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In theoretical physics, one often considers symmetries which change a La-

grangian by a total divergence. Such transformations preserve the equations of

motion and lead to conservation laws. It is argued here, on the basis of a few

examples, that the appearance of such a divergence is an indication that one is

dealing with some approximation or a limiting case of a ‘better’ theory, in which

the corresponding, possibly modified, symmetries fully preserve the action in-

tegral. These suggestions are ‘metaphysical’ in the sense that they cannot be

tested by physical experiments.
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Lex perpetua naturae est ut agat minimo
labore, mediis et modis simplicissimis,
facilissimis, certis et tutis.

Giovanni Borelli (− )

1. Introduction

The Noether theorems [1] on the relations between conservation laws and
symmetries of variational principles constitute a fundamental, beautiful and often

(839)



840 A. Trautman

used part of mathematical physics. They are presented in many texts [2–4] and
papers [5–7]. For the purposes of this introduction it is enough to recall that the
theorems refer to equations of motion which can be derived from a principle of
stationary action,

δW (f, U) = 0, where W (f, U) =
∫
U
L(x, f(x), f ′(x))dx1 · · · dxn, (1)

and L is the Lagrangian depending on the coordinates x = (xµ), µ = 1, . . . , n,
explicitly and through the functions f and their derivatives, the functions and
the coordinates being defined on an n-dimensional (relatively compact) domain of
integration U ⊂ E = Rn. I assume here, for the sake of simplicity of exposition,
that L does not contain derivatives of order higher than the first, even though the
classical Hilbert Lagrangian of Einstein’s theory depends on the second derivatives
of the metric tensor; see Sec. 3.4. Under symmetries of W—to be defined precisely
below—the Lagrangian behaves like a scalar density; it may also change by the ad-
dition of a total divergence. Symmetries transform solutions of the Euler–Lagrange
(EL) equations into solutions of the same equations. Continuous (Lie) groups of
such symmetries lead to conservation laws (first Noether’s theorem, Sec. 2.2).
Groups of symmetries, depending on arbitrary functions of the coordinates lead
to (differential) identities linear in the EL expressions (second theorem, Sec. 2.3).
The subject of conservation laws and identities has a rich literature; in this paper
some of the basic results are recalled in order to make the paper self-contained.
From the point of view of direct applications of continuous groups of symmetries,
it is irrelevant whether a total divergence appears or not in the transformation law
of L. For example, in classical, Newtonian mechanics, the Lagrangian of a particle
moving in a spherically symmetric field of force is strictly invariant under rotations,
but the kinetic energy of a particle changes under Galilean transformations. The
Hilbert Lagrangian

√−g R is a proper scalar density, but the often used in general
relativity theory (GRT) Lagrangian quadratic in Christoffel symbols, changes by
a divergence, when acted upon by a coordinate transformation. The purpose of
this paper is to present a few similar examples in order to argue, on their basis,
that the appearance of such divergences is an indication that one has to do with
a theory with symmetries that can be ‘improved’ by more or less radical changes
in its structure.

2. The Noether theorems revisited

2.1. Invariant transformations

To recall the derivation of conservation laws of classical physics, it is conve-
nient to consider the Lagrangian appearing in (1) as depending on x, the values
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of the functions f describing histories, and on their derivatives. Let F = RN , F ′

and F ′′ be the spaces of values of the functions, of their first and second derivatives,
respectively. The coordinates in F, F ′ and F ′′ are, respectively, yi, yiµ and yiµν ,

where i = 1, . . . , N , and µ, ν = 1, . . . , n. One can write f = (f i), f ′ = (f i
,µ), where

f i
,µ = ∂f i/∂xµ, etc. PuttingM = E×F , M̄ = E×F×F ′ and ¯̄M = E×F×F ′×F ′′

one sees that the Lagrangian is a function on M̄ . With every history f : E → F one
associates its (graph) extensions ϕ : E → M , ϕ̄ : E → M̄ and ¯̄ϕ : E → ¯̄M , given
by ϕ(x) = (x, f(x)), ϕ̄(x) = (x, f(x), f ′(x)) and ¯̄ϕ(x) = (x, f(x), f ′(x), f ′′(x)),
respectively1. One has L(x, f(x), f ′(x)) = L ◦ ϕ̄(x). Denoting by F ∗ the dual
of the vector space F and introducing the differential operator (a collection of n

vector fields on ¯̄M)

Dµ =
∂

∂xµ
+ yiµ

∂

∂yi
+ yiµν

∂

∂yiν
(2)

one can express the Euler-Lagrange map

[L] : ¯̄M → F ∗ as [L]i =
∂L

∂yi
−Dµ

∂L

∂yiµ
. (3)

The EL equations for the history f , resulting from (1), are

[L] ◦ ¯̄ϕ = 0. (4)

In many cases, transformations of histories occurring in physics are given by
a diffeomorphism

ω : M → M of the form ω(x, y) = (ξ(x), η(x, y)). (5)

The diffeomorphism ξ is a transformation of coordinates in E. For every x ∈ E,
the map y 7→ η(x, y) is a diffeomorphism of F onto itself. For example, if f is a
tensor field on E of type ρ, i.e. transforming with the representation ρ = (ρij) :
GL(n,R) → GL(N,R), then

ηi(x, y) = ρij(ξ
′(x))yj , where ξ′ : E → GL(n,R) (6)

is the Jacobian map, ξ′µν (x) = ξµ,ν(x). Its determinant J is assumed from now
on to be positive. Another example is provided by gauge transformations acting

1 The proper mathematical setting involves here differentiable fibre bundles and their first

and second jet extensions [6, 7].
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on one-forms with values in the Lie algebra of a Lie group G. Given a function
S : E → G, one defines the corresponding gauge transformation by putting ξ = idE

and η(x, y) = S−1(x)yS(x) + S−1(x)(dS)(x).
If ϕ is the graph map of a history f , then the composition ω ◦ ϕ ◦ ξ−1 = ϕω

is the graph map of the history fω,

fω(x) = η(ξ−1(x)), f(ξ−1(x)).

One extends ω to diffeomorphisms ω̄ : M̄ → M̄ and ¯̄ω : ¯̄M → ¯̄M by requiring
that, for every graph map ϕ, one should have ω̄◦ϕ̄◦ξ−1 = ω ◦ ϕ ◦ ξ−1 and similarly
for ¯̄ω.

One says that ω is an invariant transformation for the action W given by (1)
if, for every history f and (relatively compact) domain of integration U , one has
W (fω, ξ(U)) = W (f, U). This is equivalent to

JL ◦ ω̄ = L. (7)

Without assuming that ω is an invariant transformation, one obtains, by a direct
computation,

[JL ◦ ω̄]i = J
∂ηj

∂yi
[L]j ◦ ¯̄ω. (8)

If ω is an invariant transformation, then (7) and (8) give

[L]i = J
∂ηj

∂yi
[L]j ◦ ¯̄ω (9)

and eq. (4) implies that the transformed history fω is also a solution of the EL
equations, [L] ◦ ¯̄ϕω = 0.

One says that ω is a generalized invariant transformation for W if (9) holds.
By comparing the identity (8) with the condition (9), one obtains that ω is a
generalized invariant transformation if, and only if,

[L− JL ◦ ω̄] = 0.

According to a classical result (see pp. 193–196 in [2]), the last condition is equiv-
alent to the existence of a map κ : M̄ → E such that

L− JL ◦ ω̄ = Dµκ
µ. (10)
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This generalization of (7), and its application to conservation laws, is due to Bessel-
Hagen [8].

2.2. Conservation laws

Consider now a one-parameter group (ωt) of transformations of M of the form
(5) so that ωt(x, y) = (ξt(x), ηt(x, y)), ωt ◦ ωs = ωt+s for t, s ∈ R and ω0 = idM .
Let

Z(x, y) = (X(x), Y (x, y))

be the vector field on M induced by the group (ωt). Putting Jt = det(ξµt,ν), one
obtains

(dJt/dt)t=0 = divX. (11)

The extension (ω̄t) of the group to M̄ induces a vector field Z̄ on M̄ . Let (ωt)
be a one-parameter group of generalized invariant transformations of W so that
there is a curve t 7→ κt in the space of maps from M̄ to E such that

L− JtL ◦ ω̄t = Dµκ
µ
t

for every t ∈ R. Evaluating the derivative at t = 0 of both sides of the last
equation, one obtains

Z̄(L) + LdivX +DµK
µ = 0, (12)

where Kµ = (dκµ
t /dt)t=0. Using the explicit form of the differential operator

Z̄(x, y, y′) = Xµ(x)
∂

∂xµ
+ Y i(x, y)

∂

∂yi
+ Y i

µ(x, y, y
′)

∂

∂yiµ
,

where

Y i
µ(x, y, y

′) = (DµY
i)(x, y, y′)− yiνX

ν
,µ(x)

one can transform eq. (12) into the Noether–Bessel-Hagen equation [1, 6, 8] on
¯̄M :

(Y i − yiνX
ν)[L]i +Dµ(LX

µ + (Y i − yiνX
ν)

∂L

∂yiµ
+Kµ) = 0. (13)

For every solution of (4) there holds the conservation law in differential form

∂

∂xµ
(tµ ◦ ϕ̄) = 0, where tµ = LXµ + (Y i − yiνX

ν)
∂L

∂yiµ
+Kµ.
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If Z generates an invariant transformation, then Kµ = 0, but the term LXµ

is always present: it reflects the fact that for the action to be invariant under
coordinate changes, the Lagrangian should be a scalar density.

2.3. Identities

This section contains, as an example, the derivation of the identity, satisfied by
the EL expression, as a result of ‘general invariance’. Let f be a tensor field of type
ρ. One says that W is generally invariant if (10) holds for every diffeomorphism
ξ with η given by (6). Consider a one-parameter group of diffeomorphisms (ξt)
generated by X and denote by ξ′t the Jacobian map associated with ξt. One can
write

d

dt
ρij(ξ

′
t)|t=0

= ρiµjν
∂Xν

∂xµ
so that Y i(x, y) = ρiµjν

∂Xν

∂xµ
(x)yj (14)

and

− d

dt
f i
ωt |t=0

= Xµ ∂f i

∂xµ
− ρiµjν f

j ∂X
ν

∂xµ

is the Lie derivative of f in the direction of X. Assuming that K is a linear
and homogeneous function of the vector field X and its first derivatives, and
substituting Y given in (14) into eq. (13), one can write that equation in the
form

aµX
µ +Dµ(b

µ
νX

ν + cµνρ DνX
ρ) = 0, (15)

where

aµ = Dν(ρ
iν
jµy

j [L]i) + yiµ[L]i (16)

and bµν and cµνρ are functions on ¯̄M . General invariance of W implies that (15)
holds for every X. At every single point of E, the values of the components of
X, and of its first and second derivatives, can be chosen at will. Taking this
into account, one obtains from eq. (15): cµνρ + cνµρ = 0, bµν + Dρc

ρµ
ν = 0 and

aµ + Dνb
ν
µ = 0. Therefore, aµ = −Dνb

ν
µ = DνDρc

ρν
µ = 0 because [Dµ, Dν ] = 0.

The vanishing of the right side of (16) is a special case of a Noether identity [1, 9].
If one considers a theory based on such a Lagrangian and assumes that the field
f has a source described by a tensor field T of type ρ so that the field equations
are [L] ◦ ¯̄ϕ = T , then the identity (16) implies a generalized conservation law to
be satisfied by T for the field equations to have a solution. In particular, if the
Lie derivative of f in the direction of X vanishes, then (16) gives an ‘ordinary’
conservation law,

∂

∂xµ
(ρiµjν f

jTiX
ν) = 0.
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3. The examples

3.1. Mechanics of point particles

The Lagrangian description of classical point particles in the Newtonian the-
ory, their symmetries and conservation laws, are so well known that no equations
need be written here. For an isolated system, Galilean transformations induce
generalized invariant transformations and lead to the centre-of-mass theorem [5].
In the theory of special relativity, the classical action for a free particle is propor-
tional to the integral of the proper time along the world line of the particle. This
quantity is strictly invariant with respect to the full Poincaré group.

3.2. Classical and Quantum Theories of Charged Particles

In this and the following section, it is assumed that E is the Minkowski space-
time of special relativity theory with its flat metric tensor ηµν , (µ, ν = 1, . . . , 4)
referred to Cartesian coordinates (xµ) and ds2 = ηµνdx

µdxν . The metric tensor,
and its inverse ηµν , serve to lower and raise indices.

To a point particle of mass m and charge e, with world-line xµ(s), moving
in an electromagnetic field of potential Aµ, there corresponds, in the theory of
relativity, the action

∫
Ldx4 =

∫
(−mds + eAµdx

µ). The gauge transformation
Aµ 7→ Aµ + χ,µ is a generalized symmetry transformation: it induces the change
Ldx4 7→ Ldx4+edχ. A similar remark holds for a classical, charged fluid described
phenomenologically by a conserved current jµ: the interaction term jµAµ also
changes by a divergence. Field (first quantized) theories of charged particles are
better in this respect. For example, let φ be a complex scalar field describing
particles of charge e and mass m. The corresponding Lagrangian, taking into
account a minimal coupling of the particles with electromagnetism,

ηµν(φ̄,µ + ieAµφ̄)(φ,ν − ieAνφ) +m2φ̄φ,

is strictly invariant under the simultaneous changes Aµ 7→ Aµ + χ,µ and φ 7→
φ exp(ieχ).

3.3. Linearized Gravitation

The linearized theory of gravitation is often considered, either as a simple,
toy model , or as a first step in approximate calculations in GRT. It assumes the
Minkowski space with its flat metric and a symmetric tensor field hµν to describe
gravitation. The ‘gravitational potentials’ h satisfy differential equations obtained
by linearization of Einstein’s equations. Using square brackets to denote antisym-
metrization over the enclosed indices, introducing the linearized curvature tensor,

Sµνρσ = hρ[µ,ν]σ + hσ[ν,µ]ρ, (17)
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and its contractions Sµν = ηρσSµρσν and S = ηµνSµν , one can write the field
equations as

Sµν − 1
2η

µν S = Tµν , (18)

where Tµν describes the sources of the field. The equations (18) can be derived
from the principle of stationary action with a Lagrangian of the form L(h, h′′) −
hµνT

µν , where
L(h, h′′) = 1

2hµν(S
µν − 1

2η
µνS).

The tensor (17) is left unchanged by the ‘linearized coordinate transformation’

hµν 7→ hµν + aµ,ν + aν,µ, (19)

where the functions aµ are arbitrary. The replacement (19) is a generalized invari-
ant transformation for the Lagrangian given above; the invariance property leads
to the (linearized, contracted Bianchi) identity (Sµν − 1

2η
µν S),ν = 0 and implies

a conservation equation for the sources. The second order Lagrangian L can be
replaced by the equivalent Lagrangian L− (hµν,ρ∂L/∂hµν,ρσ),σ which is quadratic
in the first derivatives of h. None of the Lagrangians that lead to the equations
(18) are strictly invariant with respect to (19): they all change by a divergence.

3.4. General Relativity

The principle of stationary action giving the correct Einstein equations,

Rµν − 1
2g

µνR = Tµν ,

was found in 1915 by Hilbert. The left side of the equations is obtained by varying√−gR with respect to the metric tensor gµν . This Lagrangian is a proper scalar
density; it depends (linearly) on the second derivatives of the metric tensor. Sim-
ilarly as in the linearized theory, it can be replaced by the ‘Einstein Lagrangian’√−gR − (gµν,ρ∂

√−gR/∂gµν,ρσ),σ which is quadratic in the first derivatives of
the metric tensor. Under coordinate transformations, the Einstein Lagrangian
changes by a divergence. It is used to derive a non-tensorial conservation law of
gravitational energy and momentum, applicable to isolated systems (see [3, 10]
and the references given there).

4. Concluding Remarks

Variational and related principles fascinated scientists already in the XVII
and XVIII centuries. The early ideas of Fermat, Borelli and Maupertuis had a
teleological—and, in some cases, even a theological—overtone. The first proper
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variational problem—that of the brachistochrone—was solved by J. Bernoulli in
1696. At about that time, Leibniz used the expression actio formalis which proba-
bly led to the present use of the word action in physics. The principles of least—or
rather stationary—action, and the related canonical formalism were put forward
and developed in the XVIII and XIX centuries by Euler, Lagrange, Poisson, Hamil-
ton, Jacobi, Poincaré and other scientists; see [11] for a historical survey of the
subject. This formalism was applied, for example, to perturbation computations
in celestial mechanics; later it was used to derive equations and conservation laws
in field theories. Hilbert put down a variational principle as a basis of his Foun-
dations of Physics [12]. A certain mystery surrounded the variational principles:
why should the fundamental laws of nature be so derivable; what is the physical
meaning of the action W which, unlike energy, momentum or electric charge, de-
pends on the history of a system, rather than on its state, and does not satisfy a
conservation law? The situation changed for the better with the advent of quan-
tum physics: it began with the introduction by Planck of the universal unit of
action h̄. Bohr and Sommerfeld have shown how one can obtain the quantized
(approximate) values of the energy of simple, periodic systems, by assuming that
the reduced action

∫
pdq, corresponding to one period, is an integer multiple of

2πh̄. Further clarification was brought about by the deep ideas of Dirac (see §32
in [13]) and Feynman [14]. According to Feynman, the basic quantum ampli-
tude determining the probability for a system to go from one state to another is
proportional to the sum

∑
exp(iW/h̄) taken over all classical histories satisfying

suitable boundary conditions, depending on the initial and final states of the sys-
tem. For a generic ‘classical’ system, the action W is very large as compared to
h̄; in this case, according to the saddle point method, the main contribution to
the sum comes from histories rendering the action stationary, i.e. from histories
satisfying the classical equations of motion. In this manner, quantum theory gives
the action a central place in physics and ‘explains’ why classical histories follow
equations resulting from δW = 0. In a sense, the action integral, as it appeared in
early physics, had been a forerunner of the quantum ideas that came much later.

Since we now know that the value of the action integral—and not only its
variation—is physically relevant, one can argue that there is a preference for the-
ories with symmetries described by proper, as opposed to generalized, invariant
transformations. The examples given above support this belief. They also show
that there is no simple rule how to construct the improved theory. Going from
Galilean to relativistic mechanics required changing the group and the Lagrangian.
To find an action, for charged particles, properly invariant under gauge transfor-
mations, one has to replace a phenomenological description of the charges by a
field-theoretic one: this requires the introduction of new degrees of freedom, such
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as a scalar or a Dirac field. The theory of gravitation provides the least trivial
example: to go from the theory of spin 2 mass zero particles to GRT, one has to
introduce a new geometry and very essential non-linearities. Supersymmetries [15]
provide another example of transformations preserving Lagrangians up to a diver-
gence. In my opinion, supersymmetric theories such as supergravity would gain
much if they were reformulated so as to make the supersymmetries into proper
invariant transformations.

REFERENCES

[1] E. Noether, Nachr. Ges. Göttingen (math.-phys. Kl.), 235 (1918).
[2] R. Courant and D. Hilbert, Methods of Mathematical Physics, vol. I, transl.

from German, Interscience, New York 1953.
[3] A. Trautman, in: Gravitation: An Introduction to Current Research, ed. L.

Witten, Wiley, New York 1962, pp. 169–198.
[4] W. Thirring, Classical Field Theory, Springer-Verlag, New York 1978.
[5] E. L. Hill, Rev. Mod. Phys. 23, 253 (1951).
[6] A. Trautman, Commun Math. Phys. 6, 248 (1967).
[7] A. Trautman, in: General Relativity (Papers in honour of J. L. Synge), ed.

L. O’Raifeartaigh, Clarendon Press, Oxford 1972, pp. 85–99.
[8] E. Bessel-Hagen, Math. Ann. 84, 258 (1921).
[9] P. G. Bergmann, Phys. Rev. 75, 680 (1949).

[10] C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation, Freeman, San
Francisco 1970.

[11] L. S. Polak, Variatsionnye Printsipy Mekhaniki, Gosud. Izdat. Fiziko-Matem.
Literatury, Moskva 1960 (in Russian).

[12] D. Hilbert, Math. Ann. 92, 1 (1924).
[13] P. A. M. Dirac, Principles of Quantum Mechanics, 4th ed., Clarendon Press,

Oxford 1958.
[14] R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948).
[15] P. G. O. Freund, Introduction to Supersymmetry, Cambridge U. P., Cambridge

1986.


