
CLIFFORD AND THE ‘SQUARE ROOT’ IDEAS

A. TRAUTMAN

Abstract. This review article begins with a short history of the notions asso-

ciated with spinors; it describes several distinct ‘square root’ ideas occurring in

connection with Clifford algebras, spin groups and pure spinors. Applications
of pure spinors to geometry and physics are briefly presented. An appendix

contains a simple derivation of the Vahlen-Ahlfors, fractional-linear form of

Möbius transformations.

1. Introduction

Spinors—and the structures underlying this notion, such as Clifford
algebras, spin groups and their representations, and spin structures on
manifolds—are a good example of the subtle relations and mutual influences
between mathematics and physics. Their origins can be traced to work of
mathematicians, but they owe their name and fame to physicists. One of
the great achievements of 20th century physics is the elucidation of the role
of fermions—particles with half integer spin, such as electrons and protons,
requiring spinors for their quantum-mechanical description—in the observed
stability of matter and the chemical properties of atoms. An essential physical
law used to explain these properties is the Pauli exclusion principle (‘no more
than one fermion in any state’) which, in turn, follows from the applicability
of the Fermi-Dirac statistics to fermions: the quantum state of k fermions
of the same kind belongs to the kth exterior power of the vector space of
one-particle states. A fundamental result of relativistic quantum theory is
the theorem on the connection between spin and statistics ‘explaining’ why
fermions obey that statistics and, therefore, satisfy the exclusion principle;
see, e. g. [SW] and the references given there. One is tempted to say that
the world around us, and life in particular, are so rich because Nature found
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4 A. TRAUTMAN

it convenient to use, among its building blocks, entities requiring spinors in
their description.

At first, spinors baffled physicists and mathematicians alike; in the words
of Darwin (1928)1: The relativity theory is based on nothing but the idea
of invariance and develops from it the conception of tensors as a matter of
necessity; and it is rather disconcerting to find that apparently something has
slipped through the net, so that physical quantities exist, which it would be,
to say the least, very artificial and inconvenient to express as tensors.

Some people who had not accepted Darwin’s wisdom expressed in the last
sentence were criticized by É. Cartan; see the footnotes in the last section
of [C4]. Since spinors are difficult to visualize, even though they cannot be
expressed as tensors, it is natural to relate their properties to those of the more
familiar vectors, tensors, quadratic forms and orthogonal transformations.
Many of such heuristic considerations emphasize the appearance of the idea
of a ‘square’ or of a ‘square root’ in the relations between vectors and spinors.

This article reviews some of the (distinct) square root ideas as well as a
few applications of spinors. Proofs are replaced by references to the liter-
ature, whenever possible. Extensive information and bibliographies on the
subject of Clifford algebras, spin structures, the Dirac operator, and on appli-
cations of spinors in geometry and physics can be found in recent books and
reviews, such as [BGV, Bo, Ha, LM, PR]. The next section contains a rather
cursory account of the history of notions related to spinors; this is intended
to put in perspective the very significant contribution made by W. K. Clif-
ford. Following Cartan [C4], and unlike in most contemporary expositions of
the subject, spinor representations are treated here first for odd -dimensional
spaces. This is justified by the fact that, even though the Clifford algebra Cl2m
is isomorphic to the even subalgebra Cl+2m+1, the group Spin2m(C) is properly
contained in Spin2m+1(C); any results established for the latter hold, by re-
striction, for the former, but not conversely. The Appendix outlines a simple,
but apparently little known, derivation of the fractional-linear form of Möbius
transformations of projective quadrics (in particular, of the n-sphere Sn).

2. On the history of Clifford algebras and spinors

There is a prehistory of spinors: for example, in the papers by Euler [E]
and Rodrigues [Ro] on the rational representation of rotations in R3 one can
find—with a little effort and some good will—the map SU2 → SO3. Hamilton
represented rotations in terms of quaternions: every rotation in R3 is of the
form q 7→ aqa−1, where a ∈ Sp1 and q ∈ R3 ⊂ H are a unit and a pure quater-
nion, respectively (this shows that the groups Spin3 and Sp1 are isomorphic).

1In this style, I indicate references, mainly to the physics literature, that are listed in

[BuT].
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Cayley (1855) extended Hamilton’s observation to R4; he proved, in essence,
the isomorphism of the groups Spin4 and Sp1 × Sp1. More information on
that early period can be found in [C1].

Clifford [Cl1,2] introduced the algebras that now bear his name by consid-
ering the underlying vector space of a Grassmann algebra and endowing it
with a new product, thus generalizing the algebras of complex numbers and
of quaternions. In his language, the ‘geometric algebras’ over R are generated
by n ‘units’ e1, . . . , en, such that

(1) eµeν + eνeµ = −2δµν ,

where µ, ν = 1, . . . , n. The minus sign in (1) was motivated by the algebras
C and H over R. Clifford knew most of the basic properties of his algebras,
described now in modern texts: their Z2-grading and (semi-) simplicity, the
structure of the center, their periodicity and relations between algebras asso-
ciated with vector spaces of adjacent dimensions, etc. Using Clifford algebras,
Lipschitz [Lp] introduced the groups that are now called Spin and Clifford;
see, in this connection, the anonymous note [Corr]. In 1902 Vahlen found, in
terms of ‘Clifford numbers’, the fractional-linear representation of the Möbius
group in n dimension; see the Appendix to this paper.

The modern period in the history of spinors begins probably with the pa-
pers by Cartan [C2, C3] containing a description of the spin representations
of the Lie algebras of orthogonal groups. The discovery of the spin of the
electron by Uhlenbeck and Goudsmit (1925) forced physicists to find mathe-
matical tools to describe, within the framework of quantum mechanics, this
new degree of freedom. When doing this, Pauli (1927) and Dirac (1928) re-
discovered the spin representations and the Clifford algebras associated with
three- and four-dimensional vector spaces, respectively. Dirac introduced, at
that time, in the context of Minkowski space, the differential operator that
now bears his name; the Dirac equation has been very successful in describing
the quantum-relativistic behavior of electrons and other particles with spin
1
2 . Soon afterwards, Weyl [W] and Fock [F] developed a local theory of the
Dirac operator in curved, (Lorentzian) spacetimes. Shortly after the appear-
ance of the paper by Dirac, Ivanenko and Landau (1928) published another
approach to the theory of the ‘magnetic electron’. They proposed to use an
equation based on the operator d+ δ, acting on (inhomogeneous) differential
forms, where δ is the formal adjoint of the exterior derivative d. In view of the
successes of the Dirac theory, their equation was ignored for a long time. The
operator d + δ, whose square is the Laplacian, was considered by Kähler [K]
and, under the influence of his work, physicists used it to describe fermions
on a lattice.

Brauer and Weyl (1935) gave a general construction, based on Clifford alge-
bras, of the spin representations in any number of dimensions and showed how
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the tensor product of two such representations decomposes into irreducibles.
The connections between spinors, totally isotropic spaces and projective ge-
ometry seem to have been clearly stated, for the first time, by Veblen [V1,
V2] and developed in seminar lectures at Princeton, given jointly with Givens
[VG]. These notes contain remarks that may have influenced Cartan in his
work on pure spinors2 [C4]. Chevalley based his Algebraic theory of spinors
[Ch] on the notion of minimal, one-sided ideals of Clifford algebras, an idea
considered earlier by Riesz [Ri] in the context of the Dirac equation in the
theory of general relativity and, less explicitly, by several physicists; see, e. g.,
[Sa]. Chevalley developed the theory of spinors over an arbitrary field and
provided complete proofs of many new and old results; in particular, on pure
spinors and triality. Haefliger’s note [H] seems to be the first publication
containing the definition of a spin structure on a Riemannian space and the
derivation of the obstruction to the existence of such a structure. On the
basis of this definition, Atiyah and Singer [AS] developed a global theory of
the Dirac operator D on a Riemannian space; they proved the index theorem
for the operators d+ δ and D. This paper, together with [ABS] and the note
by Lichnerowicz [Li] on harmonic spinors, begins the modern period of re-
search on global aspects of spinor analysis and its applications to differential
geometry and topology. This research is surveyed in [BGV, Bo, Gi, LM].

Penrose and, under his influence, many physicists (see [PR] for a review and
references) have used spinors in the context of general relativity; the Newman-
Penrose (1962) formalism, used to study solutions of Einstein’s equations, is
an extension of the method of moving frames to the principal spin bundle over
a (Lorentzian) spacetimeM. Cartan (1922) noticed that, in such a spacetime,
the Weyl tensor (of conformal curvature), at a point where it is 6= 0, defines
4 isotropic (optical, null) directions in the tangent space; sometimes these
directions coincide; an enumeration of the possible coincidences leads to a an
algebraic classification of the Weyl tensors of Lorentzian spacetimes; a space-
time is algebraically degenerate if at least two of those directions coincide; it
is said to be of type D if there are two distinct pairs of coinciding directions
(example: the Schwarzschild metric). Since the manifold of isotropic direc-
tions at a point ofM can be identified with the projective space of directions
of Weyl (semi-) spinors, the structure group SL2(C) of the spin bundle of M
reduces to its Abelian subgroup C× = Cr {0}; the Newman-Penrose method
has been very effective in finding solutions of Einstein’s equations in this case.

3. The universal linearization of quadratic forms

The idea of linearization pervades much of pure and applied mathematics:

2In fact, Cartan used the expression spineur simple; the name ‘pure spinor’ is due to

Chevalley.
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it suffices to mention the notions of a differential, of tensor and exterior prod-
ucts or the inverse scattering method. The construction of Clifford algebras
solves the following universal problem: given a quadratic space (V, h), where
V is a (finite-dimensional) vector space over a field K and h : V → K is a
quadratic form, find all Clifford maps, i. e. linear maps f : V → A, where A
is an algebra over K, with a unit element 1A, such that

f(v)2 = h(v)1A

for every v ∈ V . The Clifford algebra of the quadratic space (V, h) is defined as
Cl(V, h) = T(V )/J(V, h), where J(V, h) is the ideal generated by all elements
of the tensor algebra T(V ) = ⊕∞p=0⊗pV of the form v ⊗ v − h(v). The
Clifford algebra of (V, h) contains K ⊕ V as a vector subspace, the injection
V → Cl(V, h) is a Clifford map and every Clifford map f : V → A extends

to a homomorphism f̃ : Cl(V, h) → A of algebras with units. In particular,

if f : V → V ⊂ Cl(V, h) is an isometry, f ∈ O(V, h), then Cl(f) = f̃ is an
automorphism of the algebra Cl(V, h); in other words, Cl is a functor from
the category of quadratic spaces to that of algebras with unit elements. The
isometry v 7→ −v extends to the main automorphism α of Cl(V, h). Since this
automorphism is involutive, it defines a Z2-grading of the algebra, Cl(V, h) =
Cl+(V, h) ⊕ Cl−(V, h), where Cl±(V, h) = {a ∈ Cl(V, h)|α(a) = ±a}. The
transposition is an antiautomorphism a 7→ at of Cl(V, h) characterized by
being a linear automorphism of the underlying vector space such that 1t =
1, vt = v for every v ∈ V and (ab)t = btat for every a, b ∈ Cl(V, h).

Assuming, from now on, that the characteristic of K is not 2, one can
associate with the quadratic form h the symmetric linear isomorphism V →
V ∗ given by v 7→ vh, where vh ∈ V ∗ is the linear form on V such that
2〈v′, vh〉 = h(v + v′) − h(v) − h(v′) for every v, v′ ∈ V . The linear map vh

extends to a derivation i(v) of degree −1 of the Z-graded (exterior) algebra
∧V . Denoting by e(v) ∈ End∧V the exterior multiplication by v, one has
i(v)e(v) + e(v)i(v) = h(v)id∧V . Therefore, if F (v) = e(v) + i(v), then F :
V → End∧V is a Clifford map and the linear map

(2) c : Cl(V, h)→ ∧V, defined by c(a) = F̃ (a)1∧V ,

is an isomorphism of vector spaces over K, natural with respect to isometries:
if f ∈ O(V, h), then

(3) c ◦ Cl(f) = ∧f ◦ c.

The map c reduces to the identity on K ⊕ V and satisfies

(4) c(va) = (e(v) + i(v))c(a)
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for every v ∈ V and a ∈ Cl(V, h) [Ch]. The algebra ∧V has a natural trans-
position antiautomorphism, (v1 ∧ · · · ∧ vp)t = vp ∧ · · · ∧ v1, and c(at) = c(a)t

for every a ∈ Cl(V, h). There is also the main automorphism αV of ∧V such
that c ◦ α = αV ◦ c.

Let V0 be a one-dimensional vector space with a generator e0 and a
quadratic form h0 such that h0(e0) = −1. The Clifford map V →
Cl+(V ⊕ V0, h ⊕ h0) given by v 7→ ve0 extends to an isomorphism of alge-
bras Cl(V, h)→ Cl+(V ⊕ V0, h⊕ h0).

In applications, one considers a representation γ of Cl(V, h) in a finite-
dimensional vector space S of ‘spinors’. Let (eµ) be a linear basis in V and
let hµν = 〈eµ, ehν 〉, where µ, ν = 1, . . . , n and n is the dimension of V . Using
Einstein’s summation convention over pairs of repeated indices, every v ∈ V
can be written, in terms of its components, as vµeµ. The representation γ,
restricted to V , is a Clifford map and

(γµv
µ)2 = hµνv

µvν idS .

If (eµ) is an orthogonal basis, i. e. if hµν = 0 for µ 6= ν, then µ1 < µ2 <
· · · < µp implies c(eµ1

eµ2
. . . eµp

) = eµ1
∧ eµ2

∧ · · · ∧ eµp
. Let cp(a) denote the

component in ∧pV of c(a), a ∈ Cl(V, h). If c(a) = cp(a), then one says that

a ∈ Cl(V, h) is of degree p. If a is of degree p, then at = (−1)
1
2p(p−1)a.

4. Double-valuedness of spinor representations
of orthogonal groups

In this section it is assumed that K = R and the quadratic form h is non-
degenerate. One says that v is a unit vector if either h(v) = 1 or h(v) = −1.
The spin group associated with (V, h) is the set Spin(V, h) of products of
the elements of all sequences consisting of an even number of unit vectors,
with multiplication induced from Cl(V, h). The adjoint representation ρ of
Spin(V, h) in V , defined by ρ(a)v = ava−1 for a ∈ Spin(V, h) and v ∈ V , gives
the exact sequence of group homomorphisms,

1→ Z2 → Spin(V, h)
ρ→ SO(V, h)→ 1.

This shows that, with respect to a natural topology and differential structure,
the group Spin(V, h) is a Lie group doubly covering the Lie group SO(V, h).
A representation of the spin group lifts to a representation of the rotation
group SO(V, h) if, and only if, it is trivial on the kernel of ρ; the spin repre-
sentations, which are defined here as restrictions to Spin(V, h) of non-trivial
representations of the algebra Cl(V, h), never lift; they are sometimes said to
define double-valued representations of SO(V, h).
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If V = Rk+l and the signature of h is (k, l), then one writes Clk,l instead of
Cl(V, h); a similar notation is used for the orthogonal and spin groups. The
number k − l is the index of h. If k or l > 1, then there are two unit vectors
u and v orthogonal one to another and such that h(u) = h(v). The function
t 7→ ω(t) = cos t + uv sin t maps the interval [0, π] into a curve in Spink,l
connecting 1 and −1; the image of this curve by ρ is a non-contractible loop in
SOk,l. Let π1(Go) denote the fundamental group of the connected component
Go of a Lie group G; one has

Proposition 1. If k and l are non-negative integers and at least one of them
is > 1, then the sequence

1→ π1(Spino
k,l)→ π1(SOo

k,l)→ Z2 → 1

is exact: the group π1(SOo
k,l) has a non-trivial Z2-grading.

Note that Spin1,0 = Z2 and Spino
1,1 is isomorphic to R. The groups Spink,0

and Spin0,k, which are isomorphic, are denoted Spink; they are connected for
k > 1 and simply connected for k > 2. The groups Spino

k,l, k > 2, are simply
connected for l = 1, but not for l > 1. If the groups Spin2 and SO2 are both
identified with U1 ⊂ C, then ρ becomes literally the map of taking the square.

LetM be an oriented manifold with a metric tensor of signature (k, l). Let
π : P →M be its SOk,l-bundle of orthonormal frames of coherent orientation.
A spin structure on M is a principal Spink,l-bundle $ : Q → M, together
with a morphism χ : Q → P of principal bundles over M associated with ρ:
for every a ∈ Spink,l and q ∈ Q one has χ(qa) = χ(q)ρ(a) and π ◦ χ = $.
The topological obstruction to the existence of a spin structure on a pseudo-
Riemannian space has been found by Karoubi [Ka]. Given a spin structure
Q → P → M and a spin representation γ : Spink,l → EndS, one defines a
spinor field of type γ on M to be a (smooth) map ψ : Q → S such that, for
every a ∈ Spink,l and q ∈ Q, one has ψ(qa) = γ(a−1)ψ(q). Let ω be the map
defined in the preceding paragraph; since γ(−1) = −idS , one has, for a spinor
field, ψ(qω(π)) = −ψ(qω(0)); the frame χ(q)ρ(ω(t)) results from the frame
χ(q) by a rotation by the angle 2t; for this reason one sometimes says that ‘a
rotation by 2π induces a change of the sign of a spinor’.

5. Tensor squares of spinors are multivectors

The tensor product of two spin representations of Spin(V, h) is a represen-
tation of SO(V, h); this simple fact underlies the physicists’ construction of
(real) multivectors from spinors.

5. 1. Complex vector spaces. Consider the complex vector space W = Cn
with a quadratic form h defined by h(z) = (z1)2− (z2)2 + · · ·+ (−1)n+1(zn)2,
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where z = (zµeµ) ∈ Cn. Denote by Cln the Clifford algebra Cl(W,h). Let
η = e1 · · · en ∈ Cln be an (oriented) volume element in W . Clearly, ηv =
(−1)n+1vη for every v ∈ W . The Kähler definition of the Hodge map ? :
∧W → ∧W reads

?c(a) = c(ηa), where a ∈ Clm,

and leads to

?? = id∧W and i(v) ◦ ? = (−1)n+1 ? ◦ e(v)

for every v ∈W .

The complex spin group Spinn(C) is defined as the subset of Cl+n consisting
of products of all sequences of an even number of vectors with squares = 1;
if a ∈ Spinn(C), then ata = 1. A representation of the algebra Cln in a
vector space defines, by restriction, a representation of the group Spinn(C);
one uses the same name and letter for a representation of the algebra and of its
restriction to the group. If a ∈ Spinn(C) and b ∈ Cln, then Cl(ρ(a))b = aba−1

so that (3) gives

(5) c(aba−1) = ∧ρ(a) ◦ c(b).

5. 1. 1. Consider first an odd -dimensional complex vector space W =
C2m+1 (m = 1, 2, . . . ). The even subalgebra Cl+2m+1 is simple and, since it is

complex 22m-dimensional, it has one, up to equivalence, irreducible and faith-
ful ‘Pauli’ representation σ in a 2m-dimensional complex space S of spinors.
By putting σ±(η) = ±idS and σ±|Cl+2m+1 = σ, one extends σ to the rep-
resentations σ+ and σ− = σ+ ◦ α of Cl2m+1 in S; these representations are
irreducible and inequivalent, but not faithful: the kernel of σ− (resp., σ+) is
the vector space of self-dual (resp., antiself-dual) elements of Cl2m+1.

The representations σ± can be described explicitly as follows. Consider
a Witt decomposition W = N ⊕ P ⊕ Ce2m+1, where N and P are m-
dimensional—therefore maximal—totally isotropic subspaces of W and e2m+1

is a unit vector orthogonal to V = N ⊕ P . One takes S = ∧N and, writing
an element of W as n+ p+ ze2m+1, where n ∈ N , p ∈ P and z ∈ C, one puts
σ±(n+ p+ ze2m+1) = ±(

√
2(e(n) + i(p)) + zαN ).

If f ∈ EndS, then f∗ ∈ EndS∗ is defined by 〈ϕ, f∗(ϕ′)〉 = 〈f(ϕ), ϕ′〉 for
every ϕ ∈ S and ϕ′ ∈ S∗. Let β be the antiautomorphism of Cl2m+1 defined
by β(a) = at for m even and β(a) = α(a)t for m odd so that β(η) = η for every
m. The two representations a 7→ σ±(β(a))∗ of Cl2m+1 in S∗ are equivalent
to the corresponding representations σ±: there exists an isomorphism B :
S → S∗ such that σ±(β(a))∗ = Bσ±(a)B−1 for every a ∈ Cl2m+1. Iterating
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and using Schur’s lemma one obtains B∗ = εB, where either ε = 1 or ε =
−1. To determine ε, note that (Bσ(a))∗ = εBσ(at) for every a ∈ Cl+2m+1.
Since dim{f |S → S∗|f∗ = f} > dim{f |S → S∗|f∗ = −f}, one has ε =
sgn (dimA+

m − dimA−m), where A±m = {a ∈ Cl+2m+1|at = ±a}. Moreover,

dimA+
m − dimA−m =

∑n
p=0(−1)p

(
2m+1
2p

)
= 2m

√
2 cos(2m+ 1)π4 so that [C4]

(6) B∗ = (−1)
1
2m(m+1)B.

For every a ∈ Cl+2m+1 one has

(7) σ(a)∗ = Bσ(at)B−1.

The isomorphism B defines also non-degenerate quadratic forms B ⊗ B−1

and B ⊗ B on EndS and S ⊗ S, respectively. Namely, if f ∈ EndS, then
(B ⊗ B−1)(f) = tr (B−1 ◦ f∗ ◦ B ◦ f); if ϕ,ψ ∈ S, then (B ⊗ B)(ϕ ⊗ ψ) =
〈ϕ,Bϕ〉〈ψ,Bψ〉; the linear map S ⊗ S → EndS defined by ϕ⊗ ψ 7→ ϕ⊗ Bψ
is an isometry for these quadratic forms. Similarly, the algebra Cl+2m+1 has a
quadratic form H, H(a) = 2−mtrσ(ata) and σ is an isometry of (Cl2m+1, H)
onto (EndS, 2−mB ⊗B−1). The even exterior algebra ∧+W has a quadratic
form ∧+h obtained by extension of h; the isomorphism (2) restricted to Cl+2m+1

is an isometry equivariant with respect to the action of the spin group. This
leads to

Proposition 2. Let σ be a faithful and irreducible representation of the even
Clifford algebra Cl+2m+1, associated with W = C2m+1, in a 2m-dimensional
complex vector space S. There then exists an isomorphism B : S → S∗ such
that (6) and (7) hold. The bilinear map

E : S × S → ∧+W, E(ϕ,ψ) = c ◦ σ−1(ϕ⊗Bψ),

(i) satisfies

E(ψ,ϕ) = (−1)
1
2m(m+1)E(ϕ,ψ)t;

(ii) if v ∈W , then

E(σ+(v)ϕ,ψ) = (i(v) + e(v)) ? E(ϕ,ψ);

(iii) if a ∈ Spin2m+1(C), then

E(σ(a)ϕ, σ(a)ψ) = ∧ρ(a) ◦ E(ϕ,ψ);

(iv) the linear map S ⊗ S → ∧+W , associated with E, is an isometry of the
quadratic space (S ⊗ S, 2−mB ⊗ B) onto (∧+W, ∧+h) which is equivariant
with respect to the action of the group Spin2m+1(C).
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To prove (i), put b = σ−1(ϕ ⊗ Bψ); then ψ ⊗ Bϕ = B−1 ◦ (ϕ ⊗ Bψ)∗ ◦
B∗ = (−1)

1
2m(m+1)σ(bt). The proof of (ii) is based on σ+(v) = σ(ηv), on

the definition of the Hodge dual and on (4). Part (iii) follows from σ(a)ϕ ⊗
Bσ(a)ψ = σ(a) ◦ (ϕ ⊗ Bψ) ◦ σ(at), ata = 1 and and (5). Part (iv) follows
from the preceding remarks; see also the proof of Prop. 4. 2. in [BuT].

The component of E in ∧2pW is denoted by E2p. In particular, E0(ϕ,ψ) =
2−m〈ϕ,Bψ〉. The bilinear form E0 is invariant with respect to the ac-
tion of Spin2m+1(C). More generally, if a ∈ Cl+2m+1 and ata = 1, then
〈σ(a)ϕ,Bσ(a)ψ〉 = 〈ϕ,Bψ〉. According to part (i) of Prop. 2, one has

E2p(ψ,ϕ) = (−1)
1
2m(m+1)+pE2p(ϕ,ψ).

Putting ν equal to the integer part of 1
2 (m+ 1), one obtains that

(8) if ν − p is odd, then E2p(ϕ,ϕ) = 0.

5. 1. 2. Consider now the even-dimensional subspace V = C2m of W
orthogonal to the unit vector e2m+1. The algebra Cl2m can be identified with
a subalgebra of Cl2m+1; the Clifford map V → Cl+2m+1, v 7→ ηv, extends to

an isomorphism of algebras j : Cl2m → Cl+2m+1. Since j(v)t = (−1)mj(v), one
has j(a)t = j(β(a)) for every a ∈ Cl2m. The element ηe2m+1 = e1 · · · e2m is a
volume in V . The composition γ = σ ◦ j is the ‘Dirac’ representation of the
algebra Cl2m in S. The automorphisms γµ = γ(eµ) (µ = 1, . . . , 2m) of S gen-
eralize the classical Dirac matrices; one has σ±(eµ) = ±γµ for µ = 1, . . . , 2m
and σ±(e2m+1) = ±Γ , where Γ = γ1 · · · γ2m is the ‘chirality’ automorphism
of S. It follows from these definitions that

(9) γ∗µ = (−1)mBγµB
−1 and Γ ∗ = (−1)mBΓB−1.

Let k : ∧V → ∧+W be the isomorphism of vector spaces such that k ◦ c =
c◦j; explicitly, it is given by k(w) = w for w ∈ ∧+V and k(w) = ?w for w odd,
w ∈ ∧−V . Let the Hodge dual in V be denoted by ∗, i. e. c(ηe2m+1a) = ∗c(a)
for a ∈ Cl2m. Consider the bilinear map

F = k−1 ◦ E : S × S → ∧V.

Denoting by Fp(ϕ,ψ) the component of F (ϕ,ψ) in ∧pV , one obtains, as a
corollary of part (i) of Prop. 2,

(10) Fp(ψ,ϕ) = (−1)
1
2 (m−p)(m−p+1)Fp(ϕ,ψ).
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Putting v = e2m+1 in part (ii) and using σ+(e2m+1) = σ(ηe2m+1) leads to

(11) F (Γϕ,ψ) = ∗F (ϕ,ψ) and F (ϕ, Γψ) = (−1)mα ◦ ∗F (ϕ,ψ).

If ∧V is given the quadratic form ∧h such that

∧h(v1 ∧ · · · ∧ vp) = h(v1) · · ·h(vp),

where v1, . . . , vp ∈ V , then k becomes an isometry of (∧V, ∧h) onto
(∧+W, ∧+h). As a corollary from Prop. 2 one obtains that the map

(12) S ⊗ S → ∧V, given by ϕ⊗ ψ 7→ c ◦ γ−1(ϕ⊗Bψ),

is an isometry of the corresponding quadratic spaces, equivariant with respect
to the action of Spin2m(C).

Restricted to the even subalgebra Cl+2m, the representation γ decomposes
into the direct sum of two irreducible and inequivalent, but not faithful, rep-
resentations γ+ and γ− in 2m−1-dimensional spaces S+ and S− of ‘Weyl’ or
‘chiral’ spinors. One has S± = {ϕ ∈ S|Γϕ = ±ϕ} and S = S+⊕S−. If ϕ and
ψ are both Weyl spinors with respect to γ, then (9) and (10) give

(13) if χ(ϕ) + χ(ψ) +m+ p ≡ 1 mod 2, then Fp(ϕ,ψ) = 0.

In particular, if ϕ is a Weyl spinor, then Fp(ϕ,ϕ) = 0 unless p ≡ m mod 4.
If the representation γ comes from a representation σ constructed in terms

of a Witt decomposition, so that S = ∧N , then Γ = αN and S± = ∧±N .

5. 2. Real vector spaces. Consider now the real vector space Rn with
a quadratic form h of signature (k, l), k + l = n. If (e1, . . . , en) is a frame
orthonormal with respect to h, then the volume element η = e1 · · · en satisfies
η2 = (−1)

1
2 (l−k)(l−k+1). The complexification of the Clifford algebra Clk,l is

isomorphic with Cln.

5. 2. 1. Consider first the case of n odd, n = 2m + 1. The Pauli repre-
sentation of Cl+2m+1, restricted to Cl+k,l, yields a representation σ of this real
algebra in a 2m-dimensional, complex vector space S. The representation σ
can be extended to the representations σ+ and σ− of Clk,l in S by putting

σ±(η) = ±idS when η2 = 1 and σ±(η) = ±
√
−1 idS when η2 = −1. Recall

also that with every complex vector space S one can associate its ‘complex
conjugate’ space S̄: the space S̄ has the same set of elements as S, but the
product of z ∈ C by a vector in S̄ is equal to the product of z̄ by the same
vector in S. Denoting by ϕ̄ the vector ϕ, considered as an element of S̄, one
has zϕ = z̄ϕ̄ for every ϕ ∈ S and z ∈ C. If f : S1 → S2 is a linear map
of complex vector spaces, then the linear map f̄ : S̄1 → S̄2 is defined by
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f(ϕ) = f(ϕ); the maps ϕ 7→ ϕ̄ and f 7→ f̄ are semi-linear, etc. With every
representation τ of a real algebra A in a complex vector space S one can
associate the complex conjugate representation τ̄ in S̄, given by τ(a) = τ(a)
for every a ∈ A. Since Cl+k,l is central simple for k+ l odd, its representations

σ and σ̄ are complex-equivalent; if η2 = 1, then the representations σ± are
equivalent to the corresponding representations σ±; if η2 = −1, then σ+ is
equivalent to σ−. In every case there is a linear isomorphism

C : S → S such that σµ = (−1)
1
2 (l−k)(l−k+1)CσµC

−1, where σµ = σ+(eµ)

for µ = 1, . . . , k+l = 2m+1. An argument similar to the one used with respect
to B in Sec. 5. 1 shows that C can be rescaled so that either C̄C = idS or
C̄C = −idS . Moreover, one obtains from (7) and

(14) σ(a) = Cσ(a)C−1, a ∈ Cl+k,l,

that C−1B̄−1C̄∗B∗ is in the commutant of σ; therefore, one can rescale B so
that

(15) B = C∗B̄C

and then the sesquilinear form

A : S × S → C, given by A(ϕ,ψ) = 〈ϕ̄, B̄Cψ〉

is either Hermitean or anti-Hermitean.

According to a terminology used in physics, one says that ϕc = C−1ϕ̄ is
the charge conjugate of the spinor ϕ ∈ S. The charge conjugate ϕ′c of ϕ′ ∈ S∗
is defined so that 〈ϕc, ϕ

′
c〉 = 〈ϕ,ϕ′〉; by virtue of (14), if ϕ′ = Bψ, then

ϕ′c = Bψc. There are two cases to consider [C1, BuT]:
(i) The real case: if l − k ≡ 1 or 7 mod 8, then C̄C = idS ; there is then the
2m-dimensional real vector space

SR = {ϕ ∈ S|ϕc = ϕ}.

and a decomposition of S into complementary subspaces of ‘Majorana’
spinors, S = SR ⊕

√
−1SR. The representation σ is real: σ(a)SR ⊂ SR

for every a ∈ Cl+k,l. The automorphisms σµ = σ+(eµ) are real (resp., pure

imaginary) for l − k ≡ 7 mod 8 (resp., l − k ≡ 1 mod 8). The algebra Cl+k,l
is isomorphic to the matrix algebra R(2m). The algebra Clk,l is isomorphic to
R(2m)⊕R(2m) (resp., C(2m)) for l− k ≡ 7 mod 8 (resp., l− k ≡ 1 mod 8).
The form A restricted SR is real and has the same symmetry as B.
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(ii) The quaternionic case: if l − k ≡ 3 or 5 mod 8, then C̄C = −idS and
S can be given the structure of a right module over H. Explicitly, denoting
by i, j and k = ij the quaternionic units, one puts ϕi =

√
−1ϕ and ϕj = ϕc.

The algebra Cl+k,l is isomorphic to the matrix algebra H(2m−1). The algebra

Clk,l is isomorphic to H(2m−1)⊕H(2m−1) (resp., C(2m)) for l−k ≡ 3 mod 8
(resp., l − k ≡ 5 mod 8).

The vector space A = {f ∈ EndS|f̄C = Cf} is a real algebra spanned by
all elements of the form ϕ ⊗ ϕ′ + ϕc ⊗ ϕ′c, where ϕ ∈ S and ϕ′ ∈ S∗. The
representation σ factors through the injection A → EndS. Moreover, in the
real case, the algebra A is isomorphic to SR ⊗R SR. In the quaternionic case,
it is isomorphic to the tensor product over H of the right H-module S by the
left H-module S∗. In each case one has

E(ϕ,ψ) = E(ϕc, ψc).

The homogeneous components of the multivector E(ϕc, ϕ) are either real or
imaginary, as can be seen from part (i) of Prop. 2 and ϕcc = CC̄ϕ.

The quadratic form H on Cl+k,l, k + l = 2m + 1, H(a) = 2−mtrσ(ata),
is real; its signature can be evaluated as follows. Consider the polynomial
ς(ξ, η) = 1

2 (1 + ξ)k(1 +η)l+ 1
2 (1− ξ)k(1−η)l =

∑
p,q; p+q even

(
k
p

)(
l
q

)
ξpηq. The

index of H equals ς(1,−1). Therefore, H is positive-definite if, and only if,
either k = 0 or l = 0; if both k and l are positive, then H is neutral.3

5. 2. 2. Consider now the even-dimensional subspace V of Rk+l, orthogo-
nal to a unit vector u. Depending on whether u2 = 1 or −1, the signature of
the restriction hV of h to V is (k−1, l) or (k, l−1). The map V → Cl+k,l, v 7→
vη, extends to an isomorphism of algebras j : Cl(V, η2hV ) → Cl+k,l: if η2 = 1

(resp., η2 = −1), then Cl+k,l is isomorphic to both Clk−1,l and Clk,l−1 (resp.,

Cll−1,k and Cll,k−1).

If k + l = 2m and γ : Clk,l → EndS is a Dirac representation in a complex

space S of dimension 2m, then there is C : S → S̄ such that γ(a) = Cγ(a)C−1

for every a ∈ Clk,l. According to previous remarks, one can rescale C so that
either C̄C = idS (for l − k ≡ 0 or 6 mod 8) or C̄C = −idS (for l − k ≡ 2
or 4 mod 8). It is convenient to define the chirality automorphism as Γ =

(−1)
1
4 (l−k)(l−k+1)γ1 · · · γ2m so that

(16) Γ 2 = idS and Γ̄ = (−1)
1
2 (l−k)(l−k+1)CΓC−1.

The representation γ, restricted to Cl+k,l decomposes as in the complex

case, γ = γ+ ⊕ γ−. The representation γ̌ of Cl+k,l in S∗, contragredient to

3I am indebted to P. Lounesto for having pointed out to me a mistake in the formulation

of this result given in [BuT].
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γ, is defined by γ̌(a) = γ(at)∗, a ∈ Cl+k,l. It also decomposes, γ̌ = γ̌+ ⊕ γ̌−,

where γ̌± : Cl+k,l → EndS∗±, S∗± = {ϕ ∈ S|Γ ∗ϕ = ±ϕ}. There is also a similar

decomposition γ̄ = γ̄+ ⊕ γ̄− of γ̄ restricted to Cl+k,l. The representations γ+
and γ− are not complex-equivalent; each of the representations γ̌+, γ̌−, γ̄+
and γ̄− is equivalent to either γ+ or γ−. In particular, denoting by ∼ the
equivalence relation of representations, one obtains from (9)

γ̌± ∼ γ± for m even and γ̌± ∼ γ∓ for m odd

and from (16)

γ̄± ∼ γ± for l − k ≡ 0 or 4 mod 8 and γ̄± ∼ γ∓ for l − k ≡ 2 or 6 mod 8.

5. 2. 3. Many authors of papers on spinors use a notation with indices sim-
ilar to that codified for tensors by Schouten. This van der Waerden-Penrose
notation for Weyl spinors associated with a 2m-dimensional real vector space
can be briefly described as follows. Consider linear bases: (eA) in S+, (eA′) in
S−, (eȦ) in S̄+, (eA) in S∗+, etc., where eȦ = eA, (eA) is the basis dual to (eA)
and the indices range from 1 to 2m−1. Instead of saying ‘let ϕ ∈ S∗+⊗S+⊗S−’

one says ‘consider a spinor ϕA
BC′ ’. This notation is convenient when one

works with several spinor fields and considers their tensor products and con-
tractions: such is the case of applications of spinor analysis in the theory of
relativity [PR]. The Dirac ‘matrices’ γµ = hµνγν change chirality of Weyl

spinors; Penrose writes γµ(eA) = eB′σ
µB′

A. If M is a Riemannian manifold
with a spin structure Q → P →M and ∇µ are the (horizontal) vector fields
on Q defining covariant differentiation of spinor fields, then the Dirac oper-
ator γµ∇µ, acting on a Weyl spinor field ψ = eAψ

A : Q → S+, yields the

spinor field eB′∇B
′
Aψ

A : Q → S−, where ∇B′A = σµB
′
A∇µ. Relative to

the basis (eA, eB′) of S, the matrices of the linear maps B and C are either
block-diagonal or block-antidiagonal, depending on whether they preserve or
change the chirality. In particular, if m is even, then B yields an isomorphism
of S± onto S∗±, B(eA) = BABe

B and B(eA′) = BA′B′e
B′ . If m is odd, then

B : S± → S∗∓, B(eA) = BAB′e
B′ , etc. Depending on the parity of m, the ma-

trices (BAB) and (BA′B′) or (BAB′) and (BA′B), and their inverses, are used
to lower and raise spinorial indices. Similarly, for l − k ≡ 0 or 4 mod 8 one

has C(eA) = CA
ḂeḂ , C(eA′) = CA′

Ḃ′eḂ′ and the invertible matrices (CA
Ḃ)

and (CA′
Ḃ′) are used to convert undotted into dotted indices, etc. Originally,

van der Waerden (1929) emphasized the representations γ+ and γ̄+ and intro-
duced dotted indices for the latter. Penrose (1960) pointed out that it suffices
to consider the representations γ+ and γ− and used primed indices for spinors
in S−. In Minkowski space one has l − k = 2 so that γ̄+ ∼ γ−: primed and
dotted indices are equivalent.
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6. Pure spinors

Pythagoras and Euclid could have solved the equation x2− y2 + z2 = 0 by
noting that it is equivalent to the statement that the symmetric matrix(

y + z x
x y − z

)
is of rank < 2 and, therefore, there is a ‘spinor’ (p, q) such that x = 2pq, y =
p2 +q2 and z = p2−q2. Interpreting now the triple (x, y, z) as an element of a
real vector space, one can rephrase the solution of the Pythagoras equation to
read ‘the (tensor) square of a real, two-component spinor equals an isotropic
vector in R3 with a quadratic form of signature (2, 1)’. This observation has
interesting generalizations to higher dimensions, giving rise to the notion of
pure spinors.

6. 1. The complex case. Continuing to use the notation of Sec. 5. 1,
consider a non-zero spinor ϕ ∈ S associated with W = C2m+1. The vector
space

N(ϕ) = {v ∈W |σ(ηv)ϕ = 0}

is totally isotropic; its dimension is called the nullity of ϕ. A spinor ϕ 6= 0 is
said to be pure if its nullity is maximal, i. e. equal to m. Let W = N⊕P ⊕Cu
be a Witt decomposition and let (n1, . . . , nm) be a basis of N . Put aN =
n1 · · ·nm for m even and aN = ηn1 · · ·nm for m odd, so that aN ∈ Cl+2m+1.
Since σ is faithful, there is a spinor ϕ0 such that ϕ = σ(aN )ϕ0 6= 0 and then
N(ϕ) = N so that ϕ is pure. If ψ is another spinor such that N(ψ) = N ,
then there is z ∈ C× such that ψ = zϕ: there is a bijective correspondence
between the set (in fact, a compact, connected, complex manifold Σ2m+1 of
complex dimension 1

2m(m + 1)) of directions of pure spinors and the set of
maximal isotropic subspaces of W . If a ∈ Spin2m+1(C) and ϕ is pure, then
σ(a)ϕ is also pure; the induced action of Spin2m+1(C) on Σ2m+1 is transitive.

Let ϕ 6= 0 be a spinor of nullity q. Let (n1, . . . , nq) be a basis of N(ϕ). It fol-
lows from part (ii) of Prop. 2 and (8) that n ∈ N(ϕ) implies e(n)E2p(ϕ,ϕ) = 0
and i(n)E2p(ϕ,ϕ) = 0 for every p such that p ≡ ν mod 2. Therefore, there
is a (2p − q)-vector E′2p−q such that E2p(ϕ,ϕ) = n1 ∧ · · · ∧ nq ∧ E′2p−q
and i(n)E′2p−q = 0 for every n ∈ N(ϕ). This implies that if 2p < q or
2p > 2m + 1 − q, then E2p(ϕ,ϕ) = 0. In particular, if ϕ is pure, then
E2p(ϕ,ϕ) 6= 0 if, and only if, p = ν. A more precise result is contained in

Proposition 3. A spinor ϕ 6= 0 is pure if, and only if, p 6= ν implies
E2p(ϕ,ϕ) = 0. If ϕ is pure, then there is a basis (n1, . . . , nm) of N(ϕ) such
that

if m is even, then Em(ϕ,ϕ) = n1 ∧ · · · ∧ nm;
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if m is odd, then ? Em+1(ϕ,ϕ) = n1 ∧ · · · ∧ nm.

The somewhat difficult proof of the ‘if’ part of Prop. 3 appears in [C4,
Ch]; recently, a new proof has been given by Urbantke [U] with the help of
‘quartic identities’ used by physicists in connection with the classification of
interaction terms occurring in the Fermi theory of weak nuclear forces. By
considering the multivectors E2p(ϕ,ϕ) for low values of m, one obtains, as a
corollary of (8) and Prop. 3, that all spinors associated with W of dimension
3 and 5 are pure; in dimensions 7 and 9 pure spinors belong to the cone of
equation E0(ϕ,ϕ) = 0.

If ϕ is pure and v ∈ W is non-isotropic, v2 6= 0, then σ(ηv)ϕ is also pure:
N(σ(ηv)ϕ) = vN(ϕ)v−1. In particular, if N(ϕ) is orthogonal to the unit
vector e2m+1, then N(σ(ηe2m+1)ϕ) = N(ϕ). Therefore, σ(ηe2m+1)ϕ = ±ϕ.
Introducing. as in Sec. 5. 1. 2, the 2m-dimensional space V orthogonal to
e2m+1, one obtains, as a corollary of Prop. 3 and (11):

Proposition 4. Let W = V ⊕ Ce2m+1 and γ be the Dirac representation of
Cl2m in S, γ(v) = σ(ηv) for v ∈ V . If ϕ is pure, then N(ϕ) ⊂ V if, and only
if, ϕ is a Weyl spinor with respect to γ. Assuming that ϕ is such a spinor,
one has Fp(ϕ,ϕ) = 0 for every p 6= m and there is a basis (n1, . . . , nm) in
N(ϕ) so that

Fm(ϕ,ϕ) = n1 ∧ · · · ∧ nm.

The m-vector Fm(ϕ,ϕ) is either self-dual (Γϕ = ϕ) or antiself-dual (Γϕ =
−ϕ).

In other words, in even-dimensional complex vector spaces, tensor squares
of pure spinors define self- or antiself-dual decomposable multivectors of
the middle degree. A pure spinor ϕ associated with the representation
γ : Cl2m → EndS can be characterized, without reference to the odd-
dimensional space W , by dim{v ∈ C2m|γ(v)ϕ = 0} = m; it follows that
it is a Weyl spinor. The set of directions of pure spinors associated with γ is
a 1

2m(m− 1)-dimensional complex compact manifold Σ2m = O2m/Um; it has

two connected components, Σ+
2m and Σ−2m, corresponding to pure spinors of

opposite chiralities. An argument similar to the one used in odd dimensions
shows that, in dimensions 2, 4 and 6 all Weyl spinors are pure. In dimension
8 pure spinors lie on the cones of equation F0(ϕ,ϕ) = 0 in S+ and S−; in
dimension 10 pure spinors are characterized by the equation F1(ϕ,ϕ) = 0 in
S± and generic Weyl spinors have nullity 1; for m = 4 and m > 5 generic
Weyl spinors have zero nullity. Spinors belonging to one orbit of the group
Spin2m(C) have the same nullity, but the converse is not true: in dimensions
> 12 nullity of Weyl spinors provides a rather coarse classification of the or-
bits. There are no Weyl spinors of nullity q such that m − 4 < q < m. All
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homogeneous polynomial invariants of the spin group vanish on spinors of
positive nullity [TT].

6. 2. The real case. Changing somewhat the notation, consider now a 2m-
dimensional real vector space V , with a quadratic form h of signature (2κ +
ε, 2λ+ ε), where κ and λ are non-negative integers and ε = 0 or 1. The cases
ε = 0 and ε = 1 are referred to as pseudo-euclidean and pseudo-lorentzian,
respectively; the prefix ‘pseudo’ is dropped when either κ or λ = 0. The
complexification of V , W = C⊗R V = V ⊕

√
−1V , is given a quadratic form

C⊗h which is a natural extension of h so that Cl(C⊗V,C⊗h) = C⊗Cl(V, h).
If N ⊂W , then N̄ ⊂W is defined as the set {u+

√
−1v|u−

√
−1v ∈ N}. If

N is a (complex) vector subspace of W , then there are (real) vector subspaces
K and L of V such that

(17) N ∩ N̄ = C⊗K and N + N̄ = C⊗ L.

.

If ϕ is a pure spinor, then so is ϕc and (14) implies N(ϕc) = N(ϕ). Put
N = N(ϕ); the dimension r of K is called the real index of the pure spinor
ϕ. One shows that the real index can assume every of the following values:
ε, ε + 2, . . . , ε + 2 min{κ, λ}, and only these values. Pure spinors with the
least value of the real index are generic in the sense that the manifolds of
directions of such spinors, of positive and negative chiralities, are open and
dense in Σ+

2m and Σ−2m, respectively. Let ϕ be a pure spinor of real index r;
the vector space K is totally isotropic and K⊥ = L ⊃ K. The quadratic form
h descends to a quadratic form of signature (2κ + ε − r, 2λ + ε − r) on the
quotient L/K. Moreover, there is an orthogonal complex structure J on L/K
defined as follows: let w mod K denote the class in L/K containing w ∈ L;
every element of L/K is of the form v+ v̄ mod K, where v ∈ N ; put J(v+ v̄
mod K) =

√
−1(v − v̄) mod K.

The most interesting case, from the point of view of applications in ge-
ometry and physics, is that of pure spinors in a general position, i. e. of
pure spinors of real index ε. If ϕ is a generic pure spinor associated with a
pseudo-euclidean quadratic space (V, h), then the sum N(ϕ) +N(ϕ) is direct,
K = {0}, and J is an orthogonal complex structure in V = L. The pair
(h, J) defines a Hermitean form on V , considered as a complex vector space
of dimension κ+ λ. The imaginary part of that Hermitean form can be iden-
tified with F2(ϕc, ϕ)/F0(ϕc, ϕ). If ϕ is a generic pure spinor associated with a
pseudo-lorentzian quadratic space and N = N(ϕ), then K is a real isotropic
line, a ‘light ray’ for physicists; the quotient L/K is a ‘screen space’, if one
insists on the optical analogy. The line C⊗K is generated by F1(ϕc, ϕ) [KoT,
T].
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6. 3. Applications. The preceding algebraic constructions can be applied,
‘pointwise’, to fibres of appropriate bundles. From now on, all manifolds,
bundles and maps are assumed to be smooth. Consider a 2m-dimensional,
paracompact, connected manifold M with a metric tensor of signature (2κ+

ε, 2λ+ ε) and a spin structure Q χ→ P →M. The last assumption is, in fact,
not essential because all that is needed here are bundles of ‘projectivized’
spinors (i. e. bundles of directions of spinors) which are associated with the
SO2κ+ε,2λ+ε-bundle P → M. It is often, however, convenient to work with
spinor fields and to represent them by the corresponding maps from Q to
the typical fibre S equivariant with respect to the action of the group G =
Spin2κ+ε,2λ+ε, as described in Sec. 4. If E → M is a fiber bundle, then Ex
denotes its fibre over x ∈ M. Recall that vector fields, differential forms,
etc. on M can be equivalently described as sections of appropriate bundles
or as equivariant maps from Q to a suitable vector space. In paricular, a
complex vector tangent to M at x can be identified with a map v : Qx →
W = C ⊗ V such that v(qa) = a−1v(q)a for every q ∈ Qx and a ∈ G.
With the pair (ϕ,ψ) of spinor fields one associates the multivector-valued
field F(ψ,ϕ) : P → ∧W , given by F(ψ,ϕ)(p) = F (ψ(q), ϕ(q)), where q ∈ Q,
p = χ(q) and F is as in Sec. 5. 1. 2. The manifold M being orientable, it
is meaningful to consider spinors of the same chirality over M. Generalizing
the constructions due to Atiyah, Hitchin and Singer [AHS], Penrose [P], and
O’Brian and Rawnsley [OBR], one defines the total space of the twistor bundle
Tr of real index r as consisting of directions of all pure spinors on M of
one, say positive, chirality and of real index r. If a section of the twistor
bundle exists, then it can be represented (in ‘homogeneous coordinates’) by
a nowhere vanishing field ϕ : Q → S of pure spinors; such a section defines
a complex vector bundle N → M: this is a subbundle of the complexified
tangent bundle W = C⊗TM→M such that the fibre of N →M at x ∈M
is Nx = {v ∈ Wx|γ(v(q))ϕ(q) = 0 for q ∈ Qx}, where γ is the Dirac
representation of Cl2κ+ε,2λ+ε in S.

The considerations of Sec. 6. 3 can be applied, pointwise, to the fibers of
the bundle N →M, whose fibers are maximal, totally isotropic subspaces of
the complexified tangent spaces ofM, even if this bundle does not come from
a section of the twistor bundle. In any case, given N →M, one constructs the
real vector bundles K ⊂ L ⊂ TM→M and a field J of complex structures in
the fibers of the quotient bundle L/K →M; for example, C⊗Kx = Nx ∩Nx,
etc. It is convenient to say that the triple (K,L,J ) is the flag geometry
associated with N →M.

Let S(N ) be the module of sections of the vector bundle N →M; a similar
notation is used for other vector bundles overM. One says that the complex
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bundle N is integrable if

(18) [S(N ),S(N )] ⊂ S(N ).

In the general case, when r > 0, (18) implies

(19) [S(K),S(K)] ⊂ S(K),

and

(20) [S(K),S(L)] ⊂ S(L).

Therefore, the bundle K defines a foliation onM. From now on, this foliation
is assumed to be regular in the sense that the setM′ =M/K of all its leaves
has the structure of a smooth, (2m − r)-dimensional manifold such that the
canonical mapM→M′ is a submersion. The following proposition rephrases
well-known facts concerning complex and Cauchy–Riemann (CR) geometries
[J].

Proposition 5. Let N → M be a bundle on a 2m-dimensional (pseudo-)
Riemannian manifold M. Assume that the fibers of N are maximal, totally
isotropic subspaces of the fibers of the complexified tangent bundle of M. Let
(K,L,J ) be the flag geometry associated with the bundle N → M and let r
be the dimension of the fibers of the bundle K →M. Then
(i) if r = 0, then J defines an almost complex structure on M and (18) is its
classical integrability condition, equivalent to the vanishing of the Nijenhuis
tensor of J ;
(ii) if r > 0, condition (18) implies the Frobenius integrability condition (19)
of K; the leaves of the foliation defined by K are totally isotropic; they are
geodetic by virtue of (20); the quotient manifoldM′ =M/K inherits, by pro-
jection, a subbundle L′ of its tangent bundle and J descends to M′, defining
there a CR geometry.

Assume now that the bundle N →M is defined by a section of the twistor
bundle Tε, i. e. by a field of generic pure spinors, r = ε. In the pseudo-
Euclidean case, a section of the twistor bundle T0 defines an orthogonal almost
complex structure J on M; therefore, together with g, it defines a pseudo-
Hermitean form of signature (κ, λ) at each point ofM. The resulting geometry
can be called almost pseudo-Hermitean; it becomes pseudo-Hermitean if J is
integrable.

In the pseudo-Lorentzian case, a section of the twistor bundle T1 defines an
almost optical geometry, i. e. a flag geometry (K,L,J ) on M with a metric
tensor g of signature (2κ+ 1, 2λ+ 1) such that K = L⊥ is a real line bundle
and J is orthogonal with respect to the metric induced by g in the fibres
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of L/K. An almost optical geometry satisfying the integrability condition
(18) is called optical : the trajectories of K are then isotropic geodesics and
the quotient M′ = M/K is a (2m − 1)-dimensional CR manifold. In the
proper Lorentzian case (p = 1, q = 0) the integrability condition is equivalent
to the statement that the trajectories of K form a congruence of isotropic
geodesics without shear. Such congruences play a fundamental role in the
study of algebraically special gravitational fields; see, e. g., [PR, RT2] and the
numerous references given there. Cauchy-Riemann structures appeared, in
the context of relativity theory, for the first time in relation with Penrose’s
twistor spaces [P]; their connection with curved Lorentzian spaces, admitting
non-shearing congruences of isotropic geodesics, has been made explicit in
[RT1]. The analogies between Hermitean and optical geometries, apparent
from the above considerations, and Cartan’s results on 3-dimensional CR
spaces, have been used in the study of solutions of Einstein’s equations; see
[N] and the references listed there.

Appendix: A derivation of the Vahlen-Ahlfors formula

Let K = R or C and let V be an n-dimensional vector space over K with
a non-degenerate quadratic form h : V → K. Consider the vector space V ′ =
V ⊕K2 with the quadratic form h′ such that, for every v′ = (v, λ, µ) ∈ V ′,
where v ∈ V and λ, µ ∈ K, one has h′(v′) = h(v) + λµ. Let dir v′ be the
direction (line) in V ′ containing v′ 6= 0 and let

Q = {dir v′ ∈ P(V ′)|h′(v′) = 0 }

be the projective quadric associated with V [CGuT]. The quadric is a compact
submanifold, of dimension n, of the projective space f

¯
P (V ′). In particular, if

K = R and h is of signature (k, l), where k+ l = n, then Q is diffeomorphic to
(f
¯
Sk× f

¯
Sl)/Z2. If either k or l is 0, then Q = f

¯
Sn. The geometry of V ′ induces

a conformal structure in Q. For every v ∈ V , the vector i(v) = (v,−h(v), 1) ∈
V ′ is isotropic. The map

j : V → Q, given by j(v) = dir i(v),

is a conformal diffeomorphism of V on its image in Q; the image is open and
dense in Q. Let G be the connected component of the group Spin(V ′, h′). The
action of G on V ′ induces a transitive action of G on Q given by

(21) dir v′ 7→ f(A)dir v′ = dirAv′A−1.

Denoting by AutQ the Möbius group, i. e. the connected component of the
group of conformal automorphisms of Q, one sees that f : G → AutQ is
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an epimorphism of groups. The action of G on Q induces local conformal
transformations of V . Namely, the set

VA = { v ∈ V |f(A)j(v) ∈ j(V ) }.
is open and dense in V and the map

(22) F (A) : VA → VA−1 , defined by j(F (A)v) = f(A)j(v),

is a conformal diffeomorphism. The Clifford map V ′ → K(2)⊗K Cl(V, h),

(23) (v, λ, µ) 7→
(
v λ
µ −v

)
,

extends to the isomorphism of algebras with units, Cl(V ′, h′) → K(2) ⊗K
Cl(V, h). From now on these algebras are identified. Therefore, a typical
element of G is of the form

(24) A =

(
a b
c d

)
,

where a, d and b, c are suitable, even and odd elements of Cl(V, h), respectively.
The spinor norm of A ∈ G is 1; therefore,(

a b
c d

)−1
=

(
dt −bt
−ct at

)
,

where at is the transpose of a ∈ Cl(V, h), etc.

Proposition 6. Let A ∈ G be as in (24). Then

VA = { v ∈ V |cv + d is invertible in Cl (V, h) }
and the local conformal transformation (22) is given by the Vahlen-Ahlfors
formula,

(25) F (A)v = (av + b)(cv + d)−1.

To prove the proposition, let v ∈ VA and put u = F (A)v. According to
(23), the isotropic vector i(v) is represented in K(2)⊗KCl(V, h) by the matrix(

v −h(v)
1 −v

)
=

(
v
1

)
( 1 −v ) ;

there is a similar representation of i(u). The definitions (21) and (22) imply
that the vectors i(u) and Ai(v)A−1 are parallel: there is κ ∈ K, κ 6= 0, such
that

κ

(
u −h(u)
1 −u

)
=

(
a b
c d

)(
v −h(v)
1 −v

)(
dt −bt
−ct at

)
.

Therefore, κ = (cv + d)(cv + d)t, so that cv + d is invertible and (25) holds.
Moreover, if h(dv) = hµνdv

µdvν denotes the quadratic differential form
giving V the structure of a (flat) Riemannian space, then h(du) = κ−2h(dv).

The Appendix is based on [RT3], where references to the relevant papers
by Vahlen and Ahlfors are given.
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