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1 Introduction

This paper is a continuation of our work on spin structures on symmetric
spaces [2] and on the modified Dirac operator on pin manifolds [9]. It is based,
in part, on the lectures given, in September 1994, by two of the authors at
the Erwin Schrödinger Institute in Vienna [5,10]. A brief review of the spinor
representations of Clifford algebras and Pin groups is followed by a description
of how to construct the representation of the Clifford algebra Cl(h1 ⊕ h2) =
Cl(h1) ⊗gr Cl(h2) from the representations of Cl(hi), i = 1, 2. We extend
the results of [3] to pin structures on non-orientable homogeneous (pseudo-
)Riemannian spaces and illustrate them by constructing such structures on
the quadrics Qk,l for k+ l odd. A theorem is given on the relation between the
existence of a pin structure on a manifold and on its universal covering space.

We consider products of (s)pin manifolds and describe the relations between
the pin structures and the spectrum of the Dirac operator on the product and
on the factors.

We use the notation traditional in differential geometry. All manifolds and
maps under consideration are smooth. If V is a finite-dimensional vector space,
then V ∗ denotes its dual and the value f(v) of the 1-form f ∈ V ∗ on v ∈ V
is often denoted by 〈v, f〉. If h : V → W is a homomorphism of vector spaces,
then its transpose th : W ∗ → V ∗ is defined by 〈v, th(f)〉 = 〈h(v), f〉 for
every v ∈ V and f ∈ W ∗. Let V be a real m-dimensional vector space with
an isomorphism h : V → V ∗ which is symmetric, h = th, and such that the
quadratic form V → R, given by v 7→ 〈v, h(v)〉, is of signature (k, l), k+l = m.
One says that the pair (V, h) is a quadratic space of dimension m and signature
(k, l). The orthogonal group O(h) consists of all automorphisms of (V, h). A
Riemannian space is defined as a connected manifold M with a metric tensor,
i.e. a symmetric isomorphism g : TM → T ∗M of vector bundles over M ; for
every x ∈ M the pair (TxM, gx) is a quadratic space; the quadratic space
(V, h) is a local model of the Riemannian space (M, g) if the spaces (V, h)
and (TxM, gx) are isometric; an isometry p : V → TxM is then said to be
an orthonormal frame at x. We say that M is a proper Riemannian space if
the quadratic form associated with h is definite; since we deal often with the
case when the quadratic form is indefinite, this terminology is more convenient
than the traditional one of pseudo-Riemannian spaces. For every Riemannian
space M with a local model (V, h) there is the principal O(h)-bundle P →M
of all orthonormal frames on M . The group O(h) acts on P on the right by
composition of isometries; the symbol of composition of maps is often omitted;
e.g. if p ∈ P and a ∈ O(h), then we write pa instead of p◦a; a similar notation
is used for the action of structure groups on other principal bundles. If P is
a principal G-bundle over M and f : G → H is a homomorphism of groups,
then the principal H-bundle over M , associated with P by f , is denoted by
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P ×f H.

2 Clifford algebras and their representations

In this section, we give a brief description of the properties of real Clifford
algebras and their complex representations, relevant to our work. Details and
proofs can be found in the literature; see, e.g. [1,6,7] and the references given
there.

2.1 Definitions

The Clifford algebra Cl(h) of a quadratic space (V, h) is an associative real
algebra with a unit element 1, containing R ⊕ V as a vector subspace. The
algebra is Z2-graded by the main automorphism α,

Cl(h) = Cl0(h)⊕ Cl1(h), a = a0 + a1,

where aε ∈ Clε(h) and α(aε) = (−1)εaε for ε = 0 or 1. If a ∈ Clε(h), then we
write ε = deg a.

The Clifford algebra is characterized by its universal property : if f : V → A is
a Clifford map, i.e. a linear map into an algebra A with unit element 1A and
such that f(v)2 = 〈v, h(v)〉1A for every v ∈ V , then there is a homomorphism
of algebras with units f̃ : Cl(h) → A such that f̃ |V = f . In particular, the
inclusion map V → Cl(h) is Clifford.

Lemma 1 Let (V, h) and (V0, h0) be quadratic spaces of dimensions m and
one, respectively. Assume that h0 is a negative form; there then exists em+1 ∈
V0 such that 〈em+1, h0(em+1)〉 = −1. The Clifford map

V → Cl0(h⊕ h0), v 7→ vem+1,

extends to an isomorphism of algebras,

ι : Cl(h)→ Cl0(h⊕ h0).

2.2 Pin and Spin groups

An element u ∈ V is said to be a unit vector if either u2 = 1 or u2 = −1.
The group Pin(h) is defined as the subset of Cl(h) consisting of products of
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all finite sequences of unit vectors; the group multiplication is induced by the
Clifford product and Spin(h) = Pin(h)∩Cl0(h). For every a ∈ Pin(h) the map
ρ(a) : V → V , given by

ρ(a)v = α(a)va−1 (1)

is orthogonal,
tρ(a) ◦ h ◦ ρ(a) = h, (2)

and defines the twisted adjoint representation ρ of Pin(h) in V . The two exact
sequences

1→ Z2 → Pin(h)
ρ→ O(h)→ 1 and 1→ Z2 → Pin(−h)

ρ→ O(h)→ 1,

give two inequivalent (central) extensions of the orthogonal group O(h) by Z2.
If the dimension m of V is even, then one can use the adjoint representation
Ad such that Ad(a)v = ava−1 to form two inequivalent extensions of O(h) by
Z2, namely

1→ Z2 → Pin(h)
Ad→ O(h)→ 1 and 1→ Z2 → Pin(−h)

Ad→ O(h)→ 1.

If V = Rk+l and one wants to specify the signature (k, l) of h, then one writes
Cl(k, l), O(k, l), Pin(k, l) and Spin(k, l) instead of Cl(h), O(h), Pin(h) and
Spin(h), respectively. Since the groups Spin(h) and Spin(−h) are isomorphic,
one writes Spin(m) instead of Spin(m, 0) = Spin(0,m).

Assume V to be oriented and let (e1, . . . , em) be an orthonormal frame in
V , of the preferred orientation. The square of the volume element , vol(h) =
e1 . . . em, is either 1 or −1, depending on the signature of h. Putting i =

√
−1,

it is convenient to define i(h) ∈ {1, i} so that vol(h)2 = i(h)2. Clearly,
u vol(h) = (−1)m+1 vol(h)u for every u ∈ V and ρ(vol(h)) = − idV .

2.3 Spinor representations

The following Lemma summarizes facts about representations of Clifford al-
gebras [1,7] relevant to our work and introduces a notation and terminology
used in theoretical physics [9].

Lemma 2 (i) If the dimension m of V is even, m = 2ν, then the algebra
Cl(h) is central simple; as such it has only one, up to equivalence, irreducible
and faithful representation

γ : Cl(h)→ EndS

in a complex, 2ν-dimensional space of ‘Dirac’ spinors. On restriction to the
even subalgebra Cl0(h) this representation decomposes into the sum γ+ ⊕ γ−
of two irreducible, 2ν−1-dimensional ‘Weyl’ representations.
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(ii) If the dimension m of V is odd, m = 2ν − 1, then the algebra Cl0(h)
is central simple; its (unique up to equivalence) irreducible and faithful repre-
sentation extends to two ‘Pauli’ representations γ+ and γ− of the full algebra
Cl(h) in a complex 2ν−1-dimensional space of Pauli spinors. These representa-
tions are related by γ+ = γ−◦α; they are complex-inequivalent and irreducible,
but not necessarily faithful. Their direct sum, γ = γ+ ⊕ γ−, is a faithful rep-
resentation of Cl(h) in the 2ν-dimensional space S of ‘Cartan’ spinors. The
latter representation can be identified with the restriction to Cl(h) of the Dirac
representation

γ′ : Cl(h⊕ h0)→ EndS. (3)

The commutant of the Cartan representation is generated by γ(vol(h)).

We use indiscriminately the name of spinor representation for any one of the
representations of the type described above, also when they are restricted to
Pin(h) or Spin(h).

If the representation γ is as in Lemma 2, then there exists a Dirac intertwiner
defined to be an isomorphism Γ : S → S, intertwining the representations γ
and γ ◦ α,

γ ◦ α(a) = Γγ(a)Γ−1 for every a ∈ Cl(h),

and such that Γ 2 = idS. Referring to Lemma 1 we see that such an intertwiner
can be used to extend the representation γ : Cl(h)→ EndS to a representation
γ′ : Cl(h⊕ h0)→ EndS by putting

γ′(v) = i γ(v)Γ for v ∈ V and γ′(em+1) = − iΓ (4)

so that γ = γ′ ◦ ι.

Lemma 3 (i) If the dimension of V is even and γ : Cl(h) → EndS is a
Dirac representation, then the Dirac intertwiner Γ equals either i(h)γ(vol(h))
or −i(h)γ(vol(h)).

(ii) If the dimension of V is odd and γ : Cl(h) → EndS is a Cartan repre-
sentation, then the Dirac intertwiner Γ can be any element of the set

{i γ′(em+1)(cosh z + i(h)γ(vol(h)) sinh z) : z ∈ C },

where γ′ is the extension defined in (4). If Γ and Γ ′ are two such intertwiners,
then there is Ω ∈ GL(S), belonging to the commutant of the representation γ
and such that

Γ ′ = ΩΓΩ−1. (5)

The following two Propositions describe the construction of spinor represen-
tations of the algebra Cl(h1 ⊕ h2) from suitably ‘twisted’ tensor products of
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the representations of the algebras Cl(hi), i = 1, 2, and also the corresponding
Dirac intertwiners.

Proposition 1 Consider two quadratic spaces (Vi, hi) i = 1, 2, and the spinor
representations γi : Cl(hi)→ EndSi. Assume that γ1 has a Dirac intertwiner
Γ1. Then

(i) The map V1 × V2 → EndS1 ⊗ EndS2 given by

(v1, v2) 7→ γ1(v1)⊗ idS2 + Γ1 ⊗ γ2(v2) (6)

is a Clifford map and thus extends to a representation γ of Cl(h1 ⊕ h2) in
S1 ⊗ S2. If Γ2 is a Dirac intertwiner for γ2, then

Γ = Γ1 ⊗ Γ2. (7)

is a Dirac intertwiner for γ.

(ii) Let the dimension of V1 be even and let γ1 be the Dirac representation. If
γ2 is a Dirac (resp., Cartan, Pauli) representation, then γ is a Dirac (resp.,
Cartan, Pauli) representation.

(iii) Let the dimension of V1 be odd and let γ1 be the Cartan representation. If
γ2 is a Dirac (resp., Pauli) representation, then γ is a Cartan (resp., Dirac)
representation. If γ2 is the Pauli representation, then the Dirac intertwiner
for γ is given by Γ = i i(h1)γ1(vol(h1))Γ1 ⊗ idS2. If γ2 is the Cartan repre-
sentation, then γ decomposes into the direct sum of two (equivalent) Dirac
representations.

PROOF. Since the proofs of the different cases are similar, we give it only
for the last, least obvious case. The Cartan representations γ1 and γ2 being
faithful, so is the representation γ. Let mi be the dimension of Vi, i = 1, 2.
The dimension of the carrier space S1⊗ S2 is now 21+(m1+m2)/2, i.e. it is twice
the dimension of the space of Dirac spinors associated with Cl(h1 ⊕ h1). One
checks readily that idS1 ⊗ γ2(vol(h2)) generates the commutant of the repre-
sentation γ and that the endomorphisms 1

2
(idS1⊗S2 + i(h2)idS1 ⊗ γ2(vol(h2)))

and 1
2
(idS1⊗S2− i(h2)idS1⊗γ2(vol(h2))) are projections on two complementary

and irreducible, with respect to γ, subspaces of S1 ⊗ S2. 2

In order to cover the case when both γ1 and γ2 are Pauli representations, it is
convenient to use the physicists’ Pauli matrices,

σ1 =

 0 1

1 0

, σ2 =

 0 − i

i 0

 and σ3 =

 1 0

0 −1

.
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Proposition 2 Let the quadratic spaces (Vi, hi), i = 1, 2, be both of odd
dimension. Consider the Pauli representations,

γi : Cl(hi)→ EndSi, i = 1, 2.

The Clifford map

V1 × V2 → EndC2 ⊗ EndS1 ⊗ EndS2,

given by
(v1, v2) 7→ σ1 ⊗ γ1(v1)⊗ idS2 + σ2 ⊗ idS1 ⊗ γ2(v2), (8)

extends to the Dirac representation γ of Cl(h1⊕h2) in C2⊗S1⊗S2. Its Dirac
intertwiners are Γ = ±σ3 ⊗ idS1 ⊗ idS2.

2.4 The Clifford evaluation map

The tensor product of a spinor representation γ in S and of the representation
contragredient to ρ defines a representation σ of Pin(h) in the vector space
Hom(V, S): if a ∈ Pin(h) and Φ ∈ Hom(V, S), then

σ(a)Φ = γ(a) ◦ Φ ◦ ρ(a−1). (9)

Identifying Hom(V, S) with V ∗ ⊗ S, we define the Clifford evaluation map

γ̃ : Hom(V, S)→ S by γ̃(v∗ ⊗ ϕ) = γ(h−1(v∗))ϕ, (10)

where v∗ ∈ V ∗ and ϕ ∈ S. Using (1) and (2) one shows that

γ̃ ◦ σ(a) = (γ ◦ α)(a) ◦ γ̃ (11)

for every a ∈ Pin(h).

3 Pin and spin structures

3.1 Definitions

Let (V, h) be the local model of a Riemannian manifold M and let π : P →M
be the bundle of all orthonormal frames on M . A Pin(h)-structure on M is a
principal Pin(h)-bundle $ : Q→M , together with a morphism χ : Q→ P of
principal bundles over M associated with the epimorphism ρ : Pin(h)→ O(h).
The morphism condition means that $ = π ◦ χ and there is the commutative
diagram
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Q× Pin(h)
χ×ρ−→P ×O(h)

↓ ↓
Q

χ−→ P

where the vertical arrows denote the action maps.

The expression Pin(k, l)-structure is used when one wants the signature of h
to appear explicitly. For brevity, we shall describe a Pin(h)-structure by the
sequence

Pin(h)→ Q
χ→ P

π→M. (12)

If M is orientable and admits a Pin(h)-structure, then it has a spin structure.
In an abbreviated style, similar to that of (12), it may be described by the
sequence of maps

Spin(h)→ SQ→ SP →M, (13)

where SP is now an SO(h)-bundle; if the quadratic form associated with h is
definite, then SP is one of the two connected components of P .

3.2 Existence of pin structures

Let TM = T+M⊕T−M be the decomposition of the tangent bundle of M into
the Whitney sum of two vector bundles such that the metric tensor restricted
to T+M (resp., T−M) is positive- (resp., negative-) definite. Denoting by w+

i

(resp., by w−i ) the ith Stiefel–Whitney class of T+M (resp., of T−M), one can
formulate

Theorem (Karoubi) A Riemannian space admits a Pin(h)-structure (12)
if, and only if,

w+
2 + w−2 + w−1 (w+

1 + w−1 ) = 0. (14)

A proof of the Theorem is in [6]. Introducing the Stiefel-Whitney classes wi
of TM , one can write (14) as

w2 + (w−1 )2 = 0. (15)

In particular, if M is proper Riemannian, then the condition for M to have
a Pin(m, 0)-structure is w2 = 0, whereas the corresponding condition for a
Pin(0,m)-structure is w2 + w2

1 = 0. The conditions w±1 = 0 and w1 = 0 are
equivalent to the orientability of T±M and TM , respectively.
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3.3 Homogeneous pin manifolds

The following theorem is an extension of Theorem 1 in [3] to the case of a
homogeneous manifold that need not be orientable.

Theorem 1 Let (V, h) be the local model of a Riemannian space M with a
Lie group G acting on M transitively by isometries and let H be the isotropy
group of a point of M .

(i) If the linear isotropy representation τ : H → O(h) lifts to the homomor-
phism τ̂ : H → Pin(h), then there is a Pin(h)-structure Q → P → M such
that Q = G×τ̂ Pin(h).

(ii) If τ̂ and τ̂ ′ are two lifts of τ and the pin structures defined by these lifts
are isomorphic, then τ̂ = τ̂ ′.

(iii) If the group G is simply connected and M has a Pin(h)-structure, then τ
lifts to Pin(h) and the Pin(h)-structure is as in (i).

PROOF. The proof is obtained as in the orientable case. For part (iii), one
considers the lift of the action of G on M to an action of G on the the total
space Q of the pin structure and observes that the lifted action commutes
with that of the group Pin(h). 2

3.4 Products of pin manifolds

Theorem 2 Let M ′ and M ′′ be two Riemannian spaces. Their product has a
pin structure if, and only if, M ′ and M ′′ are pin manifolds and at least one of
the factor spaces is orientable.

PROOF. Assume first that the product M = M ′ ×M ′′ has a pin structure.
Denote by wi, w

′
i and w′′i the ith Stiefel–Whitney classes of the tangent bundles

of the manifolds M, M ′ and M ′′, respectively; similarly, let w−1 , w
′−
1 and w′′−1

be the first classes of T−M, T−M ′ and T−M ′′. We have (15) because M is
pin and

w2 = w′2 + w′′2 + w′1w
′′
1

from the Whitney product property. Since w1
− = w′1

−+w′′1
− and 2w′1

−w′′1
− =

0, condition (15) reduces to

w′2 + (w′1
−

)2 + w′′2 + (w′′1
−

)2 + w′1w
′′
1 = 0. (16)
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Each of the three underlined terms in the last equation refers to a different
space and thus it must vanish separately. The vanishing of the first two means
that M ′ and M ′′ are both pin manifolds and w′1w

′′
1 = 0 implies that at least

one of them is orientable and, as such, has a spin structure. Conversely, eq.
(16) implies (15): the product of a pin manifold and of a spin manifold is a
pin manifold. 2

Consider two quadratic spaces (V1, h1), (V2, h2) and their orthogonal sum (V1⊕
V2, h1 ⊕ h2). The injection V1 → V1 ⊕ V2 extends to the monomorphism of
groups, Pin(h1) → Pin(h1 ⊕ h2); similarly for Pin(h2). Let a1, b1 ∈ Pin(h1)
and a2, b2 ∈ Pin(h2); the ‘twisted’ multiplication law,

(a1, a2).(b1, b2) = (a1b1, (−1)deg a2 deg b1a2b2), (17)

makes Pin(h1)× Pin(h2) into a group such that the map

Pin(h1)× Pin(h2)→ Pin(h1 ⊕ h2), (a1, a2) 7→ a1a2,

is a homomorphism of groups with kernel Z2 generated by (−1,−1) [6].

It is convenient to have an explicit construction of the pin structure on the
product, in terms of the pin and spin structures on the factors. Let again M1

and M2 be pin manifolds, with local models (V1, h1) and (V2, h2), respectively,
and assume that one of them, say M2, is orientable. Let

Pin(h1)→ Q1
χ1→ P1

π1→M1

and
Spin(h2)→ SQ2

χ2→ SP2
π2→M2

be the pin and spin structures of the two spaces. The bundle O(h1)×SO(h2)→
P1 × SP2

π1×π2−→ M1 × M2 is a restriction of the bundle of all orthonormal
frames on the product space. Let Q be the quotient of the set Q1 × SQ2 by
the equivalence relation: (q1, q2) ≡ (q′1, q

′
2) if, and only if, either q1 = q′1 and

q2 = q′2 or q1 = q′1(−1) and q2 = q′2(−1). The group (Pin(h1) × Spin(h2))/Z2

acts freely on Q,
[(q1, q2)].[(a1, a2)] = [(q1a1, q2a2)], (18)

where q1 ∈ Q1, q2 ∈ SQ2, a1 ∈ Pin(h1) and a2 ∈ Spin(h2). The projection χ :
Q → P1 × SP2, χ([(q1, q2)]) = (χ1(q1), χ2(q2)) has the equivariance property
required of a ‘restricted’ pin structure. The total space of the Pin(h1 ⊕ h2)-
structure on the product is Q×f Pin(h1⊕ h2), where f is the homomorphism

f : (Pin(h1)× Spin(h2))/Z2 → Pin(h1 ⊕ h2), f([(a1, a2)]) = a1a2.

Note that if M1 and M2 are both non-orientable pin manifolds, then Q can be
still defined as above, but (18) does not yield an action of the group (Pin(h1)×
Pin(h2))/Z2 on Q because of the twisting in (17).
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Example. To illustrate Theorems 1 and 2 on a simple example, consider the
productM of the real projective plane P2 = S2/Z2 by itself. The non-orientable
space P2, given the proper Riemannian metric descending from S2, is sym-
metric and has a Pin(0, 2)-structure [4]. The group G = Spin(3) × Spin(3)
acts transitively on M and the stabilizer H of an element of M has four
connected components. Considering lifts of the linear isotropy representation
τ : H → O(2)×O(2) to any one of the groups Pin(4, 0), Pin(2, 2) and Pin(0, 4)
one shows that none exist and, therefore, M has no pin structure.

3.5 The relation between pin structures on manifolds and on their universal
covers

Let Π be the first homotopy group of a connected manifold M . The universal
covering manifold M̃ ofM is the total space of the principalΠ-bundle ξ : M̃ →
M ; see, e.g., §14 in [8]. We write the left action of Π on M̃ as (c, x) 7→ cx, so
that ξ(cx) = ξ(x) for every c ∈ Π and x ∈ M̃ . If M is a Riemannian space with
a local model (V, h), then so is M̃ . The principal O(h)-bundle π̃ : P̃ → M̃ of
all orthonormal frames on M̃ can be identified with the bundle induced from
π : P →M by ξ,

P̃ = {(x, p) ∈ M̃ × P : ξ(x) = π(p)}.

The projection π̃ : P̃ → M̃ is given by π̃(x, p) = x and there is the map η :
P̃ → P such that η(x, p) = p. The group O(h) acts on P̃ so that ((x, p), A) 7→
(x, pA), where A ∈ O(h); the map η is equivariant: η(x, pA) = η(x, p)A. .
There is a natural lift of the action of Π to P̃ given by (c, (x, p)) 7→ (cx, p).
The lifted action commutes with that of O(h). We can now formulate

Theorem 3 A Riemannian space M , with a local model (V, h), admits a pin
structure (12) if, and only if, there exists a pin structure

Pin(h)→ Q̃
χ̃→ P̃

π̃→ M̃ (19)

on its universal cover M̃ and an action of Π = π1(M) on Q̃, lifting the action
of Π on P̃ and commuting with the action of Pin(h).

PROOF. Assume first that M has the pin structure (12). The Z2-bundle
Q̃→ P̃ is induced from the bundle Q→ P by the map η : P̃ → P ,

Q̃ = {(x, q) ∈ M̃ ×Q : ξ(x) = $(q)}, χ̃(x, q) = (x, χ(q)).

The action of Π on Q̃ given by c(x, q) = (cx, q) commutes with the action
of Pin(h), given by (x, q)a = (x, qa), where (x, q) ∈ Q̃ and a ∈ Pin(h). Con-
versely, assume that there is a pin structure (19) on the universal covering
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space of M and an action of Π on Q̃ such that, for every c ∈ Π, a ∈ Pin(h)
and q̃ ∈ Q̃ one has (cq̃)a = c(q̃a) and χ̃(cq̃) = cχ̃(q̃). We define Q = Q̃/Π; i.e. if
[q̃], [q̃′] ∈ Q, then [q̃] = [q̃′] if, and only if, there is c ∈ Π such that q̃′ = cq̃. The
projection χ : Q → P is now given by χ([q̃]) = η(χ̃(q̃)). An action of Pin(h)
on Q is defined by [q̃]a = [q̃a] and seen to satisfy χ([q̃]a) = χ([q̃])ρ(a) 2

4 Pin structures on non-orientable, real projective quadrics

Recall that the real projective quadric Qk,l = (Sk × Sl)/Z2 is acted upon
transitively by the group G = Spin(k + 1)× Spin(l + 1). Proper quadrics, i.e.
those for which kl > 0, are orientable if, and only if, k + l is even; their spin
structures have been determined in [3]. Some of those quadrics have no spin
structure (example: Q3,5). As an application of Theorem 1 we now show that
all non-orientable quadrics have pin structures. They are described in:

Theorem 4 Let k and l be positive integers, even and odd, respectively. Every
quadric Qk,l has two pairs of inequivalent pin structures:

for k + l ≡ 1 mod 4 in signature (0, k + l) and (l, k),

for k + l ≡ 3 mod 4 in signature (k + l, 0) and (k, l).

PROOF. Following §6 of [3], we introduce two orthonormal frames (e1, . . . , ek+1)
and (f1, . . . , fl+1) in Rk+1 and Rl+1, respectively. Considered as elements of
Clifford algebras, the vectors satisfy

eαeβ + eβeα = ±2δαβ and fµfν + fνfµ = ±2δµν ,

where the choice of signs depends on the signature under consideration and
α, β = 1, . . . , k + 1; µ, ν = 1, . . . , l + 1.

The stabilizer of [(ek+1, fl+1)] is the group H = H0∪H1, where H0 = Spin(k)×
Spin(l) and H1 is generated in G by H0 and the element (e1ek+1, f1fl+1). The
linear isotropy representation τ : H → O(k) × SO(l) is given by τ(a, b) =
(ρ(a), ρ(b)) for (a, b) ∈ H0 and τ(e1ek+1, f1fl+1) = (−ρ(e1),−ρ(f1)), where
ρ denotes the twisted adjoint representation. It is now appropriate to con-
sider lifts to the groups Pin(k, l), Pin(l, k), Pin(k + l, 0), and Pin(0, k + l).
For (a, b) ∈ H0 one has τ̂(a, b) = ab. The element (−ρ(e1),−ρ(f1)) is cov-
ered by two elements of the Pin group, namely by ±e1f1 vol, where vol =

e1 . . . ekf1 . . . fl. Since (e1ek+1, f1fl+1)
2 = (−1,−1)

τ̂7→ 1, one has to have
(e1f1 vol)2 = 1. Since vol is now in the center of the Pin group, the last
condition reduces to e21f

2
1vol2 = −1. The squares occurring above depend on

the signature; their evaluation leads to the conclusion of the theorem. An
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independent check of this result is provided by the computation of the Stiefel–
Whitney classes. According to §3 of [3], the tangent bundle of Qk,l decomposes
into the direct sum of two vector bundles T ′ and T ′′ of fiber dimension k and
l, respectively. The odd-dimensional subbundle is orientable, w′′1 = 0, whereas
the even-dimensional one is not, w1 = w′1 6= 0. The second class of TQk,l is

w2 = w′2 + w′′2 = 1
2
(k(k + 1) + l(l + 1))w2

1 =

w2
1 for k + l ≡ 1 mod 4,

0 for k + l ≡ 3 mod 4.

Since now w′1w
′′
1 = 0, according to the Karoubi theorem, the quadric has a

pin structure if w2 + w−1 w1 = 0. For k + l ≡ 1 mod 4, this gives w−1 = w1, i.e.
the metric restricted to T ′ should be negative-definite. For k + l ≡ 3 mod 4,
condition (14) implies w−1 = 0 and the metric restricted to T ′ should be
positive-definite. 2

5 Spinor fields and Dirac operators on pin manifolds

5.1 Bundles of spinors and their sections

Let M be a Riemannian space with a Pin(h)-structure (12) and let γ be a
spinor representation of the group Pin(h) in S. The complex vector bundle
πE : E → M , with typical fiber S, associated with Q by γ, is the bundle
of spinors of type γ. If the dimension m of M is even (resp., odd), then E
is called a bundle of Dirac (resp., Cartan) spinors. For m odd, one can also
define the bundle of Pauli spinors over M . Similarly, if m is even and M has a
spin structure, then there are two bundles of Weyl spinors over M . A spinor
field of type γ on M is a section of πE. The (vector) space of such sections
is known to be in a natural and bijective correspondence with the set of all
maps ψ : Q → S equivariant with respect to the action of Pin(h). Denoting
by δ(a) : Q→ Q the map q 7→ qa, we can write the ‘transformation law’ of ψ
as

ψ ◦ δ(a) = γ(a−1)ψ, (20)

for every a ∈ Pin(h). It is convenient to refer to ψ itself as a spinor field of
type γ on M . Depending on whether E is a bundle of Dirac, Weyl, Cartan or
Pauli spinors, one refers to its sections as Dirac, Weyl, Cartan or Pauli spinor
fields, respectively.
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5.2 Covariant differentiation of spinor fields

Let (12) be a pin structure on a Riemannian space M with a local model (V, h).
The Levi-Civita connection form on P lifts to the spin connection 1-form ω on
Q with values in the Lie algebra of the group Spin(h). For every q ∈ Q, there
is the orthonormal frame χ(q) : V → T$(q)M . The basic horizontal V ∗-valued
vector field ∇ is defined on Q by the spin connection as follows. For every
q ∈ Q the linear map ∇(q) : V → TqQ is such that

Tq$(∇(q)) = χ(q) and 〈v,∇(q)〉 yω = 0,

where y denotes the inner product (contraction). The field ∇ transforms ac-
cording to

∇(qa) = Tqδ(a) ◦ ∇(q) ◦ ρ(a).

Let ψ : Q → S be a spinor field of type γ. Its covariant derivative is a map
∇ψ : Q→ Hom(V, S) such that, for every v ∈ V and q ∈ Q, one has

〈v, (∇ψ)(q)〉 = 〈v,∇(q)〉 y dψ.

The covariant derivative transforms according to

(∇ψ)(qa) = σ(a−1)(∇ψ)(q),

where σ is the representation of Pin(h) in Hom(V, S) given by (9).

5.3 The classical and the modified Dirac operators

Using the notation of the preceding paragraph and (10), the classical Dirac
operator can be written as

Dclψ = γ̃ ◦ ∇ψ.
According to (11), the classical Dirac operator maps a spinor field of type γ
into a spinor field of type γ ◦ α.

Let Γ be a Dirac intertwiner; the modified Dirac operator is defined by

D = iΓDcl. (21)

It preserves the type of the spinor field and the corresponding eigenvalue
equation, Dψ = λψ, is meaningful on non-orientable pin manifolds for Cartan
or Dirac spinor fields.

Remark 1. If the dimension of M is even, then one can use the adjoint vector
representation of Pin(h) in the definition of the pin structure on M . The
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classical Dirac operator preserves then the type of spinor fields and there is
no need for its modification.

Remark 2. If the dimension of M is odd and one considers Cartan spinors,
then one has a freedom in choosing Γ , as described in Part (ii) of Lemma 3.
If D′ = iΓ ′Dcl and Ω is as in (5), then D′Ω = ΩD. Therefore, the spectra of
the operators D and D′ coincide.

Remark 3. If M is a spin manifold and ψ is a spinor field, then Γψ is a spinor
field of the same type. Since (1 + iΓ )−1 = 1

2
(1− iΓ ) and

D = (1 + iΓ )Dcl(1 + iΓ )−1,

if Dclψ = λψ, then Dψ′ = λψ′, where ψ′ = (1 + iΓ )ψ.

Remark 4. Since Γ anticommutes with Dcl, on a spin manifold the spectra of
Dcl and D are both symmetric: if λ is an eigenvalue, then so is −λ.

Remark 5. If M is an odd -dimensional spin manifold, then the interesting
object is the Pauli operator , the restriction of Dcl to Pauli spinor fields. If ϕ
is an eigenfunction of the Pauli operator, then the Cartan spinor fields (ϕ, 0)
and (0, ϕ) are eigenfunctions of Dcl with opposite eigenvalues.

5.4 The spectrum of the Dirac operator on a product of pin manifolds

Consider, as in Section 3.4, two pin manifolds M1 and M2 and assume that the
second is orientable. Their product M has a pin structure determined by the
double cover Q = (Q1 × SQ2)/Z2 of the restriction P1 × SP2 of the bundle of
orthonormal frames of M to the group O(h1)×SO(h2). Consider the canonical

projections Q1 × SQ2
pr→ Q, Q1 × SQ2

pr1−→ Q1 and Q1 × SQ2
pr2−→ SQ2. The

spin connection forms ω1 and ω2 on Q1 and SQ2, respectively, define a form
ω on Q such that pr∗ ω = pr∗1ω1 + pr∗2ω2. The 1-form ω has values in the
Lie algebra of Spin(h1 ⊕ h2) and defines the spin connection form on Q. If
ψ1 : Q1 → S1 and ψ2 : SQ2 → S2 are spinor fields of type γ1 and γ2 on M1

and M2, respectively, then their tensor product, ψ1 ⊗ ψ2 : Q → S1 ⊗ S2, is
well-defined by (ψ1 ⊗ ψ2)([(q1, q2)]) = ψ1(q1)⊗ ψ2(q2) and is a spinor field on
M of type γ given by Prop. 1. Denoting by ∇, ∇1 and ∇2 the basic horizontal
vector fields on Q, Q1 and SQ2, respectively, we can write the Leibniz rule
for the covariant derivative as ∇(ψ1 ⊗ ψ2) = (∇1ψ1)⊗ ψ2 + ψ1 ⊗∇2ψ2. Using
an analogous notation for the (modified) Dirac operators, and assuming that
the representations γ1 and γ2 are either Dirac or Cartan, we obtain, by virtue
of (6), (7) and (21),

D(ψ1 ⊗ ψ2) = D1ψ1 ⊗ Γ2ψ2 + ψ1 ⊗D2ψ2. (22)
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The Pythagoras Theorem for the Dirac operator Let M be the prod-
uct of a pin manifold M1 and of a spin manifold M2. If λ1 and λ2 are eigen-

values of the Dirac operators on M1 and M2, respectively, then
√
λ21 + λ22 and

−
√
λ21 + λ22 are eigenvalues of the Dirac operator on M .

PROOF. Assume first that the representations γ1 and γ2 defining the type
of spinor fields on M1 and M2, respectively, are either Dirac or Cartan. If
D1 and D2 are the (modified) Dirac operators on M1 and M2, respectively,
then formula (22) applies and its consequence, D2 = D2

1 ⊗ idS2 + idS1 ⊗ D2
2,

suffices to prove the Theorem. To see in detail how the eigenfunctions of D are
constructed from those D1 and D2, consider spinor fields ψi on Mi satisfying
Diψi = λiψi, i = 1, 2. The spinor fields on M ,

ψ± = ψ1 ⊗ (λ2 ±
√
λ21 + λ22 + λ1Γ2)ψ2,

are then easily seen to satisfy Dψ± = ±
√
λ21 + λ22 ψ±.

If bothM1 andM2 are odd-dimensional spin manifolds, then one can assume γ1
and γ2 to be Pauli representations and take D1 and D2 to be the corresponding
Pauli operators. Let ϕ ∈ C2 and let ψi be Pauli spinor fields on Mi, i =
1, 2. According to Prop. 2, the Dirac operator on M acts on the spinor field
ϕ⊗ ψ1 ⊗ ψ2 as follows:

Dcl(ϕ⊗ ψ1 ⊗ ψ2) = σ1(ϕ)⊗D1ψ1 ⊗ ψ2 + σ2(ϕ)⊗ ψ1 ⊗D2ψ2.

Let (e1, e2) be the canonical frame in C2 so that σ1(e1) = e2, σ2(e1) = i e2,
etc. If Diψi = λiψi and

ψ± = (
√
λ1 − iλ2 e1 ±

√
λ1 + iλ2 e2)⊗ ψ1 ⊗ ψ2,

then Dclψ± = ±
√
λ21 + λ22 ψ±. 2

Acknowledgments

The research reported in this paper was done during the authors’ visits to the
Laboratorio Interdisciplinare of the International School for Advanced Studies
(SISSA) in Trieste. We thank Paolo Budinich and Stefano Fantoni for their
interest and hospitality. One of us (A.T.) was partially supported by the Polish
Committee for Scientific Research (KBN) under grant no. 2 P302 112 7.

16



References

[1] P. Budinich and A. Trautman, The spinorial chessboard, Trieste Notes in
Physics (Springer–Verlag, Berlin, 1988).

[2] M. Cahen and S. Gutt, Spin structures on compact simply connected
Riemannian symmetric spaces, Simon Stevin Quart. J. Pure and Appl. Math.
62 (1988) 209–242.

[3] M. Cahen, S. Gutt and A. Trautman, Spin structures on real projective
quadrics, J. Geom. Phys. 10 (1993) 127–154.

[4] L. Da̧browski and A. Trautman, Spinor structures on spheres and projective
spaces, J. Math. Phys. 27 (1986) 2022–28.

[5] S. Gutt, On Dirac operators and pin manifolds, Lecture given at the Workshop
on Spinors, Twistors and Conformal Invariants at the Erwin Schrödinger
Institute in Vienna, 19–25 September 1994.
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