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1 Introduction

Besides the major applications of spinors and twistors to equations of mathe-
matical physics, there are minor results, where these objects play an auxiliary
role or bring a new light on otherwise well-known facts. One example of such
a result is the twistor-inspired derivation, based on the use of the conformal
compactification of a (pseudo-) Euclidean space, of the fractional-linear form
of Möbius transformations. Even simpler is the remark that the solution,
attributed to Euclid, of the Pythagorean equation, has a spinorial interpre-
tation: it is equivalent to the statement that a null vector in Z3, considered as
a subset of R3 with a scalar product of signature (1, 2), is the (tensor) square
of an integer-valued spinor. In this short article, I expand the latter observa-
tion and give a summary of the rudiments of twistor notions associated with
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higher-dimensional spaces; this account is included here not because of its
novelty, but in the hope that there may be some interest in a presentation by
an outsider. Only ‘global’ twistors are considered here; I gave a brief account
of my view of ‘local’ twistors in (Trautman 1993).

Originally, Roger Penrose intended twistor spaces to be associated with,
or serve as replacements for, the 4-dimensional, Lorentzian space-times. His
belief in the privileged and exceptional role of four dimensions, apparent
in twistor theory, was strikingly confirmed by the discoveries of exotic dif-
ferential structures on R4, and of the Donaldson and Seiberg-Witten in-
variants. There are, however, interesting generalizations of twistor ideas to
other dimensions and signatures; especially to proper Riemannian 3- and 4-
manifolds. As is often the case with important ideas, the original notion of
twistor has been generalized in many ways; only some of them are briefly
presented below.

2 Pythagorean spinors

If p and q are integers, then the triple of integers (x, y, z), given by

(1) x = p2 − q2, y = 2pq, z = p2 + q2,

is Pythagorean: it satisfies the equation x2+y2 = z2. If (x, y, z) is Pythagorean,
then at least one of the numbers x and y is even; moreover, if t ∈ Z, then
(y, x, z) and (tx, ty, tz) are also Pythagorean. I say that a Pythagorean triple
(x, y, z) is standard if z > 0 and either the triple (x, y, z) is relatively prime
(rp) and y is even or (x/2, y/2, z/2) is a triple of rp integers and y/2 is odd.
For example, the triples (−1, 0, 1) and (8, 6, 10) are standard, but (4, 3, 5)
and (6, 8, 10) are not. Every Pythagorean triple can be written as (tx, ty, tz),
where t ∈ Z, the integers (x, y, z) are rp and z > 0; if y is even, then (x, y, z)
is standard; if y is odd, then (2x, 2y, 2z) is standard.

Proposition 1. If (x, y, z) is a standard Pythagorean triple, then there is a
pair (p, q) of relatively prime integers such that (1) holds.

In other words: there is a bijection between the set of directions in Z2

and the set of ‘null directions’ in Z3.

Proof. Note that z > 0, y even and y2 = (z+x)(z−x) imply z+x = 2m ≥ 0
and z − x = 2n ≥ 0, where m and n are integers. If y = 2r, then the
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Pythagorean equation is equivalent to r2 = mn. If the triple (x, y, z) is rp,
then so is the triple (m,n, r). If r is odd and the integers x, y and z are all
even, but have no divisor > 2, then the triple (m,n, r) is also rp. If (m,n, r)
is rp, then r2 = mn implies that both m and n are squares.

Recall the classical lemma (Sierpiński 1987):

Lemma 1. If p and q are integers, then a necessary and sufficient condition
for the existence of integers u and v, such that pu + qv = 1, is that p and q
be relatively prime.

It leads to

Proposition 2. The group SL2(Z) acts transitively on the set P ⊂ Z2 of
integer-valued ‘spinors’ with relatively prime components.

In other words: the group SL2(Z) acts transitively on the set of directions
in Z2.

Proof. Indeed, let a, b, c, d ∈ Z and consider

(2) A =

(
a b
c d

)
.

The matrix A is in SL2(Z) iff ad − bc = 1; it acts in Z2 by sending

(
p
q

)

to

(
p′

q′

)
= A

(
p
q

)
. If

(
p
q

)
∈ P , then there are integers u and v such that

pu+qv = 1. Putting (u′, v′) = (u, v)A−1 one obtains p′u′+q′v′ = 1; therefore,

SL2(Z) acts in P . This action is transitive: if

(
p
q

)
∈ P and pu + qv = 1,

then the matrix

(
p −v
q u

)
sends

(
1
0

)
to

(
p
q

)
.

The stabilizer of an element of P is a subgroup of SL2(Z) isomorphic to
Z.

Recall that the group SL2(R) is the connected component of the group
Spin1,2(R): there is the exact sequence of homomorphisms of groups,

1 → Z2 → SL2(R)
ρ−→ SOo

1,2(R) → 1.
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If (x, y, z) ∈ R3 is represented by the matrix

(
z + x y
y z − x

)
= 2

(
p
q

)
(p q)

and

(3) v =

(
z + x y
y z − x

)
J, where J =

(
0 −1
1 0

)
,

so that v2 = (x2+y2−z2)I, then ρ(A)v = AvA−1. By restriction, one obtains
the exact sequence

1 → Z2 → SL2(Z)
ρ−→ G → 1.

The group G ⊂ SOo
1,2(R) which, by definition, is the image of SL2(Z) by ρ,

is a group of matrices with entries that are either integer or half-integer. For
example,

ρ

(
1 1
0 1

)
=




1
2

1 1
2

−1 1 1
−1

2
1 3

2


 .

The group G acts on the set {(x, y, z) ∈ Z3 : x + z is even}. It is an
easy exercise to find the subgroup of SL2(Z) that covers the subgroup of G
containing all matrices with integer elements.

3 Projective quadrics and twistors

Global twistors, described in the first paper on the subject (Penrose 1967), are
associated with projective quadrics, i.e. with conformal compactifications of
(pseudo-) Euclidean spaces. Most of the time, the name ‘projective quadric’
is shortened to ‘quadric’. Let V be an m-dimensional vector space over
K = R or C with a non-degenerate quadratic form g. In the vector spaceW =
V ⊕K2 one introduces the quadratic form h by putting h(w) = g(v) + λµ,
where w = (v, λ, µ) ∈ W , and defines the quadric Q(h) to be the subset of
the projective space P(W ) consisting of all null directions, Q(h) = {dirw :
w ∈ W,w 6= 0, h(w) = 0}. The quadric inherits from the quadratic space
(W,h) a (locally flat) conformal structure. The map V → Q(h), given by
v 7→ dir(v,−g(v), 1), is a conformal embedding with an image open and
dense in Q(h); the complement of the image is the ‘null cone at infinity’. The
group Spin(h) acts on Q(h) by sending dirw to dir(AwA−1), where w ∈ W
and A ∈ Spin(h). This action is conformal and transitive. The Clifford
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algebra Cl(h), associated with the quadratic space (W,h), is isomorphic to
the algebra Cl(g)⊗ EndK2; an isomorphism is induced by the Clifford map

(4) (v, λ, µ) 7→
(
v λ
µ −v

)
= X.

Therefore, every A ∈ Spin(h) ⊂ Cl(h) can be written in the form (2), where
a, b, c and d are now suitable elements of Cl(g). Let a 7→ ta be the antiauto-
morphism of the algebra Cl(g) such that t1 = 1 and tv = v for every v ∈ V .
There holds

Proposition 3. If A ∈ Spin(h), then the space

VA = {v ∈ V : cv + d is invertible in Cl(g)}

is open and dense in V ; the map

fA : VA → VA−1 defined by fA(v) = (av + b)(cv + d)−1

is a conformal diffeomorphism, g(dv) = t(cv + d)(cv + d)g(dfA(v)).

This result goes back to Th. Vahlen; see (Robinson and Trautman 1993)
and the references given there. The Clifford algebra Cl(g) has an irreducible

Dirac (m even) or Pauli (m odd) representation γ in a complex, 2[
1
2
m]-

dimensional vector space S of spinors. The Dirac representation, restricted
to the even Clifford algebra, decomposes into the sum of two Weyl repre-
sentations in the spaces of spinors of opposite ‘chirality’. A representation
γ of Cl(g) in S extends to a representation δ of Cl(h) in S ⊕ S. Namely, if
a ∈ Cl(g) and b ∈ EndK2 ⊆ EndC2, then
(5)
δ : Cl(h) → End(S ⊕ S) = (EndS)⊗ EndC2 is given by δ(a⊗ b) = γ(a)⊗ b.

3.1 The complex case

3.1.1 Complex projective quadrics of dimension m

Assume K = C so that V = Cm. The corresponding complex quadric Qm

is, in the words of Kobayashi and Ochiai (1982), ‘a holomorphic analogue
of a sphere’. It has no complex-bilinear Riemannian structure; its complex
conformal structure supports a unique conformal spin structure which can
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be described as follows. Let Clm denote the Clifford algebra associated with
(Cm, g). The conformal spin (Clifford) group is defined here as the subset
Cpinm of Clm consisting of products of all even sequences of non-null vectors
in V . This group acts on vectors by sending, for every a ∈ Cpinm, the vector
v to ρ(a)v = av ta. There is the exact sequence of group homomorphisms,

1 → Km → Cpinm
ρ−→ COm → 1,

where COm is the connected component of the conformal group (understood
here as the group of rotations and dilations). If m is odd, then the kernel
Km of ρ is Z2 = {1,−1}. For m even, ρ gives a four-fold cover and Km =
{1,−1, η,−η}, where η ∈ Clm is a volume element normalized so that tηη =
−1. The group Km is isomorphic to Z4 for m ≡ 0 mod 4 and to Z2 × Z2 for
m ≡ 2 mod 4. The spin group is Spin(g) = Spinm = {a ∈ Cpinm : taa = 1}.
The group Spinm+2 acts transitively on Qm. The image of the null vector

w∞ = (0, 1, 0) ∈ W by (4) is

(
0 1
0 0

)
∈ Clm+2. The stabilizer of dirw∞ ∈ Qm

is the semi-direct product Hm of Cpinm by Cm given explicitly by

Hm = {
(
a v
0 ta−1

)
: a ∈ Cpinm, v ∈ Cm} ⊂ Spinm+2 .

The groups Cpinm and Cm are thus made into subgroups of Spinm+2. Let
POm be the quotient of the complex special orthogonal group SOm by its
centre: PO2n+1 = SO2n+1 and PO2n = SO2n/Z2. There is the commutative
diagram

Cpinm −−−→ COmy
y

Spinm+2 −−−→ POm+2

of group homomorphisms: the vertical arrows are injective and the horizontal
ones are 4:1 or 2:1 depending on whether m is even or odd. The map Cm →
Spinm+2 descends to a monomorphism of groups, Cm → POm+2. With these
observations in mind, one can formulate

Proposition 4. (i) The conformal spin structure on Qm is given by the
principal bundle maps

Cpinm −−−→ COmy
y

Spinm+2/Cm −−−→ POm+2/Cm −−−→ Qm .
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(ii) The associated bundle of spinors,

(Spinm+2/Cm)×Cpinm S → Qm,

corresponding to the representation γ : Cpinm → GL(S), is isomorphic to the
bundle Σ → Qm, where

Σ = {(dirw,Φ) ∈ Qm × S ⊕ S : δ(w)Φ = 0}
and δ is as in (5).
(iii) The Maurer-Cartan form A−1dA defines a flat Cartan connection on the
Hm-bundle $ : Spinm+2 → Qm.

A proof of (i) is in (Robinson and Trautman 1993). The map $ :
Spinm+2 → Qm is given by $(A) = dir(Aw∞A−1). Part (ii) generalizes a
similar observation made by Manin (1981) for m = 4. I learned of this gener-
alization from Harnad; the isomorphism in question is given by [(ACm, ϕ)] 7→
($(A), δ(A)(ϕ, 0)). Part (iii) follows from the definition of a Cartan connec-
tion; see (Friedrich 1977) and the references given there.

If Φ ∈ S ⊕ S is a non-zero spinor, then the vector space {w ∈ W :
δ(w)Φ = 0} is totally null; if it is maximal (mtn), then Φ is said to be pure.
If m = 2n is even, then a pure spinor is Weyl (chiral) and the (n+ 1)-vector
formed from a linear basis spanning the corresponding mtn is either self-dual
or antiself-dual. The projective twistor space Tm for Qm is the manifold of
directions of pure spinors associated with (W,h). For m even, it has two
components, T+

m and T−
m. If one puts m = 2n (m even) or m = 2n − 1 (m

odd), then dimTm = 1
2
n(n+1). In particular, each of the spaces T3, T

+
4 and

T−
4 is diffeomorphic to CP3. A global twistor dirΦ ∈ Tm is identified with

the mtn space of vectors annihilating Φ. This space descends to a totally null
geodesic submanifold of Qm of the maximal dimension [1

2
m]. The dimensions

of Qm and Tm coincide only for m = 3 (minitwistors; cf. the papers by K.
P. Tod in (Mason et al. 1995); see also (Ward 1996) and the papers by
N. J. Hitchin referred to there) and m = 6 (in this case, the three spaces
Q6, T+

6 and T−
6 are diffeomorphic to each other; this coincidence reflects

triality; cf. the papers by L. P. Hughston in (Mason et al. 1995)). The
flag manifold for Qm is defined as the ‘projectivized’ bundle of pure spinors,
Fm = {(dirw, dirΦ) ∈ Qm × Tm : δ(w)Φ = 0}. The two natural projections
define the double fibration Qm ← Fm → Tm which underlies the Penrose
correspondence (Wells 1979). For m even, Fm has two connected components
and there are two such double fibrations.
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3.1.2 The case of four dimensions

Instead of representing W as V ⊕C2, one uses, in this case, the identification
of C6 with ∧2C4. Let T be the complex, four-dimensional vector space
of Penrose twistors ; T is assumed to be endowed with a volume element
ε ∈ ∧4T∗, ε 6= 0. A frame (eα)α=1,...,4 in T is said to be unimodular if ε =
e1∧e2∧e3∧e4, where (eα) is the frame in T∗, dual to (eα). From now on, only
unimodular frames are used. The six-dimensional vector space W = ∧2T has
a quadratic form h—the Pfaffian—defined by 1

2
w∧w = h(w)e1∧ e2∧ e3∧ e4.

The volume element defines also the Hodge map ? : ∧T → ∧T∗, such that
?(1∧T) = ε. If w = 1

2
wαβeα∧eβ, then ?w = 1

2
?wαβe

α∧eβ, where ?w12 = w34,
etc. If w ∈ W is considered as a linear map T∗ → T and ?w as a linear map
T→ T∗, then

(6) w ◦ ?w = −h(w)idT and ? w ◦ w = −h(w)idT∗ .

In the notation with indices, these equations read wαγ ?wγβ = −δαβ (w
12w34+

w13w42+w14w23). The Klein quadric is Q4 = {dirw : w ∈ W,w 6= 0, w∧w =
0}. By (6), the linear map W → End(T⊕ T∗) given by

(7) w 7→
(

0 w
?w 0

)

has the Clifford property and yields a faithful and irreducible representation
of Cl(h) = Cl6 in T⊕T∗. With respect to this representation, the elements of
T and T∗ are Weyl spinors of opposite chirality; using the notation of §3.1.1
one can put T+

4 = P(T) and T−
4 = P(T∗). The projective twistor dirΦ,

0 6= Φ ∈ T, is identified with the mtn 3-space {w ∈ W : w ∧ Φ = 0}; this
space projects to a totally null, geodesic, self-dual 2-dimensional submanifold
of Q4: α(Φ) = {dir(Φ∧Φ′) : Φ′ ∈ T, Φ∧Φ′ 6= 0}. As a complex manifold, α(Φ)
is CP2. If Φ,Φ

′ ∈ T and Φ∧Φ′ 6= 0, then dir(Φ∧Φ′) ∈ Q4 is the intersection of
α(Φ) and α(Φ′). Similarly, if Ψ ∈ T∗, Ψ 6= 0, then there is the submanifold of
Q4: β(Ψ) = {dir(Φ ∧ Φ′) : Φ,Φ′ ∈ T, Φ ∧ Φ′ 6= 0, 〈Φ, Ψ〉 = 〈Φ′, Ψ〉 = 0}. The
submanifolds α(Φ) and β(Ψ) intersect along a null geodesic iff 〈Φ, Ψ〉 = 0; as
a complex manifold, such a null geodesic is CP1; two distinct points dirw,
dirw′ ∈ Q4 lie on such a null geodesic iff w∧w′ = 0; see §9.3 in (Penrose and
Rindler 1986) and (Penrose 1996).

The group Spin(h) = Spin6 is isomorphic to SL4 = SL(T) embedded in
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Cl(h) by

(8) A 7→
(
A 0
0 A∗−1

)

where A∗ ∈ SL(T∗) is the transpose of A ∈ SL(T). The element A acts in
W by sending w to AwA∗, as may be checked from (7), (8) and the equation
?(AwA∗) = (detA)(A∗−1 ? wA−1) valid for every w ∈ W and A ∈ GL(T). A
frame (eα) in T can be used to construct a ‘null frame’ (wa)a=0,1,...,4,∞ inW by
putting (say): w0 = e3∧e4, w1 = e1∧e3, w2 = e1∧e4, w3 = e2∧e3, w4 = e2∧e4
and w∞ = e1∧e2. For z = (zµ) ∈ C4, put w(z) = w0+zµwµ+(z1z4−z2z3)w∞;
then for every z one has w(z) 6= 0 and w(z)∧w(z) = 0; the map z 7→ dirw(z)
is a conformal embedding of V = C4 in Q4. Put S = span{e1, e2} and S ′ =
span{e3, e4}; the direction of w∞ (equivalently: the plane S) is preserved by
the subgroup

H4 = {
(
a v
0 b

)
: a ∈ GL(S), b ∈ GL(S ′), det a det b = 1 and v ∈ Hom(S ′, S)}

of SL4 so that Cpin4 is isomorphic to {(a, b) ∈ GL2 × GL2 : det a det b = 1}.

3.2 The real case

Assume now K = R and let (k, l), k + l = m, be the signature of g. The
real quadric Qk,l is diffeomorphic to (Sk ×Sl)/Z2. In particular, Qk,0 = Sk; a
proper real quadric, i.e. one with kl 6= 0, is orientable iff k+ l is even (Cahen
et al. 1993). An essential difference between the complex and the real case
is that, in the latter, the conformal structure on the quadric is generated
by a pseudo-Riemannian metric. One can consider spin or pin structures
corresponding to such a metric. (S)pin structures on real quadrics have been
determined and a method for finding the spectrum of the Dirac operator
given in (Cahen et al. 1995). There is neither room nor need to describe
here the construction of the twistor spaces associated with the real quadrics.
The most important case of Q1,3 is fully treated in the works of Penrose and
his school. Instead, I describe here the real twistors on Q1,2 that could have
been discovered by Euclid, had he followed the ‘spinorial method’ of solving
the Pythagorean equation, outlined in §2.

9



3.2.1 Real twistors on Q1,2

Let λ, µ ∈ R and let v be as in (3). The matrix X, given by (4), can be now
considered as an endomorphism of U, a four-dimensional vector space of real
twistors. The antisymmetric matrix

ω =

(
0 J
J 0

)
: U→ U∗

is a symplectic 2-form on U and ε = 1
2
ω ∧ ω is the corresponding volume

4-form. It follows from X∗ = ω ◦X ◦ ω−1 that the map X ◦ ω−1 : U∗ → U is
antisymmetric. Since X2 = (x2+y2−z2+λµ)idU, if the vector (x, y, z, λ, µ) ∈
R6 is null, then the bivector X ◦ ω−1 is of rank ≤ 2 and there are twistors
Φ, Ψ ∈ U such that X ◦ ω−1 = Φ ∧ Ψ . Moreover, trX = 0 implies ω(Φ, Ψ) =
0. Conversely, given a four-dimensional real symplectic space (U, ω), the
vector space W = {w ∈ ∧2U : tr(w ◦ ω) = 0} is five-dimensional and
the restriction of the Pfaffian to W is a quadratic form of signature (2,3).
Therefore, the quadric Q1,2 can be identified with the set of null directions
in W , or, equivalently, with the set of lagrangian planes in U. A real twistor
Φ ∈ U defines the null geodesic γ(Φ) = {dir(Φ ∧ Ψ) : Ψ ∈ U, ω(Φ, Ψ) = 0}
on Q1,2. If Φ ∧ Ψ 6= 0 and ω(Φ, Ψ) = 0, then γ(Φ) ∩ γ(Ψ) = dir(Φ ∧ Ψ). Two
distinct points of Q1,2 lie on one null geodesic iff the corresponding lagrangian
planes intersect along a line. For the material of this paragraph, see Note 1
to Chapter 6 in (Woodhouse 1980) and §7.2 in (Penrose and Rindler 1986).
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after hyperquadrics, Tôhoku Math. J., 34, 587–629.

[5] Manin, Yu. I. (1981). Gauge fields and holomorphic geometry (in Rus-
sian), Current Problems in Mathematics, 17, 3–55, Akad. Nauk USSR,
Moscow.

[6] Mason, L. J., Hughston, L. P. and Kobak, P. Z. (eds). (1995). Further
Advances in Twistor Theory: Volume II. (Pitman Research Notes in Math-
ematics Series 232). Longman and Wiley, Harlow and New York.

[7] Penrose, R. (1967). Twistor algebra. J. Math. Phys., 8, 345–366.

[8] Penrose, R. (1996). Incidence between complex null rays. Twistor
Newsletter, 41, 1–5.

[9] Penrose, R. and Rindler, W. (1986). Spinors and space-time, vol. 2:
Spinor and twistor methods in space-time geometry. Cambridge Univer-
sity Press, Cambridge.

[10] Robinson, I. and Trautman, A. (1993). The conformal geometry of com-
plex quadrics and the fractional-linear form of Möbius transformations. J.
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