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The triviality of the bundles of spinors on spheres has been recognized
in connection with work on Killing spinors [1] and used to obtain an explicit
expression for the eigenfunctions of the Dirac operator on these spaces [2].
Every hypersurface M in Rm+1 has a pin− structure and the associated
complex bundle Σ → M of spinors is trivial [3]. If the dimension m of
the hypersurface M is even, then the trivial bundle Σ ⊗ Σ is isomorphic
to C ⊗∧TM even though the tangent bundle TM → M is not trivial, in
general. In this Letter, I present a few simple results on the triviality of the
exterior algebra (Grassmann) bundles of hypersurfaces in Rm+1.

Let the vector space Rm+1 be given the standard, positive-definite quad-
ratic form h and an orientation; these data define the Hodge map ? :

∧Rm+1 → ∧Rm+1 such that ?? = (−1)
1
2m(m+1)id∧Rm+1 . Consider a hy-

persurface M in Rm+1, i.e. a connected smooth manifold M , of dimension
m, together with an immersion i : M → Rm+1. The tangent space TxM
to M at x ∈ M is identified with its image by Txi, this image being con-
sidered as an m-dimensional vector subspace of Rm+1. This identification
extends, in a natural manner, to a linear injection ∧TxM → ∧Rm+1. The
same letter is used to denote an element of ∧TxM and its image in ∧Rm+1.
Let ∧0Rm+1 denote the even subalgebra of ∧Rm+1 and let ∧0TM be the
bundle of even multivectors on M .

Proposition 1. If the hypersurface M is orientable, then the vector bundle
∧TM →M is trivial.

Proof. Since M is orientable, there is a vector field n : M → Rm+1 of
unit normals to M . A trivialization f : ∧TM →M ×∧0Rm+1 is defined as
follows. Let a ∈ ∧TxM be either even or odd; if a is even, then f(a) = (x, a);
if a is odd, then f(a) = (x, nx ∧ a).
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Proposition 2. If the hypersurface M is even-dimensional, then the vector
bundle ∧TM →M is trivial.

Proof. The trivializing map f : ∧TM → M ×∧0Rm+1 is now defined as
follows: f(a) = (x, a) for a even and f(a) = (x, ?a) for a odd, a ∈ ∧TxM .

Proposition 3. If the hypersurface M is of dimension m ≡ 3 mod 4, then
the vector bundle ∧0TM →M is trivial.

Proof. If m ≡ 3 mod 4, then ?? = id∧Rm+1 . Let∧+
0 Rm+1 be the vector space

of self-dual, even multivectors over Rm+1. A trivializing map f : ∧0TM →
M×∧+

0 Rm+1 is defined by f(a) = (x, a+?a) for a ∈ ∧0TxM . To prove that
the map f is an isomorphism of vector bundles, one constructs the inverse
map f−1 : M × ∧+

0 Rm+1 → ∧0TM as follows. Given x ∈ M , let l be a
unit vector orthogonal to TxM . Denoting by λ the 1-form associated with
l by h, one has λyl = 1 and ∧TxM = {c ∈ ∧Rm+1 : λyc = 0}. By virtue
of the identity λy ? c = ?(l ∧ c) one has f−1(x, b) = λy ? (λyb) for every
b ∈ ∧+

0 Rm+1.

If m ≡ 1 mod 4, then ?? = −id∧Rm+1 . Upon complexification, one can
define a trivializing map f : C⊗∧0TM →M ×∧+

0 Cm+1 by putting f(a) =
(x, a− i ? a), where now ∧+

0 Cm+1 = {b ∈ ∧0Cm+1 : ?b = ib}. This proves

Proposition 4. If the hypersurfaceM is odd-dimensional. then the complex
vector bundle C⊗∧0TM →M is trivial.

Questions. Does there exist a non-orientable, odd-dimensional hypersur-
face M in Rm+1 such that the vector bundle ∧TM →M is not trivial? Are
there hypersurfaces of dimension m 6≡ 3 mod 4 such that ∧0TM → M is
not trivial?
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