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Abstract. This is a rather personal review of a few fields of research in which the author
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It is shown that the early work of Bateman can be considered to provide a basis for an
optical geometry in Lorentzian manifolds with shear-free congruences of null geodesics,
a notion introduced by Robinson and closely connected to that of algebraically special
gravitational fields. There is a natural, one-to-one correspondence between the set of such
optical geometries and that of Cauchy-Riemann spaces. A few odd remarks are devoted to
the problem of ‘large numbers’, an EIH problem, variational principles, and elementary links
between gravitation and quantum physics.
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1. Introduction; personal reminiscences

Instead of providing a formal introduction, I present a few recollections of my first ten years of contacts
with General Relativity and its People. These remarks may explain the choice of topics in this review.
In 1955, I started postgraduate work in Leopold Infeld’s group in Warsaw; I learned much from Jerzy
Plebański and by reading the books by Pauli and Landau&Lifshitz. In 1957, Felix Pirani came to Warsaw
(he asked: ‘What is the physical significance of Petrov type III?’) and invited me to Hermann Bondi’s
group at King’s College. During that first visit to London, I gave a series of lectures (Trautman 1958)
and went for a couple of days to Cambridge, at the invitation of Dennis Sciama (‘What is your opinion of
Mach’s Principle?. . . So you will be put up in the Judge’s Room at Trinity’). At tea, I met there P. A. M.
Dirac (‘Professor Dirac, do you think that harmonic coordinate systems have a physical significance?’
A long silence. ‘I think they have no such significance’. End of conversation). Dennis introduced me
also to Roger Penrose. One day, Ivor Robinson visited King’s, explained to me the idea of shear-free
congruences of null geodesics and proposed that we search for new, radiative solutions of Einstein’s
equations (Robinson and Trautman 1960). Royaumont 1959 (GRG2) was the first major conference that
I attended; I met there many people who also exerted a great influence on my research: Peter Bergmann
(his work on Kaluza-Klein and generally-covariant theories), Jürgen Ehlers (contributions to the work
of the Jordan group at Hamburg; Jordan et al 1960 and 1961), V. A. Fock [Fo], Josh Goldberg (at that
time: a proper treatment of gauge invariance in the EIH approximation scheme, Goldberg 1955; later:
the Goldberg-Sachs theorem), André Lichnerowicz [L] (he advised me to read the work of Élie Cartan),
Ted Newman (his subsequent work on exact solutions and the NP formalism: Newman and Penrose
1962, Newman et al 1963 and Newman 1974), Engelbert Schücking (work on cosmology, Heckmann
and Schücking 1959, Ozsváth and Schücking in [In]), John Synge (general relativity as a geometric
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theory [S]), and John Wheeler (general relativity as a physical theory [MTW]). The academic year
1959-60 I spent at Imperial College in the group of Abdus Salam (‘in physics, the Poincaré group is
more important than the Lorentz group’). T. W. B. Kibble was then completing his work on gravitation
with torsion as a gauge theory (Kibble 1961); during that year, I interacted also with Alfred Schild,
Ray Sachs and Michel Cahen at King’s College. In the spring of 1961, in Peter Bergmann’s group
at Syracuse University, I watched with fascination how Newman and Penrose developed their spin
coefficient method; Ivor and I completed our work on spherical gravitational waves and I wrote a review
on conservation laws in general relativity (article in [W]). GRG3 took place in 1962 in Jabłonna near
Warsaw, with lectures and seminars given by Bergmann, Bondi, B. S. DeWitt, Dirac, Feynman, Fock,
Ginzburg, Lichnerowicz, Mandelstam, Møller, Newman, Penrose, Robinson&Trautman, Schiff, Synge,
Wheeler and others [J]. Subrahmanyan Chandrasekhar who attended the meeting, but did not lecture
there, later became a friend. After the conference, John Stachel stayed for several weeks in Warsaw
to help in editing the proceedings. Feynman criticized, in strong terms, that conference and research
on gravitation at the time [Fe]. In a letter to his wife he wrote: ‘Because there are no experiments this
field is not an active one, so few of the best men are doing work on it. . . Remind me not to come to
any more gravity conferences!’ Hawking (Lecture 1 in [HaP]) quotes Feynman’s remarks to emphasize
the essential progress made, since the early 60s, in the development of general relativity as part of
physics. In 1965 I gave a talk at the GRG4 conference in London and met there, for the first time,
Stephen Hawking, István Ozsváth, and Kip Thorne. Some of the main lectures at GRG4 were given
by Chandrasekhar, Ehlers, Fierz, Novikov&Zel’dovich and Taub; Khalatnikov and Penrose conducted a
historic dispute on the genericness of singularities in cosmology.

1.1. Notation and terminology

The gravitational constant and the Planck length are denoted by G and `, respectively. Occasionally,
‘general-relativistic units’ are used; they are such that both G and c are 1 and ~ = `2. Most of the time,
I follow the notation and terminology standard in differential geometry and general relativity [MTW].
Greek indices range from 0 to 3 and refer to space-time. Given a co-frame (a linear basis in the space
of 1-forms) θµ, one writes the metric tensor as g = gµνθ

µθν . The exterior product of forms is denoted
with a wedge. The Levi-Civita symbol is εµνρσ and ηµνρσ =

√
−det(gαβ) εµνρσ . One defines the

forms

ηµνρ = θσηµνρσ, ηµν = 1
2
θρ ∧ ηµνρ, ηµ = 1

3
θν ∧ ηµν , η = 1

4
θµ ∧ ηµ. (1)

The Hodge dual is denoted with a star.
The Killing form k on a Lie algebra g is defined by k(a, b) = tr(ad a ◦ ad b), where (ad a)b =

[a, b] and a, b ∈ g. Given a linear basis (ei) in g, one introduces the structure constants ckij by
[ei, ej ] = ckijek, where i, j, k = 1, . . . , dimG; putting kij = k(ei, ej), one has kij = clikc

k
jl. The

dual of g is denoted by g∗.
All manifolds and maps are assumed to be smooth. If f : M → N is a map of manifolds,

then Tf : TM → TN is the tangent (derived) map of the corresponding tangent bundles. If ϕ is a
differential n-form on N , then f∗ϕ is its pull-back to M ; in particular, for n = 0 one has f∗ϕ = ϕ ◦ f .

2. Gauge ideas connected with gravitation

The idea of gauge invariance has its roots in Weyl’s attempt at unification of gravitation and
electromagnetism; it later underwent profound changes and generalizations, leading to the present notion
of theories of the Yang-Mills type. The question of whether, and in what sense, relativistic gravitation
can be regarded as a gauge theory has been the subject of some interest and controversy. In particular, the
following issues have been often discussed: what is the ‘gauge group’ of gravitation (Lorentz, Poincaré,
affine or perhaps the group of all diffeomorphisms?); the Maxwell and Yang-Mills theories are based on
Lagrangians quadratic in the field strengths: should not the same be expected of a theory gravitation?
(see Hehl et al 1995 and Ne’eman 1998 for recent reviews and further references).
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2.1. Generalities on gauge theories

The kinematic framework of a classical gauge theory is rather simple: it is well described by the
mathematicians’ notion of a principal bundle with a connection and some additional structure that
depends on, and defines the physics of, the particular theory. Wu and Yang (1975) gave a dictionary
to translate between the mathematical and physical languages. One can supplement it by a remark on
two meanings of the expression gauge group in physics and by a geometric interpretation of symmetry
breaking; this is described below.

2.1.1. A principal bundle G→ P
π→M has a Lie structure group G that acts freely and transitively

on the fibres of π: there is a map P × G → P , (p, a) 7→ δ(a)p such that δ(a) ◦ δ(b) = δ(ba),
δ(1G) = idP , and π ◦ δ(a) = π. Let exp : g → G be the exponential map from the Lie algebra g of
G into the group. For every u ∈ g, the vector ū(p) tangent to the curve t 7→ δ(exp tu)p at p ∈ P is
vertical, Tpπ(ū(p)) = 0 and the map u 7→ ū(p) is an isomorphism of g onto the vertical vector space
at p ∈ P . Given a representation ρ of G in a (real or complex) vector space V , one says that a V -valued
n-form ϕ on P is of type ρ if it satisfies the transformation law δ(a)∗ϕ = ρ(a−1)ϕ for every a ∈ G.
This form is said to be horizontal if the contraction of every vertical vector with ϕ is 0. In most practical
computations, one considers local sections of π and uses them to pull-back forms from P to the base
M .

2.1.2. Let ℵ be the ‘absolute’ (non-dynamical) elements underlying the theory. The group of gauge
transformations G consists of all bundle automorphisms of π that preserve ℵ; e.g. in special-relativistic
electrodynamics one has P = R4 × U1 whereas ℵ is the Minkowski metric tensor and G is the semi-
direct product of the Poincaré group by the group G0 = {f : R4 → U1} of ‘gauge transformations of the
second kind’. If a general-relativistic theory of gravitation is understood to be a theory of a connection
on a principal GL4(R)-bundle P over a 4-manifold M , supplemented by additional dynamical fields
(such as the metric tensor) and suitable invariant field equations, then the absolute is the canonical
(‘soldering’) 1-form θ : TP → R4, of type id, such that the kernel of θ(p) is the vertical vector space
at p ∈ P . The bundle P with such a θ is isomorphic to the bundle LM of all linear frames of M . The
group G consists of all diffeomorphisms of the 4-dimensional space-time manifold M .

2.1.3. A connection on the principal bundle is described by a 1-form ω : TP → g of type
given by the adjoint representation Ad of G in g and such that ω(ū(p)) = u for every p ∈ P and
u ∈ g. Given a local section s of π, the pull-back s∗ω is a g-valued 1-form on M ; depending on the
context, it is given the name of potential in gauge s, or referred to as the Christoffel symbol (when s
is a ‘natural’ or holonomic frame) or the Ricci rotation coefficient (when s is a field of orthonormal
frames). Given a representation ρ : G → GL(V ), let ρ′ : g → End(V ) be the corresponding derived
representation, ρ′(u) = d

dt
ρ(exp tu)|t=0. If ϕ is a horizontal n-form of type ρ, then its covariant

derivative Dϕ = dϕ + ρ′(ω) ∧ ϕ is a horizontal (n + 1)-form of the same type. The curvature
Ω = dω + 1

2
[ω, ω] is a horizontal 2-form of type Ad; it satisfies the Bianchi identity DΩ = 0. Given a

basis (ek) in g, one writes ω = ωkek and Ω = Ωkek so that Ωk = dωk + 1
2
cklmω

l ∧ ωm.

2.1.4. Consider now a 0-form (scalar) ϕ of type ρ with values in an orbit W of the action of G in V .
Given any point ϕ0 ∈ W , one defines its stability (‘little’) group H = {a ∈ G|ρ(a)ϕ0 = ϕ0} and the
setQ = {p ∈ P |ϕ(p) = ϕ0}which is a principalH-bundle overM ; it is called, by the mathematicians,
a reduction of P to the subgroup H of G; in physics one says that ϕ breaks the symmetry from G to
H . The equation Dϕ = 0 provides a necessary and sufficient condition for the restriction of ω to Q
to have values in the Lie algebra h of H and, therefore, to define a connection on this reduced bundle.
A more general case of interest is when the Lie subalgebra h admits a complement k in g such that,
for every a ∈ H and u ∈ k, one has Ad(a)u ∈ k: the restriction ρ of the adjoint representation to H
defines a representation of that subgroup in the vector space k. For example, if the group G is semi-
simple, i.e. when its Killing form k is non-degenerate and, moreover, if the restriction of k to h is also
non-degenerate, then one can take k to be the vector subspace of g, orthogonal to h with respect to k.
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When the restriction of ω to Q is split into its components γ and χ with values in h and k, respectively,
then one finds γ to be a connection on the reduced bundle and χ to be a horizontal 1-form of type
ρ. In theories of the Yang-Mills type, such as the Weinberg-Salam theory of electro-weak forces, γ
corresponds to massless vector bosons and χ describes spin 1 particles that acquire mass through the
process of spontaneous symmetry breaking induced by the Higgs field ϕ, a 0-form of type Ad related to
a (yet to-be-discovered) massive particle. There is a description, in this language, of the generation of
mass of the χ field (Kerbrat et al 1989).

2.1.5. In the case of a general-relativistic theory of gravitation, the connection form has values in the
Lie algebra g = EndR4, ω = (ωµν), and the curvature is

Ωµν = dωµν + ωµρ ∧ ωρν = 1
2
Rµνρσθ

ρ ∧ θσ.

The covariant derivative of the canonical form is the torsion 2-form,

Θµ = dθµ + ωµν ∧ θν = 1
2
Qµνρθ

ν ∧ θρ,

and the Bianchi identity for torsion isDΘµ = Ωµν ∧θν . Let V be now the vector space of all quadratic
forms over R4; the metric tensor can be considered as a 0-form g : LM → V of type given by the
transformation law gµν(ea) = gρσ(e)aρµa

σ
ν , where e ∈ LM and a = (aµν) ∈ GL(R4). The subset

W of V consisting of all quadratic forms of a given signature is, by the theorem on inertia of quadratic
forms, an orbit of GL(R4) for the action defined by the transformation law. In particular, if the signature
is (1, 3), then the (Lorentzian) metric tensor g breaks the symmetry from G = GL(R4) to the Lorentz
group H = O1,3; the reduced bundle Q consists of all linear frames on M orthonormal with respect
to g. The Lie algebra g = End(R4) admits a decomposition g = h ⊕ k, where h = ∧2 R4 is the
Lie algebra of the Lorentz group and k is the vector space of all real, symmetric 4 by 4 matrices. In
the decomposition of a linear connection ω restricted to Q, the form γ is a metric, but not necessarily
symmetric, connection, and χ corresponds to a tensor field, χµνρ = χνµρ. This field appears in the
‘metric-affine’ theories of gravitation considered by Hehl et al (1995).

Two modifications of Einstein’s relativistic theory of gravitation appeared already in the 1920s;
they have been the object of some interest and development also during the second half of the XXth
century. They both are related to gauge ideas and may present some interest in the future; for these
reasons they are briefly reviewed here.

2.2. The Kaluza-Klein theory

In the 1920s Kaluza and Klein proposed to unify gravitation and electromagnetism by using the
geometry of a five-dimensional Riemannian manifold with a one-parameter group of isometries. After
the advent of Yang-Mills theory, it became clear that the Kaluza-Klein idea can be extended to any gauge
theory of this type (DeWitt 1964). The geometry of such a (generalized) Kaluza-Klein theory can be
briefly described as follows (Kopczyński 1980):

2.2.1. One considers a principal G-bundle P over a four-dimensional space-time (M, g) so that
dimP = dimG+ 4. The bundle π : P →M has a connection given by a 1-form ω with values in the
Lie algebra g of G, as described in section 2.1.3. Let ρ : G → U(N) be a unitary representation; the
matrices of the derived representation ρ′ are antihermitian; given a basis (ek) in g, define the hermitian
matrix τk = iρ′(ek). Let ϕ : P → CN be a 0-form of type ρ and put ψ = s∗ϕ for a (local) section
s of π. Let q be a coupling constant so that the potential in gauge s is A = (~c/q)s∗ω and the gauge
derivative of ψ is

s∗Dϕ = dψ − iq

~c
Akτkψ. (2)

The principle of minimal coupling requires that A should appear only through the gauge derivative (2)
in the Lagrangian determining the field equations of ψ.
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2.2.2. Assume that g admits a non-degenerate scalar product h, invariant with respect to the adjoint
action of G on g; if G is semi-simple—and only in this case—one can take h ∝ k. Let φ : P → R
be a scalar field constant on the fibres of π. These data define a (pseudo) Riemannian metric g on P ,
namely g = φ.h ◦ ω + g ◦ Tπ. This ‘global’ formula is translated into a local, but explicit, expression
by introducing a field of frames (eµ) on M , and lifting by π the dual field of coframes to P so that

g = φ.hijω
iωj + gµνe

µeν .

The metric g admits G as a group of isometries. Therefore, the Ricci scalar of g descends to a function
R(g) on M . Put s∗Ω = (q/2~c)ekF kµνeµ ∧ eν . For φ = const., a computation (Jensen 1973, Cho
1975) gives

R(g) = R(g) + (q/2~c)2φhijg
µνgρσF iµρF

j
νσ + 1

4
φ−1hijkij . (3)

Choosing φ so that (q/2~c)2φ = G/c4 and varying
∫
R(g)η with respect to Ai = s∗ωi and gµν one

obtains, respectively, the Yang-Mills equation D ∗ F = 0 and an Einstein equation with the energy-
momentum tensor T of F and a term Λgµν , cosmological in form, on the right side. If g is compact,
then the invariant form h can be chosen to be (positive) definite; this implies T00 ≥ 0. If the group G is
Abelian, then Λ = 0; if the group is semi-simple and h = k, then the constant

Λ = 1
8
`−2α dimG, where α = q2/~c,

is seen to be of microscopic, rather than cosmological, nature. It is undesirably large.

2.2.3. For every u ∈ g, the vertical field ū is a Killing vector for g; therefore, if the curve
R 3 t 7→ ξ(t) ∈ P is an affinely parametrized geodesic of g, then g(ξ̇, ū) = µξ(u) is constant
along the geodesic and defines a charge per unit mass µξ ∈ g∗. A horizontal geodesic characterized by
µξ = 0 projects to a geodesic in M . Non-horizontal geodesics project to world-lines of particles with
Yang-Mills charges, satisfying an equation of motion with a generalized Lorentz force on the right side.

2.2.4. In the original theories of Kaluza and Klein, the group G was assumed to be one-dimensional
and φ to be constant; Jordan (1947 ) introduced a field φ to account for the possibility of a variable G

conjectured by Dirac (1938).
It is intriguing that P plays here a double role: it is at the same time the total space of the bundle

underlying a (first) quantized theory of particles interacting with a gauge field, in accordance with (2),
and the Riemannian space whose geodesics determine the motion of ‘classical’, gauge-charged point
particles. Formula (3) ‘explains’ why the gravitational Lagrangian is linear and the Yang-Mills one is
quadratic in curvature.

2.3. The Einstein-Cartan theory

Since the early work of Weyl (1918) and Cartan (1922a) it has been known that there are two basic
structures underlying local differential geometry and relevant to physics: the metric tensor and the
linear connection. The metric determines a (weaker) conformal structure defining, in space-time, the
propagation of light. A projective connection—a weakening of the linear one—gives the world-lines
of ‘material’, freely-falling particles. Ehlers, Pirani and Schild (article in [O’R]) have shown how to
reconstruct a Lorentzian geometry from compatible conformal and projective structures. Weyl assumed
the connection to be symmetric; Cartan introduced the notion of torsion and related it to the density of
intrinsic angular momentum; he also derived (Cartan 1924 p 22), from a variational principle, a set of
gravitational field equations. Cartan required, without justification, that the covariant divergence of the
energy-momentum tensor be zero; this led to an algebraic equation, bilinear in curvature and torsion,
severely restricting the geometry. This misguided observation has probably discouraged Cartan from
pursuing his theory. We now know that conservation laws in relativistic theories of gravitation follow
from Bianchi identities and, in the presence of torsion, the divergence of the energy-momentum tensor
need not vanish.
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2.3.1. To present the Einstein-Cartan equations, it is convenient to use the differential forms (1)
and refer all geometric and physical quantities to sections of the bundle of frames LM . In particular,
θ now denotes the pull-back to M of the canonical form: it is a field of co-frames on M ; similarly
ω is the pull-back, by the same section, of the connection form, assumed for the moment to be
completely general. A change of the section induced by a : M → GL(R4) gives θ′µ = a−1µ

νθ
ν ,

ω′
µ
ν = a−1µ

ρω
ρ
σa

σ
ν + a−1µ

ρda
ρ
ν , etc. Let (eA), A = 1, . . . , dimV , be a linear basis in V and,

given a representation ρ of GL(R4) in V and u = (uµν) ∈ End(R4), put ρ′(u)eA = ρAρBσe
Buσρ, so

that the covariant derivative of an n-form ϕ = eAϕA of type ρ is DϕA = dϕA + ρBµAνω
ν
µ ∧ ϕB .

Consider a Lagrangian L which is an invariant 4-form on M , depends on the metric tensor, and is a
polynomial function of ϕ, θ and ω, and of their first derivatives. The general variation of the Lagrangian
is

δL = LA ∧ δϕA + 1
2
τµνδgµν + δθµ ∧ tµ − 1

2
δωµν ∧ sµν + an exact form (4)

so that LA = 0 is the Euler-Lagrange equation for ϕ. If the changes of the functions θ, ω, g and ϕ are
induced by an infinitesimal change of the frames,

δθµ = −vµνθν , δωµν = Dvµν , etc., where (vµν) : M → End(R4),

then δL = 0 and (4) gives the identity

τµ
ν − θν ∧ tµ + 1

2
Dsµ

ν − ρBνAµLA ∧ ϕB = 0. (5)

It follows from the identity that the two sets of equations obtained by varying L with respect to the
triples (ϕ, θ, ω) and (ϕ, g, ω) are equivalent. In the sequel, the first triple is chosen to derive the field
equations.

2.3.2. Following Cartan, I consider, as the Lagrangian for the gravitational field, the 4-form

ηµ
ν ∧Ωµν = Rη, (6)

where ηµν = gνρηµρ andR = gµνRµν is the Ricci scalar; the Ricci tensorRµν = Rρµρν is, in general,
asymmetric. The form (6) is invariant with respect to ‘projective transformations’ of the connection,

ωµν 7→ ωµν + δµνλ, (7)

where λ is an arbitrary 1-form. Projectively related connections have the same (unparametrized)
geodesics. The variations of the factors in (6) are δηµν = δθρ ∧ ηµνρ and δΩµν = Dδωµν . If
the total Lagrangian for gravitation interacting with the ‘matter’ field ϕ is (16π)−1ηµ

ν ∧Ωµν +L, then
the field equations, obtained by varying it with respect to ϕ, θ and ω are: LA = 0,

1
2
ηµν

ρ ∧Ωνρ = −8πtµ, (8)

and

Dην
µ = 8πsν

µ, (9)

respectively. If

sµν + sνµ = 0, (10)

then sν
ν = 0 and L is also invariant under (7). One shows that, if (10) holds, then, among the

projectively related connections satisfying (9), there is precisely one that is metric (Trautman 1973a).
If Dg = 0 is assumed—this is done from now on—then (10) holds and the Cartan field equation (9)
becomes

ηµνρ ∧Θρ = 8πsµν . (11)

Introducing the ‘canonical’ energy-momentum tensor tµν and the spin density tensor sµνρ by

tµ = tµνη
ν and sµν = sµνρη

ρ. (12)
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one can write the Einstein-Cartan equations (8) and (11) in the form, given by Sciama (article in [In])
and Kibble (1961),

Rµν − 1
2
gµνR = 8πtµν (13)

Qρµν + δρµQ
σ
νσ − δ

ρ
νQ

σ
µσ = 8πsµν

ρ. (14)

In the limit of special relativity, in Cartesian coordinates (xµ), one has θµ = dxµ and D = d. If
LA = 0 holds, then dtµ = 0 and the antisymmetrization of (5) gives the conservation of total angular
momentum in differential form,

d(xµtν − xνtµ + sµν) = 0.

As in classical general relativity, the right sides of the Einstein-Cartan equations need not necessarily be
derived from a variational principle; they may be determined by phenomenological considerations. For
example, consider a ‘spinning dust’ characterized by

tµν = Pµuν and sµν
ρ = Sµνu

ρ with Sµν + Sνµ = 0 (15)

(Weyssenhoff and Raabe 1947). Indicating with a dot a ‘particle’ derivative in the direction of the unit
vector field u, from the Bianchi identities one obtains (Trautman in [Hl])

Pµ = ρuµ − uν Ṡνµ, where ρ = gµνP
µuν ,

an equation of motion of spin,

Ṡµν = uµuρṠ
ρν − uνuρṠρµ,

and an equation of translatory motion,

Ṗµ = (QρµνPρ − 1
2
RρσµνSρσ)uν ,

which is a generalization to the Einstein-Cartan theory of the Mathisson-Papapetrou equation for point
particles with an intrinsic angular momentum (Mathisson 1937 and Papapetrou 1951).

2.3.3. There are heuristic, fairly convincing arguments in favour of the Einstein-Cartan theory: the
integrability condition for the equation

Drµ + θµ = 0 (16)

defining a ‘radius’ vector field r is Ωµνrν + Θµ = 0. Integration of (16) along a curve defines the
‘Cartan displacement’ of r; if this is done along a small loop spanned by the bivector ∆f , then the
radius vector changes by

∆rµ = 1
2
(Rµνρσr

ν +Qµρσ)∆fρσ.

This holonomy theorem (somewhat imprecisely formulated here) shows that torsion bears to translations
a relation similar to that of curvature to rotations. The rest of the heuristic argument can be read off from
the diagram:

rotations · · · · · · curvature · · · · · · energy-momentum · · · · · · translations
holonomy field eqs Noether

translations · · · · · · torsion · · · · · · spin · · · · · · rotations

It follows from (14) that torsion vanishes in the absence of spin and then (13) is the classical
Einstein field equation. In particular, there is no difference between the Einstein and Einstein-Cartan
theories in empty space. Since practically all tests of relativistic gravity are based on consideration of
Einstein’s equations in empty space, there is no difference, in this respect, between the Einstein and the
Einstein-Cartan theories: the latter is as viable as the former.
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2.3.4. Inside spinning matter, one can solve (14) for Q and express the full linear connection Γ as
a sum of the Levi-Civita connection and a ‘contortion’ tensor linear in Q. Substituting Γ in (13), one
obtains the standard Einstein equation with an effective, symmetric, energy-momentum tensor T eff on
the right side [Hh]. Neglecting the indices, one can write symbolically

T eff = T + s2, (17)

where T is the usual, symmetric energy-momentum tensor. In special relativity, it is obtained from the
canonical t by the Belinfante-Rosenfeld symmetrization procedure (symbolically: T = t+ div s); here
it appears as a consequence of the field equations. It is clear from (17) that for the gravitational effects
of torsion to be comparable to those of curvature, the latter should be of the same order of magnitude as
the square of the former. For example, to achieve this, a nucleon of mass m should be squeezed so that
its radius rCart be such that(

G~
c3r3

Cart

)2

≈ Gm

c2r3
Cart

.

Introducing the Planck length ` ≈ 1.6 × 10−33 cm and the Compton wavelength rCompt = ~/mc ≈
10−13 cm, one can write

rCart ≈ (`2rCompt)
1/3. (18)

The ‘Cartan radius’ of the nucleon, rCart ≈ 10−26 cm, so small when compared to its physical radius
under normal conditions, is much larger than the Planck length. Curiously enough, the energy ~c/rCart

is comparable to the energy at which, according to some estimates, the ‘grand unification’ of interactions
is presumed to occur.

2.3.5. In the presence of spinning matter, T eff need not satisfy the (positive) energy conditions [HaE]
even if T does. Therefore, the classical theorems of Penrose and Hawking can be here ‘overcome’ and, in
this theory, there are simple cosmological solutions without a singularity (Kopczyński 1972, Tafel 1973,
Trautman 1973b and in [Hl]). For example, consider a Universe filled with a spinning dust (15) such
that uµ = δµ0 , S23 = σ, Sµν = 0 for µ+ ν 6= 5 and both ρ and σ are functions of t = x0 alone. These
assumptions are compatible with the Robertson-Walker line element dt2 − a(t)2(dx2 + dy2 + dz2),
where x = x1, etc., and torsion is determined from (14). The Einstein equations (13) reduce to the
modified Friedmann equation,

1
2
ȧ2 −Ma−1 + 3

2
S2a−4 = 0, (19)

supplemented by the conservation laws of mass and spin,

M = 4
3
πρa3 = const., S = 4

3
πσa3 = const.

The last term on the left side of (19) plays the role of a ‘repulsive potential’, effective at small values of
a; it prevents the solution from vanishing (Trautman 1973b). It should be noted, however, that even a
very small amount of shear in u will result in a term counteracting the repulsive potential due to spin.

2.3.6. In any case, the consideration of torsion amounts to a slight change of the energy-momentum
tensor that can be also obtained by the introduction of a new term in the Lagrangian. This observation
was made already by Weyl (1950) in the context of the Dirac equation. Supergravity theories also require
torsion to implement the supersymmetries between ω and the gravitino field (Van Nieuwenhuizen 1981).

In Einstein’s theory one can also satisfactorily describe spinning matter without introducing
torsion; see, e.g., the article by Israel in [CB]. To derive the field equations along the lines presented
above, one can use the ‘Palatini trick’ and express ω in terms of the orthonormal frames θ and their
derivatives. Introducing the corresponding expression for δω in (4) and ‘integrating by parts’, one
obtains the symmetric T as the source in (13).

To summarize: the Einstein-Cartan theory is a viable theory of gravitation that differs very slightly
from the Einstein theory; the effects of spin and torsion can be significant only at densities of matter that
are very high, but nevertheless much smaller than the Planck density at which quantum gravitational
effects are believed to dominate. It is likely that the Einstein-Cartan theory will prove to be a better
classical limit of a future quantum theory of gravitation than the theory without torsion.
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3. Optical and Cauchy-Riemann structures

Throughout the 1960s there was much research on algebraically special gravitational fields and the
associated geometrical structures. It culminated with the discovery of important solutions of Einstein’s
equations, such as the Kerr metric, and special kinds of gravitational waves [K]. Some of this research
was criticized as being dominated by an obsessive striving to discover new solutions in closed form,
with little regard to their physical significance. It is certainly true that algebraically special fields are
exceptional and, in some sense, constitute a set of measure zero in the set of all empty space-times.
It is worth remembering, however, that generic stationary metrics with axial symmetry are of type I
(non-degenerate). On the other hand, the Kerr metric—which is of type D—has been shown to describe
the most general black hole resulting from a collapsing star. The dominant part—of order r−1—of the
curvature tensor of a generic, isolated gravitating system is algebraically special at large distances r.

The ideas associated with shear-free congruences of null geodesics, which underlie algebraically
special fields, influenced the emergence of the fundamental notion of a Penrose twistor.

This section is based, in part, on (Trautman 1984, 1985 and in [Har], Robinson and Trautman 1986
and 1989); see also the references given there and (Nurowski 1996, 1997).

3.1. The differential-geometric aspect

Bateman (1910) was a precursor of the idea of an ‘optical geometry’ associated with a null
electromagnetic field in Minkowski space. He proved a result that, in the light of later developments
and in the present terminology, can be summarized as follows. Consider a Lorentzian, space- and time-
oriented, 4-manifold (M, g). (Bateman assumed g to be the Minkowski metric.) Let K ⊂ TM be a
line bundle of null directions on M ; a section k of K →M is a null vector field; let λ = g(k). For any
positive function ρ and any 1-form ξ, the metric

g′ = ρg + λξ (20)

is also Lorentzian, k is null also with respect to g′ and g′(k)∧λ = 0. GivenK, equation (20) defines an
equivalence relation in the set of Lorentzian metrics and an optical geometry is defined to be the triple
(M,K, [g]), where [g] = [g′] iff (20) holds. The bundle K⊥ ⊂ TM is well-defined by the optical
geometry and [g] induces a conformal, positive-definite metric in the fibres of the plane (screen) bundle
K⊥/K → M . Together with the orientation of M , this defines a complex structure J in the fibres of
the screen bundle. Conversely, given (M,K,L, J), where K is a line subbundle of a bundle L ⊂ TM
of fibre dimension 3 and J is a complex structure in the fibres of L/K, one can construct an optical
geometry on M such that L = K⊥. If Φ is a complex 2-form on M such that

λ ∧ Φ = 0, (21)

then self-duality of Φ,

∗Φ = iΦ, (22)

is an optical property: it holds in g iff it holds in g′, [g] = [g′]. Therefore, a 2-form Φ satisfying (21)
and (22) can be said to be optical. An optical automorphism of (M,K, [g]) is defined as an orientation-
preserving diffeomorphism ϕ of M leaving K invariant and such that [ϕ∗g] = [g]. Bateman discovered
that an optical automorphism transforms an optical 2-form into an optical 2-form. Moreover, since
dϕ∗Φ = ϕ∗dΦ, it transforms a real null solution F = ReΦ of Maxwell’s equations, dF = 0, d∗F = 0,
into another such solution. It was also observed (Mariot 1954) that, given such a non-zero solution, the
congruence of curves tangent to the vector field k consists of null geodesics. An essential progress was
made by Robinson (1961) who proved that if there is a nowhere vanishing closed 2-form Φ which is
optical for (M,K, [g]), then the null vector field k generates a one-parameter group (ϕt) of optical
automorphisms; this group leaves Φ invariant. The shear-free condition is obtained by differentiating
[ϕ∗t g] = [g] with respect to t; if it is satisfied, then the congruence defined by k is null geodetic and
shear-free; it is also called a shear-free congruence of rays (SFR). Robinson also sketched a proof of
the converse: given such a congruence, there is an associated with it, non-zero and null, solution of
Maxwell’s equations. An optical geometry (M,K, [g]) satisfying the shear-free condition is said to be
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shear-free. Equivalently, the optical geometry given by (M,K,L, J) is shear-free if the group (ϕt)
preserves L and J .

3.2. The algebraic aspect and the Goldberg-Sachs theorem

Cartan (1922b) described the four null (he called them: optical) directions defined by a non-
zero conformal curvature tensor C in a Lorentzian space. He recognized that in the case of the
Schwarzschild solution these directions degenerate into two coinciding pairs. This implicit classification
of gravitational fields was independently discovered, in a coarse form, by Petrov (1954): he found only
three algebraic types of conformal curvature. In its final, spinorial form, the classification was given by
Penrose (1960). A link between algebraically special fields, for which at least two of those directions
coincide, and the existence of an SFR is given by the well-known Goldberg-Sachs theorem and its
generalizations; see §7.3 in [K] and [PR]. The physical interpretation of the five Cartan-Petrov-Penrose
types of C follows from the results on peeling of curvature at large distances; see the article by Sachs in
[In] and §9.7 in [PR].

3.3. The complex and analytic aspects

3.3.1. Lewy (1957) considered the differential operator on R3,

Z =
∂

∂x
+ i

∂

∂y
− i(x+ iy)

∂

∂u
, (23)

and showed, to the surprise of many mathematicians, that there are smooth (of class C
∞

) functions
h : R3 → C such that the differential equation

Z(f) = h (24)

has no solution, even locally, for f : R3 → C. (By the Cauchy-Kowalewski theorem, there are such
solutions if h is analytic.) At about the same time, Robinson constructed a remarkable congruence
of straight null lines in Minkowski space: he took the line element g = 2dUdr − dX2 − dY 2 and
performed the coordinate transformation,

U = u+ 1
2
r(x2 + y2), X + iY = (r + i)(x+ iy),

to obtain

g = 2λdr − (r2 + 1)(dx2 + dy2), where λ = du+ xdy − ydx

is null and twisting, λ ∧ dλ = 2du ∧ dx ∧ dy. The complex 2-form

Φ = (exp f(x, y, u, r))λ ∧ (dx+ idy)

is self-dual and the Maxwell equation dΦ = 0 reduces to ∂f/∂r = 0 and the homogeneous Lewy
equation

Z(f) = 0. (25)

The twisting, shear-free Robinson congruence generated by the vector field k = ∂/∂r played a role in
the development of twistors (Penrose in [RT]).

3.3.2. The connection between the Lewy equation and the Robinson congruence is now understood
in terms of the associated Cauchy-Riemann (CR) structure, a mathematical notion that appeared for the
first time in physics as the underlying geometry of the five-dimensional space of null, projective twistors
(Penrose 1967, 1978 and 1983). There is a one-to-one local correspondence between CR spaces and
shear-free optical geometries. To see this, consider such a geometry (M,K,L, J) and assume that the
set of null geodesics tangent to the fibres of K is a (three-dimensional) manifold N . Since both L and
J are invariant with respect to (ϕt), these structures descend to N and define a complex line bundle
H ⊂ C ⊗ TN such that H ∩ H̄ is the zero bundle. By definition, a 3-manifold N with such an H
is a CR space. Conversely, given a CR space (N,H), one can define its lift as an optical geometry on
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M = N×R orN×S1 described as follows. The complex line bundleH defines locally the direction of
a real 1-form κ such that H = kerκ and the complex direction of a vector field Z, section of H → N .
Let ν be a complex 1-form on N such that ν(Z) = 0 and ν(Z̄) = 1. The pair (κ, ν) is defined up to
transformations (κ, ν) 7→ (aκ, bν + cκ), where a 6= 0 is a real function and b 6= 0 and c are complex
functions. Denoting by π the projection M → N , introducing r as the coordinate along the fibres of
π and putting λ = π∗κ, µ = π∗ν, one can write a Lorentzian metric g, representative for an optical
geometry on M , as

g = 2λdr − µµ̄ and k = ∂/∂r. (26)

A closed optical 2-form Φ on M descends to N : there is a closed 2-form Ψ such that Φ = π∗Ψ
and Ψ(Z, V ) = 0 for every vector field V on N . If Φ is nowhere zero, then there is a function
f : N → C such that Ψ = (exp f)κ ∧ ν and the problem of finding a null solution of Maxwell’s
equations associated with the SFR generated by k reduces to the CR problem of solving the equation
d((exp f)κ ∧ ν) = 0, equivalent in form to (24), where now h is a complex function on N determined
by the equation hκ ∧ ν̄ ∧ ν = d(κ ∧ ν). If the ‘tangential CR equation’ (25) has two solutions f1

and f2 such that the map (f1, f2) : N → C2 is an immersion, then the CR structure is said to be
realizable (or: embeddable) and N can be (locally) identified with a hypersurface in C2. The 2-form
Ψ = df1 ∧ df2 lifts to a closed form optical in the geometry given by (26). Such is the case of the CR
structure underlying the Robinson congruence: if Z is as in (23), then one can take f1 = u + 1

2
izz̄,

f2 = z and N is identified with the hyperquadric in C2 of equation f1− f1 = if2f2. Cartan (1932) has
shown this CR space to be the most symmetric among those with a non-vanishing ‘Levi form’$ defined
by $κ ∧ ν̄ ∧ ν = iκ ∧ dκ; such CR spaces correspond to twisting SFRs. The group of automorphisms
of the hyperquadric is locally isomorphic to SU1,2; there are many CR spaces with a maximal group
of automorphisms of dimension n = 3, but none with 3 < n < 8. As a CR space, the hyperquadric
is locally isomorphic to S3 ⊂ C2. Penrose (1967) has shown how the Robinson congruence is related
to the Hopf fibration S3 → S2. The Taub-NUT space, the Hauser solution of type N and the Gödel
universe have an underlying optical geometry lifting the CR structure of the hyperquadric.

3.3.3. Nirenberg (1974) has constructed a smooth complex vector field Z on R3 such that (25)
implies f = const.: the CR structure defined by this Z is not embeddable. Under the influence of
the results of Lewy and Nirenberg, Tafel (1985) pointed out that the proof of the Robinson theorem
is valid only in the real-analytic case and there may be smooth Lorentzian spaces with an SFR not
admitting an associated, non-zero null solution of Maxwell’s equations. He has also observed that if a
CR spaceN admits a non-zero solution of the tangential CR equation (25) and a non-zero closed 2-form
Ψ such that Ψ(Z, V ) = 0 for every vector field V , then N is embeddable. According to Rosay (1989)
there are CR spaces that admit one solution of (25), but are non-embeddable; therefore they could be
used to construct Lorentzian, smooth manifolds with an SFR, not admitting a non-zero null solution of
Maxwell’s equations. It has been conjectured that a CR space is embeddable if the associated optical
geometry does admit such a solution of Maxwell’s equations (Trautman in [Har]). Another result along
these lines is due to Lewandowski et al (1990): these authors have shown that if a Lorentzian space with
an SFR is Einstein, then the corresponding CR space is embeddable.

3.3.4. According to the Penrose (1968) formulation of the Kerr theorem, every analytic SFR in
the conformally compactified Minkowski space is obtained as the lift of a CR space arising from the
intersection of the CR 5-manifold of projective null twistors with a holomorphic hypersurface in the
ambient CP3. Penrose (1983) points out that the set of all analytic CR spaces is (essentially) labeled
by functions of three variables, whereas its subset corresponding to SFRs in (compactified) Minkowski
space is labeled by functions of two variables only. An open problem is to characterize the CR spaces
that lift to an optical geometry admitting a representative which is an Einstein manifold. Lewandowski
et al (1991) have shown that every embeddable CR space with $ 6= 0 lifts to an optical geometry
admitting a representative g satisfying the Einstein equation with pure radiation as the source, i.e. such
that Rµν is proportional to kµkν .
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Cartan (1932) has shown that, in the case of an analytic CR space with a non-vanishing Levi form,
one can choose the forms κ and ν defining the CR structure so that

ν = dz and dκ = iν ∧ ν̄ + κ ∧ (wν + wν),

where z and w are complex functions on N . He presented a method of constructing (relative) invariants
of the CR structure in terms of w and its derivatives, dw = w0κ + w1ν + w2ν̄. The simplest among
them,

w211 − w1w2 − 3ww21 − 2iw01 + 2w2w2 + 4iww0,

vanishes iff the CR space is isomorphic to the hyperquadric. Problem: characterize the SFRs of
Minkowski space by means of the Cartan invariants.

4. General remarks and speculations

4.1. Large numbers

The large numbers that can be formed from cosmological and atomic quantities, and the coincidences
between them, have received much attention since they were noticed for the first time by Weyl,
Eddington and Dirac [B]. One such large number is the inverse of the gravitational fine structure
constant m2/`2 ≈ 6× 10−39, where m is the mass of the proton. Chandrasekhar (1937) has suggested
to use the numbers Nr = (`/m)r , where r is rational, to keep a record of the large and small numbers.
The fundamental coincidence between the age of the Universe—determined by the Hubble constant—
and `2m−1N2 has led Dirac to conjecture that the gravitational constant is inversely proportional to the
present age of the Universe (Dirac 1938, 1974). Some of the definitions (D), theoretical results (T) and
observations (O) involving the numbers Nr are summarized in the Table. Since, in gravitational units,
mass is of the dimension of length, one can choose mα`β with α+ β = 1 as the unit of mass or length;
similarly, the choice α + β = −2 gives a unit of density. In the Table, these units have been chosen so
that the row with r = 0 corresponds to the ‘nuclear’ quantities m, ~/mc and m4c3/~3.

Sometimes the values of the fundamental constants and the associated coincidences are explained
by reference to the anthropic principle: had they been different, intelligent life could not have evolved
and there would be no one to puzzle over them. I am now inclined to consider this to be an explanation
without explanation, to use a phrase coined by Wheeler.

4.2. Gravitation provides arguments for the unity of physics

The Chandrasekhar limit on the mass of white dwarfs is the most significant entry in the Table; it
turns out to be, essentially, also the limiting mass of neutron stars. In a form given by Landau (1932),
neglecting a numerical factor of order 1, the Chandrasekhar limit is

Mmax = m

(
~c
Gm2

)3/2

. (27)

Its derivation is based on Newtonian gravitation and quantum statistical mechanics of fermions; it
takes into account effects of special relativity. The result pertains to large, macroscopic systems and is
confirmed by astrophysical observations; it is unique in combining the macroscopic G with microscopic
constants such as ~ and the proton mass m. I consider (27) to be one of the most striking results
in theoretical physics of the XXth century: it demonstrates the unity and universal applicability of
fundamental physics.

4.3. An EIH problem

Recall that the Einstein, Infeld and Hoffmann (Einstein et al 1938) method of finding the post-Newtonian
corrections to the equations of motion of gravitating bodies postulates the existence of coordinates such
that the solutions of the Einstein field equations are of the form gµν = gMink

µν +hµν and the functions hµν
can be expanded in power series in 1/c. These authors assumed that the solutions were of the standing
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Table 1. The Dirac-Chandrasekhar numbers.

r mass mNr length `2m−1Nr density m4`−6Nr

−2
gravitational radius of proton
(D) Universe (O)

−1 Planck (D)

− 2
3

rCart defined in (18) (D)

0 nucleon (D) nucleon radius (D) nuclear (D)

2
3

Rmin of the observable Uni-
verse with spin and torsion
(T)

1 Planck (D)
radius of neutron star (T&
O)

2
Hubble radius (O),
gravitational Bohr radius (D)

ρmax in a model of the
Universe with spin and
torsion (T)

3
Chandrasekhar
limit (T& O)

7
2

galaxy (O)

4
observable
Universe (O) Planck (D)

wave type: in their work the expansions of the components h00 and hij , i, j = 1, 2, 3, contained only
even and those of h0j only odd powers of 1/c. Therefore, these solutions were assumed to be invariant
with respect to the time reversal and did not take into account the possibility of gravitational radiation
and its reaction on the motion of the bodies. Later it was recognized that gravitational radiation can be
introduced into the EIH method provided more general expansions are used; see (Trautman 1978) for a
historical survey.

In the Newtonian theory, the simplest, non-trivial gravitating system consists of two bodies of
equal masses moving on a circular orbit. Tacitly, Einstein, Infeld and Hoffmann assumed that there is
an analogous situation in general relativity, but, to my knowledge, this has never been demonstrated.
In particular, it is not clear whether the corresponding space-time is—in any sense—asymptotically
flat. The doubt arises from the observation that an analogous solution of Maxwell’s equations in special
relativity has an infinite amount of energy stored in the electromagnetic field. One is tempted to speculate
that a double-star system in periodic motion would result in a closed space. In any case, it would be
interesting to know, not only for historical reasons, whether there exists a strictly periodic general-
relativistic configuration for which the EIH computations provide the first approximation. Essentially
the same problem. but in a different context, has been formulated by Schmidt (article in [Har]).

4.4. On variational principles

Hilbert (1915) introduced the Ricci scalar density as the basis for the variational principle of Einstein’s
theory. Einstein himself, in the main paper on general relativity (Einstein 1916), derived the equations
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from a Lagrangian quadratic in the Christoffel symbols. It differs from the Hilbert Lagrangian by a total
divergence. There are several examples in physics of Lagrangians that change by a divergence under
the action of the symmetries of the theory. The simplest is the Newtonian kinetic energy: it changes
by a total time derivative under Galilean transformations. In relativistic mechanics, the corresponding
action integral, −m

∫
ds, is invariant with respect to Lorentz transformations. On the basis of these

and similar examples one can argue that the appearance of such a divergence is an indication that one
is dealing with some approximation or a limiting case of a‘better’ theory, in which the corresponding,
possibly modified symmetries fully preserve the action integral. In particular, I feel that supersymmetric
theories would gain much if they were reformulated so as to make supersymmetries into proper invariant
transformations; see (Trautman 1996) for further examples.

4.5. Gravitation and quantum theory

The problem of constructing a quantum theory of gravitation is considered to be one of the most
important and difficult in fundamental physics; it is reviewed elsewhere in this issue. Not being a
specialist in this field, I restrict myself to a few short, tentative comments. It is my impression that
some of the difficulties in the development of contemporary theoretical physics arise from unjustified
generalizations to all of physics of notions suitable only in parts of it. Pre-Maxwellian physics was
dominated by mechanics. Many attempts were then made to explain electromagnetic phenomena in
terms of elastic forces. It took us a long time to realize—and this became possible only after the advent
of quantum theory and general relativity—that all the forces that can be legitimately put on the right
side of Newton’s equation are of electromagnetic origin. The principle of equivalence implies that there
is really no such thing as gravitational force. The understanding of interactions in the XXth century
has been dominated by electrodynamics. We are now not so naı̈ve as to try to reduce all phenomena
to electromagnetism, but we attempt to model all theories after electrodynamics, classical or quantum.
When doing this, we rely on many notions, such as that of energy, which may be traced back to that of
force.

Much of the work on quantization of the gravitational field has been based on analogies with
electromagnetism, in an attempt to build a theory of gravitons, similar to that of photons. Ultimately,
something along these lines will probably be achieved. One should keep in mind, however, that there
are some deep links between gravitation and quantum theory at a rather elementary—and, therefore,
fundamental—level. They may be interpreted to indicate that a synthesis of general-relativistic and
quantum ideas should occur at a ‘low level’, before the construction of a theory of gravitons.

4.5.1. The beautiful arguments due to Bondi (pp 418–9 in [BPT]) and Schild (pp 27–37 in [Eh])
show that elementary quantum notions applied to (Newtonian) gravitation lead to the conclusion that
space-time is curved. There is a similarly simple way of ‘deriving E = mc2 from general relativity and
∆E = hν’ (pp 164–5 in [R]). It is a small miracle that these arguments work.

4.5.2. The (algebraically special) Kerr-Newman solution describes the external gravitational and
electromagnetic fields of a black hole with angular momentum and charge. It is remarkable that its
gyromagnetic ratio is the same as that of an electron, derived in quantum mechanics from the Dirac
equation (p 883 in [MTW]).

4.5.3. Of even greater significance is the mysterious miracle consisting in similarities between the
laws of black holes and those of thermodynamics; for recent accounts see Wald in [Wa] and his article
in this issue. In this context it is worth recalling Einstein’s view on classical thermodynamics, expressed
in his Autobiographical Notes: ‘It is the only physical theory of universal content concerning which
I am convinced that, within the framework of the applicability of its basic concepts, it will never be
overthrown (for the special attention of those who are skeptics on principle)’ (p 33 in [Sch]). Einstein
probably did not appreciate the significance of the 1939 paper by Oppenheimer and Snyder portending
the discovery of black holes, but—had he lived long enough—he would have been impressed by the
Bekenstein analogies and the prediction of the Hawking radiation.
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