oS

where SS; ﬁ\‘_ 2}#3 éég?‘ . E%é E%Jf ;;%£i
b QW 9Tt A o og”

The quantity




“

e (ot o s
particle. For simple systems the amount of radiation computed on

the basis of (13) is in agreement with that obtained by other methods.

6. The method of asymptotic expansion.

To give a satisfactory and convincing theoretical answer to the
problem of gravitational radiation it would be necessary to produce
an exact or meaningfully accurate, solution of Einstein's equations
for a realistic distribution of matter. Moreover, one would have to
show that the corresponding material system undergoes secular changes
which may be blamed on the gravitational waves emanating from the
system. This has been too hard a task for anyone until now. In
particular it is very difficult to find interesting and realis?ic
non-static solutions of the interior problem and to connect them
to appropriate exterior fields. However, a numbér of important global
properties of material .system, such as its mass or total momentum,
may be recognised from a distance. Also, to calculate the radiated
power by means.of a Poynting vector it ig sufficient to know the field
in the far-away region. The recognition of this fact has been the
starting point of a number of investigations on the asymptotic behaviour
of gravitational fields.

-The first step consisted in a rough formulation of
Sommerfeld's radiation conditions for the gravitational field (Fock,
1955; Trautman, 1958¢c). By analogy with electrodynamics one may

require that the Riemannian space-time V, admits a coordinate system xf*,

4

a null diverging vector field kPLvand a parameter r along the

trajectories of this field, such that

(1) | ﬁw":"’nr\f ’ {w; ) //ff e O({/"”)g
09 Guupm tpfe T O)) ipo= O
o £, =00, %, C(‘/w’*)

and

an @W- v),wq(’ Qa)é - O(ML)
Eq. (17 ) signifies that the coordinates are asymptotically harmonic;
(15) implies the radiation condition: ii*uﬂf)’éfl C)(:/g'zi)

A coordinate transformation of the form

(18) xftw~—§* x v 5, ml

L]
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(19) Qu,y = {24& K, =+ OG/“"L), E,L:* O(}/“!’)

preserves (14), (15) and (17). Indeed, it follows from (19) that

Cop vy = C—M’éu /ép -+ OC/Tll CM:O(}/{>

and (18) induces the transformation

'[‘,/AV-'-E??L/ZV /«u+Cﬁv+cy§~

In the asymptotic region, the pseudotensor of momentum and energy

becomes s v -
€ V:‘C%/Mfév—f- OG/#S

),,L.

where Fd"
t=2o7k (/«v =2 ) ”P"j)

As a consequence of (17), “[C is never negative and is invariant under

(20)

the coordinate transformations (20). It is possible, therefore, to
obtain the total radiated energy and momentum by computing a suitable

integral of 1 Recently, Cornish (1964) has shown that the value

T
of that integral does not depend on which expression is taken for E;f ’
within a Wide class of energy-momentum pseudotensors, provided that

the boundary conditions (14) - (17) are satisfied. In an earlier

paper, Komar (1962) found a formulation of the boundary conditions

more satisfactory from the point of view of geometry than thoso reviewed

here. He.was able to express these conditions in terms of asymptotic

Killing fields. He also showed that the transformations (20) may be

. . W/
used to achieve 1//%,\-' /‘é — OC/’“T’Q

in addition to (17). According to Komar, these more_stringent
boundary conditions make it possible to apply Mﬁller's expression for
eﬁergy and momentum to radiative spaces (Mﬁller, 1958).

The asymptotic form of the curvature tensor may

‘also be obtained from the boundary conditions. One gets

b = 3ot + OU/v) | g = O0),
(fg;ﬁ.v = £ er) K7 = O(f/”rl)

: 1
R v = £ 4, e B + OU/)

The 1/r part of the Riemann tensor is algebraically of type null.

and

(21)

This means that the 1/r part of the field equations is automatically

antisfied because of the boundary conditions imposed on the metric.
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To obtain more detailed information about the physics and geometry of
the radiative space, it would be necessary to solve the field equations
with greater accuracy. The present formulation is little suitable
for the purpose. One may say that the reason for this being so is
that not enough geometrical elements have been adapted to the problem.,
Let the propagation vector of the waves be hypersurface-
orthogonal; when properly normalized it will be a gradient vector,
'f%#;= LL);L . If E’ and .77 are two coordinates constant along the

trajectories of kk“, the line-element of V4 is
(22) ols*= — P [€%coh B AE = Adu Y+ 2 sonk o (AF- Adu)x
(o — Bebg € ek p (e — Bost)' [+ C a2 Dibucrs

where P,m(,FB, A, B, C and D are functions of the coordinates 3:1] A
3o
and W (Robinson, 1962); Sachs, 1962). This is a
completely general line-element; if one demands that k M be
shear-free and chooses r to be an affine parameter along the

trajectories of kr‘, which are now null geodesics (= rays), then

»:%;Eg - :%;gi e CD) D=1, and by a coordinate transformation

the form (22) may be reduced to (Robinson and Trautman, 1964)

@) s — P @E—A ou,c.,)l«#@h) — ?3004.)2:]
—+ Codu™ 4+ 2 ducelr,

It is known, however, that only very special metrics admit non-
shearing congruences of null geodesics (cf. section 8). DNone of
the metrics (23) describes a realistic kind of gravitational radiation.
Bondi was the first to consider, in a systematic
manner, a metric general enough to represent radiation from a bounded
source (Bondi, 1960). He kept the shear but restricted the field
ftp be axially symmetric. Sachs (1962) showed that nothing essential
was lost by the latter assumption. An important feature in Bondi's
~approach is his choice of r: he takes for it the luminosity distance,

more precisely, for Bondi's line-element

(2 ds’s — v>[e” (4p— Ad)+ &5 Bdp¥] + C du
[j | ® ’> P ;l—iijbohktiﬂ)
the area of the surface u = const., r = const., Os;qx<(,27r;f35;€)€§7r

. 2 ;
is 4™, Bondi assumes that for sufficiently large values of r

*
the functions ® . A. ¢ and D have the farm



*The lines to follow contain a grossly simplified and mutila-
ted presentation of the work by Bondi et al., (Bondi, van der

Burg and Metzner, 1962).

L8 -+ OQ/-W"‘)

.=

L (N

C=1-2= +0(%),
D = l+x-,~ +OC/+"‘~>,

where a, my n, d are functions of u and € only. These assumptions

I

H

_ A
(25) /%

imply that (24) may be transformed to an asymptotically Cartesian
coordinate system in which the radiation conditions (14) - (17)
will be satisfied. Bondi shows that the expansions (25) are
consistent with the fiald equations for empty space and proceeds
to solve some of these equations to obtain a = d = 0 and a

relation between m and n, 5
| “ 2 D ( )
(26 %‘%‘,‘;“ ”ﬁ) /2(?31& 1'}\4&,?/39 gv"«(a’g—q“g L
There are also other equations relating m and n to higher order
terms but they will not be considered here. It appears from the
analysis that n may be a completely arbitrary function of its
a£guments; its derivative with respect to u is called the news
function. The function m is closely related to the total_energy
of the system. In the static case, (%%E&L:: (j -and from other
field equations also -?qu = 0O andF;‘ma be identified with
' 53@: =. y entified wi
the mass. In general, Bondi defines the mass as the average of m
over the angles,‘
MG) = f’m(m &) sin B ol B,
Equation (26) implies that the mass diminishes,

j»ﬁ': Zf(D)svw@d@

if'and only if there is news. Clearly, plays the role of

what was previously denoted by lF*V . The Riemann tensor is of

the general form (Sachs, 1962)

en - RN LAy D/,:é +o
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where tk ressed and N, III and D denote
tensors . and degenerate, respectively (of
section 7). These tensors admit er as a principal null vector
~and are covariantly constant along the rays; moreover they are
‘proportional to quantities which may be given a physical meaning:
N o~ 2 n/du™
¥ _ag
T~ o ™= ®s

ﬁL
D > 2m + 55
Only the first of these results could have been obtained from (21).

Bondi insists on the relation between news and loss of mass and,
on. the basis of it, advances the hypothesis that there is no radia-
tion from freely falling particles and a pressure-free dust.

A different technique to solve the field equations has
been developed by Newman and Penrose (1962). They introduce a
field of mull basis vectors (tetrads) adapted to a congruence of

diverging, hypersurface-orthogonal rays in V If k}*_is tangent

2
w? ],PL »o Wy 757A.)'

The vectors are normalized so that k 1ﬁu¥ 1l = -m ﬁ?ﬁgnd the

= w

remaining scalar products are zero. Given such a tetrad, the

to the rays, the null tetrad is (k

Riemann tensor of an empty space-time may be split according to the

formula
(28) R = N(k) + IT1I(k) + D(k,1) + III (i, + N(1,.
Here N(k) denotes a tensor of Petrov type null, admitting krk;as a

propagation vector; D(k,l) is a degenerate tensor and as such admits
two principal null vectors, kPV and lF‘ (cf section 7). Newman and
Penroge’intfoduce as one of the coordinates the affine parameter r
along the rays . and replace the Binstein equations by a set of
equations of the.first order on the Ricci rotation coefficients
corresponding to the null tetrad. Roughly, their result on the

asymptotic behaviour of the Riemann tensor in empty space is: -

if w(1) = 0(1/r’), then
III(i) = o(1/z%),
D(k71) = 0(1/15)3

TTT(K) = 0(1/r2\,
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This is in agreement with (27) and also with earlier exact results
on the behaviour of the curvature tensor for algebraically special
metrics (Sachs, 1961; cf section 8).

Another important result on the asymptotic behaviour
of gravitational waves is the "wave-front theorem", which in different
forms was independently demonstrated by Papapetrou (1958), Peres and
Rosen (1959), Infeld and Plebanski (1960) and Misner (1962).
Papapetrou has shown that there can be no periodic, non-static and
asymptotically Euclidean metrics; possible are only pulse waves,
with the amplitude of the disturbance decreasing sufficiently rapidly
for t —» 4= @>. Infeld and Plebanski prove that the assumptions
() Yy = v + OC/+)
(30) gkww_:u@(%,v) but not OC/&), for t = conste.

lead to contradictions with the field eguations. Very roughly,

their argument is as follows: suppose that on some space-like
Hypersurface t =~const., and for a certain choice of coordinates,
the components of the metric tensor are such that (29), (30) hold.
For some relevant components of gﬁllthe field equations can be
symbolically written as
&?I = const, ( v?z) )2.

If the right hand side behaves really like l/rz, q? contains a log r
tewm 2n conbradiction o (29).

Arnowitt, Deser and Misner formulate a stronger form
of the wave-front theorem and prove it rigourously: if (29) holds,
then for each t = const. one can further restrict the coordinates so

that 3
o(1/r 2FE)

3 3
o(1/r =t € )

i

€ij,k

I

K. .
1J
where e;;>0 and. Kij is the second fundamental form of the hypersurface

t = const. (Misner, 1962).
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Geometry of null elements

It is easy to convince oneself about the intimate
connection between waves and null elements in space-time. There
are obvious physical reasons for such a connection; electromagnetic
and gravitational waves travel with the velocity of light; in four
dimensions, a ray of light is a null geodesic; the electromagnetic
tensor of a plane, progressive wave is k m , with kl&‘ nulls

Lo 2]

the Cauchy problem cannot be locally formulated on a null hypersurface
because waves may whizz past without consideration for the value
of the field on the hypersurface. The possibility of transferring
information by waves is also related to the nmull character of the |
geometric structures associated with them. The role played by the
null elemenfs is already apparent in the study of asymptotic properties
of radiétiye fields. During the recent years, a large number of
important papers have been written on Riemannian space~-times with
distinguished null structures. There are very readable expositary
articles on this subject (Pirani, 1962, 1964; Sachs, 19633 Ehlers and
Kundt, 19623 fhese works contain an extensive bibliography). It
does not seem necessary'té review here these papers in detail. The
following sections contain a very brief enumeration of some of the

important results.

7. Algebra of the conformal tensor.

Pirani's research on the physical meaning of the Petrov classification
of the burvature tensors may be considered as the starting point of

the recent trend to use geometrical methods in gravitational radiation
theory.  (Petrov, 1954; Pirani, 1957). The Petrov classification
 itself has been the object of numerous studies and presentations,

An account of the various approaches and an extensive bibliography

of the subject may be found in the review article by Pirani (1962).

For our purposes it suffices to recall the spinor approach (Penrose,
1960; see also Witten, 1959): there is a one-to-one correspondence
between directions in spinor space (i.e., in 02) and null directions in

Minkowski vector svace: everv real feranrt halanainm +n an 4 amndaaihl A
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may be represented by a symmetric 2s-index spinoz‘saé...K;

every such spinor may be factorized,

(FAB...K - \E(A'}?B'”%/K)
Therefore, any non-zero tensor of the type D\D(Sb O)@ cj)@; S>

defines 2s null directions, called principal, some of which may
coincide. A multiple principle null direction is called a
propagation direction. The Petrov classification, as formulated
by Penrose, consists in enumerating all possible coincidences
among the principal nullldirect;ons. The Riemann tensor in
empty space, and the Weyl tensor of conformal curvature in any
case, correspond to s = 2, They define 4 null directions. One
calls a conformal tensor type I if all these directions are distinct;
type II, III or N (null) if exactly two, three or four coincide,
type D if there are two distinct pairs of coinciding principal null
directions. A space is called algebraically épecial if its Weyl tensor
is not of type I. For the electro-magnetic field, s = 1, and there
are only two types of tensors.

Plane waves and similar simple kinds of radiation
are of type null; the Schwarzschild metric is D; it is quite clear

that a general, physically realistic space-time is of type I.

8. Local differential properties.

. An algebraically special, conformally non-flat metric defines a
preferred field of null difections - the propagation directions

\( a D metric defines two such fields). This field of directions

defines in turn a congruence of rays in space-time. One may think of
‘these rays as corresponding to a special pattern of propagation

of light (Robinson, 1961). In special cases, such as that of

plane waves, one may interpret the repeated principal null directions

as the directicns of propagation of gravitational radiation.

These remarks justify the interest people have recently shown in

the properties of rays, in particular of those associated with algebraic-

ally special metrics.
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geodesics, not necessarily associated with principal null directions.

It is possible to normalize the tangeni vectors so that
k k=0,
Py

From the first derivatives of k,, one can then form exactly three

}A.

scalars: the coefficient of rotation,
VORI
) -
YVENT R /

2
0= L&

the divergence,

and the shear,

VY
0 = rj'li“%@w) £ e”
These quantities can be given a simpie optical interpretation (Sachs,
1961)+ think of the null geodesics as of rays of light. Consider a
small, plane, opague object and a plane screen, some distance apart
from the object. Suppose that both the‘object and the screen are
oriented so that they are orthogonal to the rays of light in their
respective rest frames and situated so that the shadow cast by the
object can be observed on the screen. One can displace, by parallel
transport along the rays, the object to the position occupied by
the screen and compare it with the shadow. The magnification of
the shadow is proportional to ©, the rotation - to «J and ¢
characterizes the shear (deformation).

The following theorem is due to Goldberg and Sachs (1962):
a vacuum metric is algebraically special if and only if it contains
a shear-free congruénce of rayss; the tangent vector to the congruence
belongs to a propaéﬁtion direction of the conformal curvature tensor.
- A stronger form of this theorem was established by Robinsen and
Schild (1962).

Sachs integrated some of the field equations in empty
space to obtain the exact behaviour of algebraically special Riemann
tensors along the rays (Sachs, 1961 a, b). Only one of his results
is quoted here: for an algebraically special, empty space-time with

W = O.f © the Riemann tensor is
(31) R = N/r + IIT/r° + IT /r-.

Here N, III, and II are tensors of the type indicated by the
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parameter. It has been possible to strengthen this result by proving
that II must be of type D and finding the precise form of the line-
element (Robinson and Trautman, 1962).

It is interesting to compare the exact result (31)

with an analegous formula obtained by approximate methods (section 6).
The coincidence in form of the three leading terms in (27) and (31)
may be interpreted to mean that certain algebraically special fields
constitute good approximations to actual radiation fields at large
distances from the source. Still, these fields are too special

to be realistic themselves.

9. Null elements at infinity.

A beautiful method for dealing with the asymptotic pioblems for
mass-zero fields has been recently developed by Penrose (1962, 1963,
1964). Leaving out the subtleties, the essential ideas underlying
his approach may be summarized as follows. When one talks about the
'infinity' of a certain topological space, one has in mind that the
.space, though non-compact is locally compact and can be compactified
by adjunction of certain ideal (infinite) elements. There are many
ways of compactifying a locally compact space; some of them may be
preferred if the space possesses other structures, in addition to
its topology. For example, the Minkowski space can be compactified
so that its conformal geometry can be extended, by continuity,

to the infinite elements. Furthermore, the equations of motion of
mass-zero fields are conformally invariant in the sense that, given
two Riemannian space-times conformally related to each other and a
solution of & mass-zero field equation in one of them, there is a

- natural way of mapping thevsolution into a solution of the same
equation in the other space. According to Penrose, instead of
considering the asymptotic behaviour of mass-zero fields in non-
compact Riemannian spaces, one can look at their properties in
neighbourhoods of certain elements of a compact space, conformal to
the given one.

The construction of the Penrose manifold~?>.for a
~ _4

LUC VS PSS P e AI S B ~ DY
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and introduce in cach ol them ceordiuates u, v, @,?5, where

and r, 9,%3 are the spherical cocrdinates., Let one of the R4‘s be given
the Minkowski structure; “this sgace will be calleduéi. Consider, in

the second space, the subset defined by s

T 9 o, RS
Its closure in R4 is compact, call iti:)” The transformation
x b

g~ 8, o —= D
{ i
. . Wy | . . : ) PR
is a homeomorphism oi/@{ onto the interior of 3:' it is also a

al

diffeomorphism of the natural differentiable structures. The metric

form transported by this diffeomorphism from M to Intﬁj}is

Costu o e Li) NG AB + S QBOL(F}

Let us weaken the geometry in T “i* by vaking the conformal

(32) A_Cél«q Oiif”

e o

geometry induced ty (32); ancther meiric form representing the

, AP |
e Y BT s 00 ﬂ\?ﬁ
) ;

same geometry is

7% B
G G
. Yy
. - G . - - V) .
This may be extendszd by contiruiiy cver the whole ]“n To obtain a

o
non-degenerate conforual gecmatry 01f1 it 1s necessary to introduce

there an equivalence relation: one identifies with each other points
for‘whicﬁ:(simultaﬁeously) u = -/2, v =/2 (the spatial infinity).
The 'hypersurfaces at infinity’ u = -7./2 and v =A/2 are nmull in
the extended conformal geom:ixry,

The counstruction 1 of {7 1s not sc gimple in the case of
a Riemannian manifold even if Its topology is Euclidean. Even in
simple cases, the conformal gscmetry mzy be inextendable over the
entirejE). Such singularities occur, e.g., for the Schwarzschild

o

space-time. When the cosmological coassant is non-zero, the hyper-
surfaces at infinity cezse to bz rull.

With the aid of the conformel technique, Penrose was able
to give a very simple proof of a general theorem on the asymptotic
form of mass-zero Tislis {“he peeling-off theorem). His method is

suitable for treating the groups of a symptotic symmetries and yields

a new anndroach Lo +the nr~hlam nf ovd +atdianal anaror
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