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The rather well-known Goldberg-Sachs theorem [?] is one of the most beautiful
results in the mathematics of general relativity theory. It played a major role in the
work on algebraically special solutions of Einstein’s equations [?].

For the purposes of this Letter, it is convenient to formulate it as follows. Let M
be a set of Lorentzian, not conformally flat, manifolds (M, g) of dimension 4. For
(M, g) ∈ M, let K ⊂ TM be a null line bundle; its sections are null vector fields.
Following the notation and terminology of [?], consider the following two properties
of K:

(GSR) K is geodetic and shear-free;
(PND) K is a bundle of repeated principal null directions of the Weyl tensor C.

A Goldberg-Sachs theorem GST(M) is a statement of the form: if (M, g) ∈M, then
the conditions (GSR) and (PND) are equivalent. Goldberg and Sachs proved the
theorem for M = the set of Einstein spaces, i.e. solutions of Rµν = 1

4gµνR. Shortly
afterwards, Kundt and Thompson [?] and Robinson and Schild [?] pointed out that
both conditions (GSR) and (PND) are conformally invariant, but the property of
being an Einstein space is not. They proved a generalized Goldberg-Sachs theorem
that, in a refined form, is given in §7.3 of [?] and in §7.5 of [?]. This generalized
theorem involves only conformal notions, but requires a separate formulation for
each degree of degeneracy of the Weyl tensor.

A conformally invariant set of space-times is

Mc = {(M, g) is conformal to an Einstein space}

and GST(Mc) is true as a consequence of the classical Goldberg-Sachs theorem. It
is not easy to find a description of Mc by means of tensorial or spinorial equations;
see [?] for an account of the early work by Brinkman. To appreciate the difficulty of
the subject, recall that Schouten (p. 314 in [?]) attributes to Brinkman the following
statement: In dimension 4, if two manifolds are Ricci flat and conformal to each
other, but not to a flat space, then they are isometric. Ehlers and Kundt (p. 99 in
[?]) give a counterexample to this: there are pp waves that are conformal, but not
isometric, to each other.

It is known that Mc is contained in the set Mb of spaces satisfying the confor-
mally invariant Bach equation B = 0. According to the arguments due to Geroch
and Horowitz, presented in [?], there are space-times satisfying the Bach equation
that are not conformal to an Einstein space.
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Kozameh, Newman, and Tod [?] have found a set of two equations defining a
class of spaces conformal to Einstein spaces; one of them is B = 0, but the other
one excludes some of the spaces with a degenerate C. There is an improvement of
[?] by Baston and Mason [?], but their equations still do not characterize all of Mc.

Problems

I consider the following problems to be ordered according to increasing difficulty.

(i) Find a counterexample to GST(Mb).
(ii) If you fail in (i), then prove GST(Mb).

(iii) If you succeed in (i), then find a set of conformally invariant tensor or spinor
equations defining M, without reference to the degeneracy of C, such that Mc ⊂M
and GST(M) is true.

Note that if Mc  M, then GST(M) is stronger than the classical theorem.
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