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1. Introduction

In recent years, there has been considerable interest in properties of the
Dirac operator on manifolds; much research was done on estimating
its first eigenvalue on compact Riemannian spaces (Friedrich, 1980),
on harmonic, parallel (Lichnerowicz, 1963; Hitchin, 1974) and Killing
spinors (Cahen et al., 1986; Baum et al., 1991), and on spin structures
on symmetric spaces (Cahen and Gutt, 1988). Most of that work was
restricted to simply-connected manifolds. Some time ago, we started a
study of pin structures on non-orientable manifolds such as the even-
dimensional real projective spaces (Da̧browski and Trautman, 1986)
and odd-dimensional real projective quadrics (Cahen et al., 1995), in
order to prepare ground for the determination of the spectrum of the
Dirac operator on these spaces.

In this short article, based on the talk given by one of us (A.T.) at
the Conference, we summarize our recent work on this subject; a fuller
account can be found in a series of papers published in the Journal of
Geometry and Physics.
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2. Notation

A quadratic space is a pair (V, h), where V is a finite-dimensional real
vector space and h is a quadratic form on V which is non-degenerate,
but not necessarily definite. The corresponding Clifford algebra Cl(h) is
an associative algebra over R, containing R and generated by V ⊂ Cl(h);
for every v ∈ V one has v2 = h(v). This algebra is Z2-graded by the
main automorphism α characterized by α(v) = −v and α(1) = 1. A
unit vector v satisfies h(v) = 1 or −1. The group Pin(h) is a subset
of Cl(h) consisting of Clifford products of all finite sequences of unit
vectors; Spin(h) is its subgroup consisting of all even elements of Pin(h).
The twisted adjoint representation ρ of Pin(h) in V is defined by

ρ(a)v = α(a)va−1 (1)

for every a ∈ Pin(h) and v ∈ V . Let G = O(h) be the group of
automorphisms of (V, h) and H be either Pin(h) or Pin(−h). The group
H is an extension of G by Z2: there is the exact sequence

1 → Z2 → H
ρ→ G → 1.

If h is a quadratic form of signature (k, l) in Rk+l, then we write Pink,l
instead of Pin(h); a similar notation is used for the spin and orthogo-
nal groups. The groups Spink,0 and Spin0,k, which are isomorphic, are
denoted Spink. The volume element associated with an oriented V , and
an h of signature (k, l), is ηk,l = e1 · · · ek+l, where (e1, . . . , ek+l) is an
orthonormal frame of the given orientation. If η2k,l = 1, then {1, ηk,l}
is a subgroup of Pink,l. We put Pinm = Pinm,0 for m ≡ 0 or 1 mod 4
and Pinm = Pin0,m for m ≡ 2 or 3 mod 4, and use a similar notation
for the volume elements. In this notation, one has η2m = 1 for m odd or
divisible by 4, but η24k+2,0 = η20,4k+2 = −1 for every k.

3. Pin structures and the modified Dirac operator

Let (M, g) be a Riemannian space having (V, h) as a local model. A
pin structure on (M, g) is given by the sequence of maps

H → Q
χ→ P

π→ M, (2)

where P is the G-bundle of all orthonormal frames on (M, g), and
Q, the pin bundle, is a principal H-bundle over M and a principal
Z2-bundle over P . Denoting by δ the right action of H on Q so that
δ(a)(q) = qa and (qa)b = q(ab) for q ∈ Q and a, b ∈ H, one has
χ(qa) = χ(q)ρ(a) for every q ∈ Q and a ∈ H. Sometimes, to be more
explicit, if H = Pin(h) (resp., Pin(−h)), then one says that (2) defines
a Pin(h)- (resp., Pin(−h)-) structure. If P admits a restriction P ′ of
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G to a subgroup G′, then Q has a restriction Q′ = χ−1(P ′) to the
subgroup H ′ = ρ−1(G′); the pin structure on M can be obtained, in
an obvious way, from the sequence of maps H ′ → Q′ → P ′ → M ; the
latter sequence is referred to, somewhat imprecisely, as the restricted
pin structure on M . In particular, if M is orientable, then P can be
restricted to the special orthogonal group G′ = SO(h); moreover, if M
is pin, then it has a pin structure restricted to H ′ = Spin(h), called a
spin structure on M . The space M is then said to be spin and Q′ is its
spin bundle.

Let γ : H → GL(S) be a spinor representation in a complex vector
space S; a spinor field of type γ is a map ψ : Q → S, equivariant with
respect to the action of H, i.e. such that ψ(qa) = γ(a−1)ψ(q) for every
q ∈ Q and a ∈ H.

Given a pin structure on (M, g), the Levi-Civita connection form on
P lifts to a connection form ω on Q, with values in the Lie algebra of
H. Let ∇ be the basic horizontal V ∗-valued vector field on Q defined
by ω. The value ∇(q) of ∇ at q ∈ Q is a linear map ∇(q) : V → TqQ
and for every q ∈ Q and a ∈ H one has

∇(qa) = Tqδ(a) ◦ ∇(q) ◦ ρ(a). (3)

If ψ : Q → S, then ∇ψ : Q → Hom(V, S). The representation γ defines
a Clifford evaluation map γ̃ : Hom(V, S) → S given by γ̃(v∗ ⊗ s) =
γ(h̄(v∗))s, where v∗ ∈ V ∗, s ∈ S and h̄ is the isomorphism V ∗ → V
associated with h. The classical Dirac operator Dcl acts on a spinor field
ψ according to Dclψ = γ̃ ◦ ∇ψ. It follows from (1) and (3) that if ψ is
a spinor field of type γ, then Dclψ is a spinor field of type γ ◦ α. If M
is orientable, then one restricts Q to H ′ = Spin(h) and then γ ◦α|H ′ =
γ|H ′ so that Dclψ = λψ is meaningful also for λ 6= 0. However, if M
is pin, but not orientable, then one has to modify the Dirac operator
in order to consider an eigenvalue problem for that operator. If the
dimension m of M is even, then the Dirac representations γ and γ ◦ α
are equivalent: there is an intertwiner Γ ∈ GL(S) such that Γ 2 = idS
or − idS and γ ◦ α(a) = Γ ◦ γ(a) ◦ Γ−1 for every a ∈ H. The modified
Dirac operator D = ΓDcl preserves the type of Dirac spinor fields.
If the dimension m of M is odd, then e1 · · · em is in the centre of H
and, therefore, the two irreducible Pauli representations of H are not
complex-equivalent. Let ψ+ and ψ− be Pauli spinor fields of type γ and
γ◦α, respectively. By taking the ‘Cartan representation’ to be the direct
sum of γ and γ◦α, one can define the modified Dirac (‘Cartan’) operator
to act on the Cartan spinor field so that (ψ+, ψ−) 7→ (Dclψ−, Dclψ+).
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4. Spin structures on products

Consider two spin manifolds (Mi, gi), i = 1, 2, and their corresponding
local models (Vi, hi). Let

Spin(hi) → SQi → SPi → Mi, (i = 1, 2)

be the sequences defining their spin structures.

PROPOSITION 1. The product (M1 ×M2, g1 ⊕ g2) of two manifolds
is spin if, and only if, both factors are spin. The spin structure on the
product can be obtained from the restricted spin structure

Spin(h1) · Spin(h2) → SQ1 · SQ2 → SP1 × SP2 → M1 ×M2,

where Spin(h1) · Spin(h2) = (Spin(h1) × Spin(h2))/Z2 is a subgroup of
Spin(h1⊕h2) doubly covering the subgroup SO(h1)×SO(h2) of SO(h1⊕
h2) and SQ1 · SQ2 = (SQ1 × SQ2)/Z2.

For i = 1 and 2, let γi be a Dirac or a Pauli representation of Spin(hi) in
Si, depending on whether the dimension mi of Mi is even or odd. Put
S = S1⊗S2 if at least one of these two dimensions is even and S = C2⊗
S1 ⊗ S2 if both M1 and M2 are odd-dimensional. The representations
γ1 and γ2 extend to a representation γ of Spin(h1⊕h2) in S. Let vi ∈ Vi

for i = 1 or 2. If m1 is even, then γ(v1, v2) = v1 ⊗ idS2 +Γ1 ⊗ v2, where
Γ1 is an intertwiner of the representations γ1 and γ1 ◦ α such that
Γ 2
1 = idS1 . If both m1 and m2 are odd, then γ(v1, v2) = σ1 ⊗ γ1(v1)⊗

idS2 +σ2⊗idS1 ⊗γ2(v2), where σ1 and σ2 are the Pauli matrices. Tensor-
multiplying spinor fields defined on the factors, one obtains spinor fields
on the product. We have (Cahen et al., 1995)

PROPOSITION 2. Let Dcl
i be the classical Dirac operator on the spin

manifold Mi, i = 1, 2. If m1 is even, then the classical Dirac operator
on M1 ×M2 is given by

Dcl(ψ1 ⊗ ψ2) = Dcl
1 ψ1 ⊗ ψ2 + Γ1ψ1 ⊗Dcl

2 ψ2.

If
Dcl

i ψi = λiψi

and

ψ± = (λ1 ±
√
λ2
1 + λ2

2 + λ2Γ1)ψ1 ⊗ ψ2,

then

Dclψ± = ±
√
λ2
1 + λ2

2 ψ± .

There is a similar result for the case when both m1 and m2 are odd.
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5. The covering space of a pin manifold

There is a simple relation between pin structures on manifolds and
their covers. Let Π be the fundamental group of a connected manifold
M . The universal covering manifold M̃ of M is the total space of the
principal Π-bundle ξ : M̃ → M . We write the left action of Π on M̃
as (c, x) 7→ cx, so that ξ(cx) = ξ(x) for every c ∈ Πand x ∈ M̃ . The
principal O(h)-bundle π̃ : P̃ → M̃ of all orthonormal frames on M̃ can
be identified with the bundle induced from π : P → M by ξ,

P̃ = {(x, p) ∈ M̃ × P : ξ(x) = π(p)}.
The projection π̃ : P̃ → M̃ is given by π̃(x, p) = x and there is the
map η : P̃ → P such that η(x, p) = p. The group O(h) acts on P̃ so
that ((x, p), A) 7→ (x, pA), where A ∈ O(h); the map η is equivariant:
η(x, pA) = η(x, p)A. There is a natural lift of the action of Π to P̃
given by (c, (x, p)) 7→ (cx, p). The lifted action commutes with that of
O(h). We have

PROPOSITION 3. A Riemannian space M , with a local model (V, h),
admits a pin structure if, and only if, there exists a pin structure

Pin(h) → Q̃
χ̃→ P̃

π̃→ M̃ (4)

on its universal cover M̃ and an action of Π = π1(M) on Q̃, lifting the
action of Π on P̃ and commuting with the action of Pin(h). Moreover,
a spinor field ψ̃ : Q̃ → S descends to a spinor field ψ : Q → S if, and
only if, ψ̃ is invariant with respect to the action of Π on Q̃ and every
spinor field on Q is so obtained.

6. Pin structures on real projective spaces and quadrics

Proposition 3 is used to obtain, in an explicit manner, the pin (or spin)
structures on real projective spaces and quadrics. For example, let m
be a positive integer; the sphere S2m has a unique spin structure which
can be extended to the pin structure

Pin2m → Pin2m+1 → O2m+1 → S2m. (5)

The fundamental group of the real projective space P2m is generated
by an element which acts on the covering space S2m by sending x to −x;
since η22m+1 = 1 and ρ(η2m+1)x = −x, this action lifts to Pin2m+1 in
two inequivalent ways: a 7→ ±aη2m+1, where a ∈ Pin2m+1. The centre
of Pin2m+1 admits the two-element subgroups Z±2 = {1,±η2m+1} and
the non-orientable space P2m has two inequivalent Pin2m-structures

Pin2m → Pin2m+1/Z±2 → O2m+1/Z2 → P2m. (6)
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These two structures will be referred to as the pin+- and pin−-structures
on P2m; they are swapped by the change of orientation, which induces
a change of sign of the volume element.

The real quadric Sk,l is the conformal compactification of Rk+l en-
dowed with a quadratic form of signature (k, l); as a manifold, it is
diffeomorphic to (Sk × Sl)/Z2. In particular, Sk,0 = Sk; but we are
concerned here only with proper quadrics for which k and l are both
positive. To obtain the (s)pin structures on such a proper quadric one
first finds, by referring to Proposition 1, the spin structure(s) on its
cover Sk × Sl which is universal if both k and l are > 1. This product
manifold admits two natural metric tensor fields: a proper Riemannian
one and a pseudo-Riemannian of signature (k, l). They both descend to
the corresponding quadric. A quadric such that kl 6= 0 is orientable if,
and only if, k + l is even. In this case, one can consider on the quadric
Spink+l- and Spink,l-structures. If k + l is odd and kl 6= 0, then there
can occur, depending on the particular values of k and l, pin structures
corresponding to the groups Pink+l,0, Pin0,k+l,, Pink,l and Pinl,k. All
these structures are easily obtained from Proposition 3. The cases when
k or l = 1 require special consideration because S1 has two inequivalent
spin structures. We indicate, very briefly, how one can determine the
pin structures on Sk,l when both k and l are larger than 1. Complete
results are given in (Cahen et al., 1993; Cahen et al., 1995). Let ηk,0
(or η0,k) and ηl,0 (or η0,l) denote the volume elements in the mutually
orthogonal subspaces Rk and Rl of Rk+l. The quadric Sk,l admits two
Pink+l-structures whenever (ηk,0ηl,0)

2 = 1; it has two Pink,l-structures
whenever (ηk,0η0,l)

2 = 1, etc. A simple evaluation leads to

PROPOSITION 4. Let the integers k and l be larger than 1. If k
is even and l is odd, then the quadric Sk,l has two Pinl,k- and two
Pin0,k+l-structures for k + l ≡ 1 mod 4 and two Pink+l,0- and two
Pink,l-structures for k + l ≡ 3 mod 4. If both k and l are even, then
the quadric has two Spink,l-structures for k + l ≡ 0 mod 4 and two
Spink+l-structures for k + l ≡ 2 mod 4. If both k and l are odd and
k + l ≡ 2 mod 4, then there are on Sk,l two Spink,l- and two Spink+l-
structures. If k and l are odd and k+l is divisible by 4, then the quadric
has no spin structure whatsoever.

7. The spectrum of the Dirac operator on spheres

The spectrum of the Dirac operator on spheres is well-known; see
(Trautman, 1995) and the references given there. In view of applications
to P2m, we recall the relevant information for the even-dimensional
spheres. The Dirac representation γ : Pin2m → GL(S) admits an ex-
tension to an irreducible, but not faithful, Pauli representation γ′ :
Pin2m+1 → GL(S) such that γ′(η2m+1) = idS . If ψ : Pin2m+1 → S is a
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spinor field, then the map a 7→ γ′(a)ψ(a) is constant on the fibres of
$ : Pin2m+1 → S2m, where $(a) = α(a)e2m+1a

−1. Therefore, there is
Ψ0 : S2m → S such that

Ψ0 ◦$(a) = γ′(a)ψ(a) (7)

for every a ∈ Pin2m+1. Since $(aη2m+1) = −$(a), if ψ(aη2m+1) =
±ψ(a), then Ψ0(−x) = ±Ψ0(x) for every x ∈ S2m.

Let γi = γ′(ei) so that

γiγj + γjγi = 2(−1)mδij idS

for i, j = 1, . . . , 2m + 1. It is now convenient to take γ2m+1 as the
intertwiner of the representations γ and γ◦α. The square of the modified
Dirac operator D = γ2m+1D

cl is a positive operator for every m; D
descends to an operator D acting on a spinor-valued function Ψ0, given
by (7), so that

(DΨ0) ◦$(a) = γ′(a)(Dψ)(a).

Explicitly, this operator is given by

D =
∑

i<j

γiγj(xi∂j − xj∂i) +m.

Put ∂ =
∑

i γi∂i and denote by x another linear operator acting on
S-valued functions on R2m+1 so that (xΨ)(y) =

∑
i yiγiΨ(y), where

y ∈ R2m+1. For every non-negative integer n, the vector space Hm,n of
harmonic, homogeneous of degree n, S-valued polynomials on R2m+1

admits a decomposition H ′
m,n ⊕ H ′′

m,n, where H ′
m,n is the kernel of

∂ : Hm,n → Hm,n−1 and H ′′
m,n is the image of H ′

m,n−1 by x. Since the
sequence

. . .
∂→ Hm,n+1

∂→ Hm,n
∂→ Hm,n−1

∂→ . . .
∂→ Hm,0

∂→ {0}
is exact, H ′

m,n is also the image of Hm,n+1 by ∂. The vector space H ′
m,0

can be identified with S, whereas H ′′
m,0 = {0}. For every S-valued

polynomial Ψ on R2m+1, let Ψ0 denote its restriction to S2m. There
holds

PROPOSITION 5. If Ψ ∈ H ′
m,n, where n = 0, 1, . . . , then DΨ0 =

(n+m)Ψ0. If Ψ ∈ H ′′
m,n, where n = 1, 2, . . . , then DΨ0 = (1−n−m)Ψ0.

Every eigenfunction of D on S2m can be obtained in this manner.

The spectrum of the Dirac operator on spheres is symmetric; if DΨ0 =
λΨ0, then DxΨ0 = −λxΨ0. Note also that each eigenfunction of D has a
definite parity. The dimension of the space of eigenfunctions of D with
eigenvalue λ such that |λ| = m+ n is

2m
(
n+ 2m− 1

n

)
.
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There are similar statements for odd-dimensional spheres.

8. The spectrum of the Dirac operator on projective spaces
and on quadrics

It is now clear how one can find the spectrum of the Dirac operator on
real projective spaces and on quadrics by using Propositions 1-5. For a
quadric, one first finds, by referring to Propositions 1 and 2, the spin
structures and the spectrum of the Dirac operator D on the product
Sk ×Sl. Prop. 4—and its extension to the case when k or l = 1—gives
the (s)pin structures on Sk,l. Since the quadric and its covering space
are locally isometric, every eigenfunction of D that descends to the
quadric (Prop. 3) is also an eigenfunction of the Dirac operator with
the same eigenvalue and all eigenfunctions on Sk,l can be so obtained.

The case of even-dimensional real projective spaces is particularly
simple and instructive. According to Prop. 3 and Section 6, a spinor
field on S2m, i.e. a Pin2m-equivariant map ψ : Pin2m+1 → S, descends
to one or the other pin structure on P2m, given by (6), depending
on whether ψ(aη2m+1) = ψ(a) or −ψ(a). According to Section 7,
such spinor fields define by (7), even and odd S-valued functions on
the sphere, respectively. If Ψ ∈ Hm,n, then Ψ0(−x) = (−1)nΨ0(x):
therefore, the spectrum of the Dirac operator corresponding to the
pin+-structure on P2m is the set

Λ+
m = {λ ∈ Z|λ+ 1

2 | = m+ 2n+ 1
2 ; n = 0, 1, 2, . . . },

whereas the spectrum associated with the pin−-structure is the ‘op-
posite’ set Λ−

m = {−λ : λ ∈ Λ+
m}. These spectra are asymmetric,

Λ+
m ∩ Λ−

m = ∅, and Λ+
m ∪ Λ−

m is the spectrum of the Dirac operator
on S2m.
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