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Abstract. For every pair (m,n) of non-negative integers one defines Em,n to be
the group of equivalence classes of central extensions of the pseudo-orthogonal group
Om,n by Z2. The isomorphism k : Em,n → H2(BOm,n,Z2) is used to show that Em,n
is isomorphic to the group Zl(m,n)2 , where l(0, 0) = 0, l(1, 0) = 1, l(m, 0) = 2,
l(1, 1) = 3, l(1, n) = 4 and l(m,n) = 5 for m,n > 1. If M is a manifold with a
metric tensor g of signature (m,n) and f is a smooth map from M to the classifying
space BOm,n inducing the principal Om,n-bundle P of orthonormal frames defined
by g, then the bundle P can be reduced to an element H of Em,n—i.e. to a double
cover of Om,n—if, and only if, the element f∗k(H) of H2(M,Z2) vanishes. This
generalizes the classical topological condition for the existence of a pin structure on
a pseudo-Riemannian manifold. The set of all 32 = 25 inequivalent double covers of
Om×On, the maximal compact subgroup of Om,n, m,n > 1, is described explicitly.
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1. Introduction

Ever since the discovery of the spin of the electron, spinors have played
a major role in theoretical physics; see the chapters by Jost and van
der Waerden in Fierz and Weisskopf (1960) for the early history of the
subject and an account of the major role of Pauli. At first, spinors
were considered only in the context of flat spaces; they were defined in
terms of suitable representations of the groups SU2 and SL2(C), provid-
ing the unique non-trivial double covers of SO3 and of the connected
component of the Lorentz group, respectively. The discovery of parity
non-conservation in weak interactions (see the chapter by Wu in loc.
cit.) induced an increased interest in the behaviour of spinors under
reflections. Mathematicians have coined the name of ‘pin groups’ to
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denote double covers of the full orthogonal groups that reduce to spin
groups upon restriction to the connected component (Atiyah et al.,
1964). The development of general relativity forced physicists to con-
sider spinor fields on pseudo-Riemannian manifolds (see Schrödinger
(1932) and the references to earlier work given there). A precise defini-
tion of ‘spin structures’ on manifolds was possible only after the notion
of a fibre bundle had been introduced; Haefliger (1956) found the topo-
logical obstruction to the existence of a spin structure on an orientable,
Riemannian manifold and Karoubi (1968) extended this result to the
non-orientable and pseudo-Riemannian cases.

In the late 1950s, Shirokov (1960) (see also the references to earlier
papers given there) pointed out that the full Lorentz group O1,3 may
have 8 inequivalent double covers. His argument, later taken up and
extended to Om,n by Da̧browski (1988), is as follows. Consider a double
cover H — i.e. a central extension by Z2 — of O1,3. Every element of
the Lorentz group is covered by two elements, say h and −h of H. In
particular, let ±s and ±t be elements of H covering commuting space
and time reflections, respectively. Since the square of a reflection is the
identity, one has s2 = a1, t2 = b1 and (st)2 = c1, where 1 is the unit
of H and a, b, c ∈ {+,−}. Since there are 8 different combinations of
the signs a, b and c, one expects to have 8 inequivalent double covers.
For example, a = b = c = + may be realized as the trivial extension
O1,3 × Z2, whereas the two cases when a 6= b and c = + correspond to
the two pin groups.

Shirokov discussed the possible relevance of the different covers of
the Lorentz group to the description of elementary particles. Simi-
lar ideas, in a modern setting and in connection with strings, have
been put forward by Carlip and DeWitt-Morette (1988) and DeWitt-
Morette and DeWitt (1990). Chamblin (1994) determined the topolog-
ical obstructions to the reductions of an Om,n-bundle to the 8 double
covers considered by Da̧browski. None of these authors have shown
that there are precisely 8 such double covers. The only double covers
that have been described explicitly, besides the trivial one, are the two
corresponding to Pinm,n and Pinn,m.

In this paper, I determine the group Em,n consisting of inequivalent
central extensions by Z2 of the group Om,n for m,n > 0. The order
of this group is the number of inequivalent double covers of Om,n.
It turns out that the Lorentz group O1,3 has 16 such double covers;
only 8 among them are ‘Cliffordian’ in the sense of being generated,
as elements of E1,3, by the pin groups that are subsets of the complex
Clifford algebra Cliff4(C). For m,n > 1, the group Om,n has as many as
32 inequivalent double covers. The group O1,1 has 8 double covers; all
of them are Cliffordian. The isomorphism Em,n → H2(BOm,n,Z2) gives
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rise to a simple and general formulation of the topological condition for
the existence of a generalized pin structure, i.e. of a reduction of the
bundle of orthonormal frames of a pseudo-Riemannian manifold to a
double cover of Om,n.

2. Notation

For every n ∈ N, one has the orthogonal group On, its connected
component SOn, the spin group Spinn, two pin groups Pin+

n and Pin−n :
if u ∈ Rn ∩ Pin±n , then u2 = ±1 and one says that u is a unit vector.
For m,n ∈ N, one has the group Om,n ⊂ GLm+n(R) of automorphisms
of the quadratic form

x21 + . . .+ x2m − x2m+1 − . . .− x2m+n.(1)

It is understood that O0 and O0,0 are both the trivial group. For
mn 6= 0, the connected component SO0

m,n of the group Om,n is a proper
subgroup of SOm,n = {a ∈ Om,n| det a = 1}; a similar notation is used
for the spin and pin groups. The real Clifford algebra associated with
the quadratic form (1) is denoted by Cliffm,n. The set Z2 = {0, 1} is
considered, depending on the context, either as a group (with respect
to addition mod 2) or as a ring and spanX denotes the linear span over
Z2 of the elements of the set X.

3. Generalities on central extensions of topological groups

Recall that a central extension of a topological group G by an Abelian
discrete group A is an exact sequence of continuous group homomor-
phisms,

A
i→ H

p→ G,(2)

such that i is injective, p is surjective and i(A) is contained in the centre
of H; see, e.g., Ch. I § 6 in Bourbaki (1970) for the algebraic aspect.

Another extension
A

i′−→H ′ p
′
−→G

is said to be equivalent to (2) whenever there is an isomorphism of
topological groups j : H → H ′ such that j ◦ i = i′ and p′ ◦ j = p. There
is always the extension

A→ G×A pr1−→G.(3)

An extension equivalent to (3) is said to be trivial .
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It is often convenient to abuse the language by saying that the group
H, appearing in (2), is the extension. This is a real abuse: for example,
the dihedral group D4 and the group Z2×Z4 provide each 3 inequivalent
extensions of Z2 × Z2 by Z2. This being kept in mind, it is possible to
use the simplified notation without running into trouble. The trivial
extension is then denoted by O.

Given extensions by A of two groups,

A
iα−→Hα

pα−→Gα, α = 1, 2,

one defines an extension of their direct product,

A
i−→H13H2

p−→G1 ×G2,(4)

by putting H13H2 = (H1 × H2)/A, i(a) = [(1, a)], p([(h1, h2)]) =
(p1(h1), p2(h2)), etc.

The set E(G,A) of equivalence classes of such extensions of G by
A has the structure of an Abelian group; to describe it, consider two
extensions

A
iα−→Hα

pα−→G, α = 1, 2.

One defines their sum to be the extension A
i−→H p−→G given as follows.

Let H ′ = {(a1, a2) ∈ H1×H2|p1(a1) = p2(a2)}. The injection A→ H ′,
a 7→ (a, a−1), makes A into a normal subgroup of H ′; let H be the
resulting quotient group: [(a1, a2)] = [(a′1, a

′
2)] ∈ H whenever there is

a ∈ A such that a′1 = aa1 and a′2 = a−1a2. The map p : H → G given
by p([a1, a2]) = p1(a1) is a surjective homomorphism and its kernel
is the group {[(a, 1)] = i(a) ∈ H|a ∈ A}, isomorphic to A; therefore
H ∈ E(G,A). This extension is written as H1 + H2; one easily checks
that H2 + H1 is an extension equivalent to H1 + H2, that so defined
sum of (equivalence classes of) extensions is associative and the trivial
extension is the neutral element of the group E(G,A).

4. Cohomology of classifying spaces

How can one find the group E(G,A)? There is a well-known isomor-
phism of the group of all central extensions of G by A with the algebraic
(in the sense of Eilenberg and Mac Lane (1942)) second cohomology
group H2

alg(G,A) defined without any reference to the topology of G;

see, e.g., Ch. IV in Mac Lane (1963). With a topological group G there
is associated its classifying space BG whose singular cohomology with
coefficients in A, relatively easy to compute, is closely related to the
Eilenberg-Mac Lane cohomology of G and to E(G,A).
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Recall that, for every topological group G, there is a universal prin-
cipal G-bundle EG → BG such that every principal G-bundle over a
paracompact space M is obtained as the bundle induced by a map from
M to the classifying space BG. Two maps from M to BG induce the
same bundle if, and only if, they are homotopy equivalent (Husemoller,
1966).

For a topological group G one can consider the group Gδ that
has the same underlying set of elements, but is endowed with the
discrete topology. The natural homomorphism Gδ → G is continuous
and lifts to a continuous map BGδ → BG. Following a suggestion of
Friedlander, Milnor (1983) conjectured that, for a Lie group G and
a finite Abelian group A, this map induces an isomorphism of the
corresponding cohomology rings with coefficients in A.

Jackowski (2000) informs me that, independently of Milnor’s con-
jecture, for a locally simply connected G—therefore, in particular, for
a Lie group— and a discrete A, there holds the isomorphism

E(G,A) ∼= H2(BG,A).(5)

This paper is based on the validity of the isomorphism of groups (5)
for G = Om,n and A = Z2.

5. Cohomology of the classifying spaces of
pseudo-orthogonal groups

From now on assume A = Z2 so that (2) reads Z2 → H → G and,
for every extension H of G, one has H + H = O. The composition of
elements in G and H is denoted multiplicatively, one writes i(0) = 1,
i(1) = −1 and H∗(BG) instead of H∗(BG,Z2). One refers now to the
extensions as ‘double covers’.

The cohomology rings mod 2 of the classifying spaces of the groups
On and SOn are well-known; see, e.g., Milnor and Stasheff (1974). These
rings are polynomials over Z2 in the Stiefel-Whitney classes,

H∗(BOn) = Z2[w1, w2, . . . , wn]

and
H∗(BSOn) = Z2[w2, . . . , wn],

where degwk = k. In particular, the second cohomology groups are
H2(BO1) = span{w2

1} and

H2(BOn) = span{w2, w
2
1} for n > 1.
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Since On′ ×On′′ is a maximal compact subgroup of On′,n′′ , the quo-
tient On′,n′′/(On′×On′′) is contractible and so the spaces B(On′×On′′)
and BOn′,n′′ are homotopy equivalent. Using now the Künneth theorem
one obtains

H∗(BOn′,n′′) = H∗(BOn′)⊗Z2 H∗(BOn′′).

This implies, in a self-explanatory notation,

H2(BO1,1) = span{w′1
2
, w′′1

2
, w′1w

′′
1},

H2(BO1,n′′) = span{w′′2 , w′1
2
, w′′1

2
, w′1w

′′
1} for n′′ > 1,

and

H2(BOn′,n′′) = span{w′2, w′′2 , w′1
2
, w′′1

2
, w′1w

′′
1} for n′, n′′ > 1.(6)

Therefore, the groups On, O1,1, O1,n and Om,n have (for m,n > 1)
4, 8, 16 and 32 double covers, respectively. In particular, the set of
extensions of O1,1 is in a natural, bijective correspondence with the set
of extensions of Z2 × Z2 = O1 × O1 by Z2.

Similarly,

H2(BSO0
1,n′′) = span{w′′2} for n′′ > 1,

H2(BSOn′,n′′) = span{w′2, w′′2 , w′1
2} for n′, n′′ > 1

and
H2(BSO0

n′,n′′) = span{w′2, w′′2} for n′, n′′ > 1.

Clearly, by symmetry, w′2+w′′2 corresponds to the cover of SO0
n′,n′′ by

Spin0
n′,n′′ . But it is not evident what corresponds to w′2. This problem

is at the core of the difficulties in constructing explicitly more than 8
double covers of the Lorentz group O1,n.

The groups E(On,Z2) and E(Om,n,Z2) are from now on denoted by
En and Em,n, respectively.

6. The isomorphism Em,n → H2(BOm,n)

What is the correspondence between the double covers of On′,n′′ and
the elements of (6)? By inspection of the obstructions to the classical
pin structures (Karoubi, 1968), one expects that it can be described
as follows. The group On′,n′′ is known to be generated by reflections in
hyperplanes orthogonal to non-isotropic vectors (Cartan-Dieudonné).
Every reflection is an idempotent; reflections in hyperplanes associated
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with orthogonal vectors commute. Therefore, the square of an element
of H covering a reflection is either 1 or −1. Two elements of H that
cover two commuting and distinct reflections either commute or an-
ticommute. Let V = Rn′+n′′ ⊂ Cliffn′,n′′ . Consider the spaces of unit
vectors

U ′ = {u ∈ V |u2 = 1} and U ′′ = {u ∈ V |u2 = −1}.

Reflections associated with elements of U ′ (resp., U ′′) are called time
(resp., space) reflections. Let

k(H) = λ′w′2 + λ′′w′′2 + µw′1w
′′
1 + ν ′w′1

2
+ ν ′′w′′1

2
,(7)

where λ′, λ′′, µ, ν ′, ν ′′ ∈ Z2, be the element of (6) corresponding to the
double cover H.

PROPOSITION 1. The isomorphism k : En′,n′′ → H2(BOn′,n′′) is as
follows:
λ′ = 0 (resp., λ′ = 1) if every two elements of H covering re-

flections associated with orthogonal elements of U ′ commute (resp.,
anticommute); similarly for λ′′ and U ′′;
µ = 0 (resp., µ = 1) if every two elements of H covering reflections

associated with orthogonal elements, one in U ′ and the other in U ′′,
commute (resp., anticommute);
ν ′ = 0 (resp., ν ′ = 1) if the square of every element of H covering

a reflection associated with an element of U ′ is 1 (resp., −1); similarly
for ν ′′ and U ′′.

Moreover, to characterize the double cover of SO0
n′,n′′ , obtained by

restriction of the one corresponding to (7), one puts µ = ν ′ = ν ′′ = 0
in (7).

Sketch of proof. To justify the interpretation of ν ′, ν ′′ look at double
covers of O1. Similarly, the significance of µ is obtained from O1,1.
By considering two extensions H1 and H2, and two pairs of elements
(u1, u2) ∈ H1×H2 and (u′1, u

′
2) ∈ H1×H2 such that p1(u1) = p2(u2) and

p1(u
′
1) = p2(u

′
2) are reflections in hyperplanes determined by orthogo-

nal vectors, one easily checks that if u1u
′
1+u′1u1 = 0 and u2u

′
2+u′2u2 =

0, then the elements [(u1, u2)] and [(u′1, u
′
2)] of H1 +H2 commute, etc.

2
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7. Construction of double covers

7.1. The 4 double covers of On

This case is the simplest and best known: there are two generators of
the group En,

Pin+
n corresponding to w2 and Pin−n corresponding to w2 + w2

1.

Their sum Pin+
n + Pin−n is a non-trivial double cover that trivializes

upon restriction to SOn. It corresponds to w2
1.

It is worth-while to describe in some detail the extension

Z2 → Pin+
n + Pin−n → On;(8)

all sums of double covers of the groups Om,n are constructed in a
similar manner; I refer to them as being given explicitly in terms of
the summands. Consider

Z2 → Pin±n
p±−→On

and put H ′ = {(a, b) ∈ Pin+
n × Pin−n |p+(a) = p−(b)}, as in Section

3. The group Pin+
n + Pin−n is the quotient of H ′ by the equivalence

relation (a, b) ≡ (a′, b′) ⇔ a = a′ and b = b′ or a = −a′ and b = −b′.
Let [(a, b)] denote the corresponding equivalence class. The injection
i : Z2 → Pin+

n + Pin−n is given by i(1) = [(1,−1)]. For every unit vector
u one has [(u, u)]2 = [(1,−1)]. Therefore, the extension (8) does not
split. If u and v are orthogonal unit vectors, then the elements [(u, u)]
and [(v, v)] commute.

7.2. Explicit construction of 8 double covers of Om,n for
m,n > 1

For every m,n > 1 one constructs 8 inequivalent double covers by
giving a set of 3 generators in the group Em,n.

Let i =
√
−1. There are 4 pin groups, defined as subsets of the

complexified Clifford algebra Cliffn′+n′′(C) = C ⊗ Cliffn′,n′′ , generated
multiplicatively:

Pinν
′,ν′′

n′,n′′ is generated by iν
′
U ′ ∪ i1+ν

′′
U ′′,(9)

where ν ′, ν ′′ ∈ Z2. In the traditional notation, one usually writes Pinn′,n′′

instead of Pin0,1
n′,n′′ and Pinn′′,n′ instead of Pin1,0

n′,n′′ . In the positive defi-

nite case, U ′′ = ∅, one has Pin+
n = Pin0,∗

n,0 and Pin−n = Pin1,∗
n,0; there is no

need for the elaborate notation. The epimorphism p : Pinν
′,ν′′

n′,n′′ → On′,n′′
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is as in the classical case, p(a)v = α(a)va−1, where v ∈ V and α is
the main (grading) automorphism of Cliffn′+n′′(C). The ‘new’ groups

Pin0,0
n′,n′′ and Pin1,1

n′,n′′ also provide double covers of On′,n′′ . (They should

not be confused with the compact groups Pin+
n′+n′′ and Pin−n′+n′′ .) No

two extensions among the four are equivalent, but only 3 among them
are independent, as elements of the group En′,n′′ ; the following relation
is easy to check:

Pin0,0
n′,n′′ + Pin1,0

n′,n′′ + Pin0,1
n′,n′′ + Pin1,1

n′,n′′ = O.

It is convenient to introduce the ‘total 2nd Stiefel-Whitney class’,

w2 = w′2 + w′′2 + w′1w
′′
1 .

It follows from Prop. 1 that there is the following correspondence be-
tween the double covers of On′,n′′ described in (9) and the elements of
H2(BOn′,n′′) given by (6):

k(Pinν
′,ν′′

n′,n′′) = w2 + ν ′w′1
2

+ ν ′′w′′1
2
.(10)

To describe all the 32 double covers of On′,n′′ , n
′, n′′ > 1, one would

need two more independent generators, for example, those correspond-
ing to w′2 and w′′2 . For the (generalized) Lorentz group O1,n, n > 1, one
extra generator suffices. I do not know how to construct them.

Among the 32 double covers only the 8 corresponding to

w2 + µ̄w′1w
′′
1 + ν ′w′1

2
+ ν ′′w′′1

2
, where µ̄, ν ′, ν ′′ ∈ Z2,

are ‘spinorial’ in the sense that, restricted to the connected component,
they reduce to the classical double cover Spin0

n′,n′′ → SO0
n′,n′′ . Among

those 8, there are the 4 given in (10); I do not know how to describe
the remaining 4 which are characterized by µ̄ = 1.

There are also 8 double covers (corresponding to µw′1w
′′
1 + ν ′w′1

2 +

ν ′′w′′1
2) that trivialize upon restriction to the connected component.

Among them, 4 (those with µ = 0) are generated from (10).

The following table summarizes the relations between the notation
of Da̧browski (1988) and Chamblin (1994), briefly described here in
Section 1, and the present one. It covers only the cases when λ′ =
λ′′ = 1. Here Q is the quaternion group. The dimensions n′ and n′′ are
omitted.
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its subgroup

a b c µ ν ′ ν ′′ group H generated by

{−1, s, t}

+ + + 0 0 0 Z2 × Z2 × Z2

+ − − 0 1 0 Z2 × Z4

− + − 0 0 1 Z2 × Z4

− − + 0 1 1 Z2 × Z4

+ + − 1 0 0 Pin0,0 D4

+ − + 1 1 0 Pin0,1 D4

− + + 1 0 1 Pin1,0 D4

− − − 1 1 1 Pin1,1 Q

7.3. All the double covers of Om × On

It is easy to describe explicitly all the 32 double covers of the group
On′ ×On′′ , n

′, n′′ > 1. Recall first that there are 4 double covers of On,

H0
n = On × Z2, H1

n = Pin+
n ,

H2
n = Pin+

n + Pin−n , H3
n = Pin−n .

The 16 groups (cf. (4)) Hα
n′3H

β
n′′ , α, β = 0, . . . , 3, correspond to the

elements of the form (7) with µ = 0.
To describe the remaining ones, one uses a graded (‘supersymmet-

ric’) construction that appears already in Karoubi (1968). Every double
cover p : Hα

n → On is Z2-graded by putting, for h ∈ Hα
n , det p(h) =

(−1)deg h. In the Cartesian product Hα
n′ × Hβ

n′′ one defines a group
structure by

(h′1, h
′′
1)(h′2, h

′′
2) = (h′1h

′
2, (−1)deg h

′′
1 deg h′2h′′1h

′′
2),(11)

where h′1, h
′
2 ∈ Hα

n′ , h
′′
1, h
′′
2 ∈ H

β
n′′ . The groups

Hα
n′3

grHβ
n′′ = (Hα

n′ ×H
β
n′′)/Z2, α, β = 0, . . . , 3,

with a composition induced from (11), provide the 16 double covers
with µ = 1.

7.4. Complex double covers

In the complex domain, it is natural to consider the conformal group,

COn(C) = {A ∈ GLn(C)|AAt = λid, λ ∈ Cr {0}},
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and the corresponding Clifford (=conformal spin) group CPinn(C) gen-
erated multiplicatively in Cliffn(C) by all non-isotropic elements of Cn.
There is the exact sequence

CPinn(C)
ρ−→COn(C)→ 1,

where ρ(a)v = α(a)vβ(a), v ∈ Cn. The kernel of ρ is of order 4 (see, e.g.,
(Robinson and Trautman, 1993); here α and β are the grading auto-
morphism and the main anti-automorphism of Cliffn(C), respectively;
β(ab) = β(b)β(a), etc.).

One can define a complex double cover of On′,n′′ as a double cover
p : H → On′,n′′ such that there exists a cover pC : HC → COn′+n′′(C)
and a monomorphism j such that pC ◦ j = inj ◦ p, where inj is the
injection of On′,n′′ into COn′+n′′(C).

The 4 extensions of the compact group On are complex.
Conjecture. A double cover p : H → On′,n′′ is complex if, and only

if,

k(H) = λw2 + ν ′w′1
2

+ ν ′′w′′1
2
, where λ, ν ′, ν ′′ ∈ Z2.

In other words, the conjecture says that, for every n′, n′′ > 1,there are

8 complex double covers of On′,n′′ , generated be Pinν
′,ν′′

n′,n′′ .

8. Topological obstructions

Given a pseudo-Riemannian manifold M with a metric tensor of sig-
nature (m,n) and a double cover H → Om,n, one can consider the
reduction of the bundle P of all orthonormal frames of M to the group
H. The corresponding topological obstruction can be determined in a
way similar to the one used for (s)pin structures; see § 26.5 in Borel and
Hirzebruch (1959), Milnor (1963), Prop. 1.1.26 in Karoubi (1968), and
§ 3.5 in Ward and Wells Jr (1990). In fact, from an obstruction theory
argument (Spanier, 1966) one obtains

PROPOSITION 2. Let f : M → BOm,n be the map inducing the
bundle P →M . The pull-back f∗k(H) is an element of H2(M,Z2) that
vanishes if, and only if, there is a reduction of P to H.

As an application of Prop. 2, consider the real projective space RP5.
It is orientable, but its second Stiefel-Whitney class is 6= 0; therefore,
it has no spin structure, but its bundle of all orthonormal frames can
be reduced to the group Pin+

5 + Pin−5 . A less trivial example would
be provided by a non-orientable Riemannian space with w2 6= 0 and
w2
1 = 0.
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