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Abstract: In this didactic article, the theory of special relativity is derived

from simple assumptions, somewhat different from the traditional postulates of

relativity and constancy of the velocity of light. The basic assumption is that

clocks are synchronized by “universal signals”. Bats might have assumed them to

be provided by sound, but they would have found that elementary clocks do not

run in agreement with such a synchronization mechanism; this is described in a

fable at the end of the article.

I. INTRODUCTION

Einstein’s special relativity theory (SRT) has been accepted and used by

physicists for a long time—almost a century. But even now this theory is

met with doubts and mistrust by those that are exposed to it for the first

time and wish to understand its role and place in the development of science.

Sometimes the doubts come from reading popular books on the subject,

whose authors present SRT as full of paradoxes. Often, these authors try to

impress the reader by simplified, but easy to remember, statements about

the contraction of lengths and slowing down of moving clocks. Physicists are

also sometimes at fault: having fully absorbed and mastered the theory of

relativity, most of them do not feel the need to present its foundation in a

careful manner, accessible to the layman.
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Traditionally, most expositions of SRT begin with an account of the ex-

periments by Michelson and Morley. These physicists, at the end of the

19th century, by using interferometers constructed for the purpose, have per-

formed measurements intended to determine the motion of the Earth relative

to the ether, a hypothetical carrier of the electromagnetic phenomena. The

measurements did not detect such motion and have led to the formulation

of the postulate of the constancy of light velocity. Another general postu-

late is that of relativity, asserting the equivalence of all inertial frames for

the description of physical phenomena, including electromagnetism. From

those two one derives the form of Lorentz transformations and their physical

consequences on the measurement of lengths and time intervals. Such an ap-

proach is historically not entirely justified: Einstein, in formulating his theory

of 1905, did not even refer to the Michelson and Morley experiments, even

though he probably knew about them at the time2. Moreover, the negative

results of those experiments can be explained on the basis of the emission

hypothesis of Ritz, according to which light propagates in vacuum with the

same velocity with respect to the reference frame of the source3.

The special theory of relativity is correct in the sense that it describes

well—in any case much better than the physics of Galileo and Newton—

space-time relations, including those at large velocities among the bodies in

motion. This is confirmed by a very impressive wealth of observations of

phenomena accompanying motions, accelerations, collisions and decays of el-

ementary particles, nuclei and atoms. Quantum physics sheds a new light

on SRT. In particular, the indistinguishability of elementary particles (“all

electrons are precisely the same”) guarantees the existence of “universal”
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units of time and length. For this reason, it seems appropriate to begin a

lecture on SRT with simple observations (“principles”, “postulates”) that

reflect the present state of physics, rather than by making appeal to the

Michelson and Morley experiments of 100 years ago. The purpose of this

article is to formulate such a set of postulates and sketch how one can derive

from it the elementary predictions of SRT. This approach is very close to

that of Hermann Bondi and his k-calculus4. In it, an essential role is played

by distinguished signals used to synchronize clocks. In SRT they are elec-

tromagnetic signals, but, as emphasized already by Einstein5, one could, in

principle, use other “universal” signals. He wrote:

The theory of relativity is often criticized for giving, without jus-

tification, a central theoretical role to the propagation of light, in

that it founds the concept of time upon the law of propagation

of light. The situation, however, is somewhat as follows. In order

to give physical significance to the concept of time, processes of

some kind are required which enable relations to be established

between different places. It is immaterial what kind of processes

one chooses for such a definition of time. It is advantageous,

however, for the theory, to choose only those processes concern-

ing which we know something certain. This holds for the prop-

agation of light in vacuo in a higher degree than for any other

process which could be considered, thanks to the investigations

of Maxwell and H. A. Lorentz.

To clarify this point of view and, at the same time, emphasize the truly

distinguished place of electromagnetic phenomena in nature, this article con-
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cludes with a fable about a civilization of bats. Had they developed physics,

they might have used ultrasound to synchronize clocks and define space and

time relations. At some point of their history, they would find that elemen-

tary phenomena—even their biological clocks—do not run according to the

laws of relativity based on sound.

II. THE POSTULATES

At the basis of all classical physics, with gravitation neglected, is

Newton’s First Law

saying that there are clocks and reference systems with respect to which free

motions occur without acceleration. In other words, there are coordinates

(x, y, z, t) such that free motions of particles are given by linear relations

among the coordinates.

Throughout the article I consider, for simplicity, only one-dimensional

phenomena, i.e. a two-dimensional space-time. To specify an event two

coordinates, say x and t, suffice. According to the First Law, they are deter-

mined up to linear transformations,

x′ = ax+ bt+ x0, t′ = cx+ et+ t0, (1)

where a, b, c, e, x0 and t0 are constants (real numbers) and ae−bc 6= 0. Putting

a = 1, c = 0 and e = 1 in (1) one obtains the well-known Galilean transforma-

tion. The coefficients a and e are associated with the possibility of changing

units and c 6= 0 appears, e.g., when on a small portion of the equator one

considers a continuously changing solar time.

The First Law, applied to one-dimensional motions, implies that the set

of all events is an affine plane, i.e. a plane where the Thales theorem holds,
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but there is no Pythagoras theorem yet, because metric relations are not

specified. It is convenient to represent graphically, on that plane, histories of

material points and observers: the sets of their events form world lines that

are straight for free motions and inertial observers. Parallel straight lines

represent particles or observers that are at rest one relative to the other.

Such observers can agree upon a common unit of time: this is achieved by

sending any signals with parallel world lines (Fig. 1). Observers that share

in their history a common event—so that their world lines intersect— can

take it for beginning of time reckoning, but the First Law, in this case, is not

enough to determine a common unit of time (Fig. 2).

Postulate On Universal Signals

To determine a common unit of time for observers in relative motion and

to define a coherent method of measuring distances and time intervals, it

is necessary to have a family of universal signals. On the affine plane it

is represented by two sets of parallel straight lines with the property that

every point (event) is the intersection of two lines (Fig. 3). There are two

distinct families if the velocity of the signals is finite. In Newtonian physics,

one accepts the existence of signals that propagate instantaneously—with

infinite velocity. In this case, the two families degenerate into one: its lines

correspond to spaces of constant absolute time.

This postulate replaces the hypothesis of the constancy of the velocity

of light. It asserts that the propagation of signals does not depend on the

motion of their sources. The parallel nature of the lines of one family means

that a photon will never catch up with another photon moving in the same

direction. In this article, from now on, thin lines in figures represent the
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Fig. 1
Observers that are at rest with respect
to each other can agree upon a unit
of time, but not on its origin.
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Fig. 2
Observers that share
an event can take it
for the origin of time.

world lines of the distinguished signals.

Having agreed upon the choice of signals used for the synchronization of

clocks and verified that the they satisfy the requirements of the postulate on

universal signals, the inertial observers may now accept

A Convention

Concerning The Unit Of Time

As mentioned in Section II, inertial observers that are at rest relative

to each other, can agree upon a unit of time using any signals whatsoever.

Consider now inertial observers O and O′ moving one with respect to the

other: their world lines intersect at an event that can be taken for the origin

of the times measured by the observers’ clocks, t = t′ = 0 (Fig. 4). Assume

now that when the clocks of both observers show 1, they send, one to the

other, signals of the preferred, universal type, and note the times α and α′

shown on their respective clocks when the signals reach them.
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Fig. 3
Two families of parallel lines
represent the world lines of signals.
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Fig. 4
The convention α = α′

expresses the equivalence
of inertial observers.
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Fig. 5
A consequence of the convention
and of the Thales theorem.
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The observer O, assumed to be a gentleman, adjusts his clock to that

of the lady O′ so that α = α′. The coefficient α has a simple physical

interpretation: if the signal sent by O is monochromatic and has period T ,

then the signal received by O′ will have period αT . In other words, α is the

Doppler coefficient. After the adjustment of clock rates, described above, by

virtue of the Thales theorem, a signal sent by O at time t, received by O′

at time αt and instantaneously sent back, returns to O at time α2t shown

on the O’s clock, Fig. 5. The convention is correct in the sense that it is

symmetric—the observers O and O′ are on the same footing—and consistent,

i.e. transitive with respect to observers: if two pairs of observers, O1, O2 and

O2, O3 adjust, pairwise, their clocks, then the clocks of the observers O1 and

O3 will run consistently, as can be verified by using the Thales theorem in

the situation represented in Fig. 6.
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Fig. 6
The convention on the units of time, used by different
observers is correct because it is consistent (transitive)
The composition law of the Doppler coefficients is: α13 = α12α23.

The clocks satisfying our Convention are referred here to as good. One

should recognize that the Convention does not say anything about the con-

struction of good clocks. For example, if we established radio communica-
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tion with a distant, extraterrestrial civilization, but could not exchange with

it rectilinear light signals, then we would not be able, on the basis of the

Convention alone, agree upon what is meant by 1 second. Forgetting this

difficulty for a moment, consider now the following

Prescription

for Measurements of Distances and Times

An observer O considers the event B as simultaneous with the event

A occurring at time t = 1
2(t1 + t2), where t1 and t2 are, respectively, the

moments of time, shown by his (good!) clock, corresponding to the emission

and reception of the signals that meet the event B, see Fig. 7. The distance

of B from O is proportional to 1
2(t2 − t1); the coefficient of proportionality

c is chosen according to the range of phenomena under consideration. For

example, in astronomy, one often chooses c = 1 and uses one year as a unit

of both time intervals and distances.

Having now a method to measure distances and time intervals, one can

define the relative velocity of two observers or material points.
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Fig. 7
Observer O considers the events
A i B to be simultaneous

and ascribes to B the distance
x = 1

2c(t2 − t1) and time t = 1
2(t1 + t2).
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Interpretation of the coefficient α: from
x/t = V and t+ x/c = α2(t− x/c)

one obtains formula (2).
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The observer O, having ascertained that O′ at time t is is at a distance

x from him, will declare the velocity of O′ to be V = x/t (Fig. 8). On the

other hand (Fig. 5), we have t+ x/c = α2(t− x/c) so that

α =
√

(1 + β)(1− β), (2)

where β = V/c. The observer O considers the events A and B to be si-

multaneous (cf. Fig. 8 and 11), but the clock of observer O′ at B shows

t′ = α(t− x/c); by virtue of x = V t and Eq. (2) one obtains the formula for

the relativistic dilation of time

t′ =
√

1− β2 t. (3)

Lorentz transformations are equally easy to derive (Fig. 9): assume that

observers O and O′ associate with the event Z the coordinates (x, t) and

(x′, t′), respectively. On the basis of the Convention and the Thales theorem,
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one has

t′ − x′/c = α(t− x/c), t+ x/c = α(t′ + x′/c).

This leads at once to the invariance of the space-time interval

c2t′2 − x′2 = c2t2 − x2

and the Lorentz formulas

x′ = (x− V t)/
√

1− β2, t′ = (t− V x/c2)/
√

1− β2. (4)

The so-called twin “paradox” is illustrated on Fig. 10: one of the twins, say

the girl O′, begins a journey, receding from her brother O with a velocity

V very near to that of light, so that β / 1. After some time, she fires the

reverse engines of her rocket so as to achieve a velocity opposite to that

during the first leg of the journey. Assume that the period of time τ , when

O′ is undergoing acceleration is much smaller than the time T ′ of her journey,

but large enough to make the acceleration, which is of the order of V/τ , so

small that it does not affect her health and the rate of her clock. When the

twins meet, they compare their appearance and the times shown by their

clocks. The traveller appears to be younger: the relation between the times

T and T ′ shown by the clocks of the twins, when they meet, can be read off

from Eq. (3), i.e. T ′ ≈
√

1− β2 T � T .

In some discussions of the history of those twins, the following aspect—

allegedly paradoxical—is emphasized. The relativistic time dilation, given

by formula (3), is invariant with respect to the replacement of V by −V .

Therefore, some people say, each of the twins should, throughout the entire

journey, see the other one aging at a lower rate than him or herself. To
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explain in detail the fallacy of this argument, consider, for simplicity, the

case of τ = 0. One can now easily determine the rate of the clock of one

twin, measured by the other, as a function f of the time shown on the clock

of the other. For the stationary twin O, the function follows simply from

(3): f(t) = t
√

1− β2. In the history of the traveller O′, it is necessary to

distinguish, from the point of view under consideration, three periods. At

first, well before the turning point when the speed of O′ changes sign, a light

signal sent by O′ towards O and sent back with the information about the

reading of O’s clock, reaches O′ when she is still receding from her brother.

During that period Eq. (3) applies, f ′(t′) = t′
√

1− β2. The signal sent by

O′ at her time t1 such that α2t1 = 1
2

√
1− β2 T ,returns to her at the turning

point. For every t′1 such that t1 < t′1 <
1
2

√
1− β2 T the signal sent by O′

towards O reaches O at his time αt′1 and returns to O′ at her time α2t′1. She

considers ???

An Experimental Fact:

Elementary Clocks Are Good

The theoretical considerations outlined above are relevant to the real

world because there are many good clocks , satisfying the requirement of the

Convention without the need for actual adjusting of their rates. We owe the

knowledge of such clocks to the physics of the micro world

1 This is an expanded version of the author’s article in Polish: “O tym, jak

nietoperze obali ly teoriȩ wzglȩdności”, Postȩpy Fizyki , – ().

2 See pp. 115–119 in A. Pais, ‘Subtle is the Lord...’ The Science and the Life

of Albert Einstein (Oxford University Press, Oxford, 1982).
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Lorentz transformation.

Observers O and O′ associate with Z,
coordinates (x, t) and (x′, t′), respectively.
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3 See, e.g. pp.5–8 in W. Pauli, Theory of Relativity (Pergamon Press, London,

1958).

4 H. Bondi, Relativity and common sense (Doubleday, Garden City,1964); see

also W. Kopczyński and A. Trautman, Spacetime and Gravitation (PWN

and Wiley, Warszawa and Chichester, 1992).

5 A. Einstein, The meaning of relativity , Fifth edition (Princeton University

Press, Princeton, 1956), pp. 28–29.
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