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1. Introduction: a Touch of History

Spinors may be considered to appear, for the first time, in slightly
disguised form, in the work of L. Euler (1770) and O. Rodrigues (1840),
who discovered a rational representation of rotations. The latter wrote
equations equivalent to

Z ′ = UZU †/(1 + 1
4 (m

2 + n2 + p2)), (1)

where U † is the Hermitian conjugate of the 2 by 2 matrix

U = I + 1
2 i (mσx + nσy + pσz),

I and the sigmas are the unit and the Pauli matrices, respectively,

Z = xσx + yσy + zσz, (2)

and similarly for Z ′.

Spinors are even more explicit in the work of W. R. Hamilton (1844),
A. Cayley (1845), W. K. Clifford (1878) and R. O. Lipschitz (1880).
Their ideas led to many developments presented also at the two pre-
vious conferences on Clifford algebras and their applications in mathe-
matical physics (Canterbury 1985 and Montpellier 1989). Élie Cartan
(1913) discovered what are now called spinor representations of the
complex Lie algebras so(n), n > 2. According to B. L. van der Waerden
(1960), the name spinor is due to P. Ehrenfest who suggested, on a visit
to Göttingen, to develop a spinor analysis analogous to tensor calculus
(Van der Waerden, 1929).

In atomic and particle physics, spinor-valued functions are used
to describe the quantum-mechanical behaviour of fermions. Most of
the time, there appear complex, four-component Dirac spinors over
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Minkowski space-time. Two-component Weyl spinors are used in the
context of parity violating weak interactions.

Weyl (reduced, semi– or half–)spinors are used by Roger Penrose
and his school (Penrose and Rindler, 1984 and 1986) in the theory of
general relativity and twistors. As emphasized by P. Budinich, Weyl
spinors occur there because they are simple (pure) in the sense of
Cartan (Chevalley) and not because of their relevance in the theory
of the neutrino. Incidentally, the germ of the notion of a pure spinor
can be found in a paper by J. W. Givens (1937).

2. The Square Root Ideas

2.1. The Clifford Idea

If Z is as in (2), then Z2 = (x2+y2+z2) I so that Z is a linear form of
the square root of the quadratic form x2 + y2 + z2. Clifford generalized
this and similar observations; to fix the notation and terminology, I
state the relevant definitions and theorems.

Let V be an n-dimensional vector space over the field F =R or C;
and let g : V ×V → F be a bilinear and symmetric map; if it is, more-
over, non-degenerate, then it is a scalar product in V and defines an
isomorphism g : V → V ∗. Recall that, denoting by T(V ) =

⊕⊗k V ,
where

⊗0V = F , the tensor algebra of V and by I(V, g) its bilateral
ideal generated by all elements of the form v ⊗ v − g(v, v), one defines
the Clifford algebra as Cl(V, g) =T(V )/I(V, g) and finds it to be asso-
ciative, with unit element, and to have the following universal property:
if A is an algebra over F, with unit element 1A, and f : V → A is a
linear map such that

f(v)2 = g(v, v) 1A for every v ∈ V,

then there is a homomorphism of algebras with units f̃ : Cl(V, g) → A
extending f . In particular, Cl(V, 0) =

∧
V is the exterior algebra of

V . For v ∈ V , let e(v) and c(v) :
∧

V → ∧
V be the exterior multi-

plication by v and the contraction with g(v) ∈ V ∗, respectively. The
map f : V → End

∧
V given by f(v) = e(v) + c(v) has the proper-

ties described above, where now A = End
∧

V . The homomorphism

f̃ : Cl (V, g) → End
∧

V is injective and the map Cl (V, g) → ∧
V

given by
a 7→ 〈f̃(a), 1∧V 〉 is an isomorphism of vector spaces. Since it is natural,
one can identify these two vector spaces; this will be done in the sequel
without further comments; the Clifford product of v ∈ V by a ∈ ∧

V is
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GEOMETRY OF SPINORS 3

then given by the Chevalley-Kähler formula (Chevalley, 1954; Kähler,
1962),

va = e(v)a+ c(v)a.

2.2. The Cartan Idea

The Pythagorean equation

x2 + z2 = y2

is equivalent to each of the statements:
(i) (x, y, z) is a null (isotropic, optical, light-like) vector in R3 with a
scalar product of signature (2, 1);
(ii) one has detX = 0, where X = xσx + iyσy + zσz is a real matrix;
(iii) there exists a spinor ϕ ∈R2 such that

BX = ϕ⊗ ϕ, (3)

where B = σy/i is a matrix such that

Xt = −BXB−1.

Informally, equation (3) can be interpreted to mean that the spinor ϕ
is a square root of the null vector (x, y, z), represented by the symmetric
matrix BX. Cartan (1938) found a generalization of this observation
to vector spaces of any dimension, with a scalar product, admitting
totally null subspaces of maximal dimension.

2.3. The ‘Double–valuedness’ of the Spinor
Representations

2.3.1. The Algebraic Aspect
Let V and g be as in §2.1. If u ∈ V is non-null, u2 = g(u, u) 6= 0, then u
is invertible, as an element ofCl(V, g), and the map v 7→ −uvu−1, where
v ∈ V , is a reflection in the hyperplane orthogonal to u. The vector u
can be normalized, but there is always an ambiguity of sign: the vectors
u and −u represent the same reflection. The group Pin(V, g) is defined
as the subset of Cl(V, g) consisting of products of all finite sequences
of unit vectors; if a ∈ Pin(V, g) and α is the main automorphism of the
Clifford algebra, i.e. such that α(v) = −v for v ∈ V , then the linear
map v 7→ ρ(a)v = α(a)va−1 is an orthogonal transformation of V and
there is the exact sequence of group homomorphisms

1 → Z2 → Pin(V, g) → O(V, g) → 1. (4)
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The main automorphism α defines the Z2−grading of the Clifford
algebra,

Cl (V, g) = Cl0(V, g)⊕Cl1(V, g).

In general, the group Pin (V, g) has two distinguished subgroups:

Spin (V, g) = Pin(V, g) ∩Cl0(V, g)

and its connected component Spin0(V, g). There is an exact sequence
similar to (4),

1 → Z2 → Spin(V, g) → SO(V, g) → 1. (5)

If V is a complex vector space, V =Cn, and g is non-degenerate, then
one writes Cl (n,C) and Pin (n,C) instead of Cl (V, g) and Pin (V, g),
respectively. A similar notation is used for the groups Spin(n,C) which
are connected for n > 1. If g is a scalar product of signature (s, t) in
Rs+t, then one writes Cl (s, t) instead of Cl (V, g), etc. The groups
Spin(n, 0) and Spin(0, n) are isomorphic and abbreviated as Spin(n);
similarly for Spin0. One has Spin(n) =Spin0(n) for n > 1.

2.3.2. The Topological Aspect
The kernel of ρ, Z2 = {1,−1}, appearing in (4) and (5), has an algebraic
origin, described in the preceding paragraph. The case when V =R2

and g is of signature (1,1), is exceptional: the special Lorentz group
SO0(1, 1) and the group Spin0(1, 1) are both isomorphic to the additive
group R. The generic case is illustrated by s = 3 and t = 0. On
the basis of (1) one sees that the map Z 7→ Z ′ represents a rotation

by the angle ω = 2arctan 1
2

√
m2 + n2 + p2 around an axis defined by

the vector (m,n, p). Introducing the ‘Cayley–Klein parameters’, a =
(1 + 1

2 ip) cos
1
2ω, b = 1

2(im− n) cos 1
2ω, and allowing them to assume

all values compatible with |a|2+ |b|2 = 1, one obtains Spin(3) =SU(2)
and

ρ

(
e
1
2 iω 0

0 e−
1
2 iω

)
=




cosω sinω 0
− sinω cosω 0

0 0 1


 .

One sees that the restriction of ρ to the circle U(1) ⊂ SU(2), defined
by 0 ≤ ω ≤ 4π, is the ‘squaring map’, z 7→ z2, z ∈U(1). This property
of ρ is general in the following sense: if s or t > 1, then there are the
exact sequences

1 → Z2 → Spin0(s, t) → SO0(s, t) → 1 (6)

and
1 → π1(Spin0(s, t)) → π1(SO0(s, t)) → Z2 → 1. (7)
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GEOMETRY OF SPINORS 5

The latter sequence defines a non-trivial Z2−grading of the funda-
mental group π1(SO0(s, t)). Incidentally, there is a little ‘experiment’
closely related to the Hopf map SU(2) → SO(3) → S2. Take two coins
of one ecu each and put them on a table. Holding one coin, roll the other
around it so that their rims touch and there is no slipping. Children,
who perform the experiment for the first time, are astonished when
they realize that the moving coin rotates by 7200 after completing one
turn around the fixed coin.

3. Pure Spinors

3.1. Representations of Clifford Algebras Associated
with

Even–dimensional Vector Spaces

In this section, one considers only even-dimensional vector spaces with
a scalar product. These assumptions imply that the corresponding Clif-
ford algebras are simple and, as such, have only one, up to equivalence,
faithful and irreducible representation.

3.1.1. Complex Spaces
Let (eµ), µ = 1, . . . , n, be an orthonormal basis in the complex vector
space W = Cn, where n is even, n = 2m. One chooses the basis so that
gµν = g(eµ, eν) is given by gµν = 0 for µ 6= ν and gνν = (−1)ν+1. The
corresponding volume element η = e1 . . . en ∈ Cl (n) satisfies η2 = 1
and can be used to define the Hodge dual ∗a of a ∈ ∧

W by means of
the Kähler formula ∗a = ηa so that ∗∗a = a.

Recall (see e.g. (Benn and Tucker, 1987; Budinich and Trautman,
1988a) and the references given there) that, for everym = 1, 2, . . ., there
is a faithful and irreducible representation γ of the Clifford algebra
Cl (2m) in a complex, 2m- dimensional vector space S of ‘Dirac spinors’,

γ : Cl (2m) → EndS. (8)

The automorphisms of S defined by γµ = γ(eµ) are called ‘Dirac
matrices’ and

Γ = γ(η) = γ1 . . . γ2m

is the ‘helicity’ automorphism, satisfying Γγµ + γµΓ = 0 and Γ2 = I. If
ϕ is an eigenvector of Γ,

Γϕ = (−1)λ(ϕ)ϕ, where λ(ϕ) = 0 or 1, (9)

then it is called a ‘Weyl spinor’. The transposed matrices γtµ corre-
spond to the contragredient representation of Cl (2m) in the dual space
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S∗ . From the simplicity of Cl (2m) there follows the existence of an
isomorphism B : S → S∗ such that

γtµ = (−1)mBγµB
−1, Γt = (−1)mBΓB−1 and Bt = (−1)

1
2m(m+1)B.

(10)
Since Γ anticommutes with the Dirac matrices, the sign in the first
equation above can be changed by replacing B with BΓ. Following
Cartan, it is chosen in such a way that the equation holds also for
the matrix γ2m+1 = Γ, appearing in the representation of the algebra
Cl (2m+ 1).

3.1.2. Real Spaces
Let g be a scalar product of signature (2p+ ε, 2q+ ε) in the real vector
space V =R2m, where m = p+ q+ ε and ε = 0 or 1. Since C⊗Cl(2p+
ε, 2q + ε) =Cl(2m), the Dirac representation (8) gives, by restriction,
a representation

γ : Cl (2p+ ε, 2q + ε) → EndS, (11)

where the same letter γ is used for the restricted representation. Since
now the Clifford algebra is defined over the reals, the complex conjugate
γ̄ of the representation (11) is also a representation; it follows from the
simplicity of the algebra that these representations are equivalent: there
exists an inertwining linear isomorphism C : S → S̄ such that

γ̄µ = CγµC
−1, (12)

where the Dirac matrices γµ = γ(eµ) correspond to an orthonormal
basis in V such that gµν = 0 for µ 6= ν, gµµ = 1 for µ = 1, . . . , 2p + ε
and −1 for µ = 2p + 1 + ε, . . . , 2m; the volume element η = e1 . . . e2m
satisfies η2 = (−1)m+ε. The helicity automorphism is now defined by
Γ = im+εγ(η) so that Γ2 = I still holds and

Γ̄ = (−1)m+εCΓC−1.

The defining properties of the maps B and C determine them only up
to non-zero complex factors which can be chosen so that

C̄C = (−1)
1
2 (q−p)(q−p+1)I and CtB̄C = B. (13)

The ‘charge conjugate’ of ϕ ∈ S is the spinor

ϕc = C−1ϕ̄. (14)

If q − p ≡ 0 or 3 mod 4, then the representation is real: the space S
decomposes into the direct sum of two real spaces of ‘Majorana spinors’
characterized by ϕc = ϕ or −ϕ. If ϕ is a Weyl spinor, then so is ϕc and

λ(ϕ) + λ(ϕc) ≡ m+ ε mod 2. (15)
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GEOMETRY OF SPINORS 7

When p ≡ q mod 4 — and only in this case — there are non-zero
spinors which are simultaneously Weyl and Majorana.

3.2. Multivectors Associated with Pairs of Spinors

Consider a pair (ϕ,ψ) of spinors. One associates with that pair the
endomorphism ϕ⊗B ψ of S such that, for every χ ∈ S, one has

(ϕ⊗B ψ)(χ) = 〈B ψ,χ〉ϕ so that Tr (ϕ⊗Bψ) = 〈Bψ,ϕ〉.
Let γ be the isomorphism (8); there is a multivector (see e.g. (Pais,
1962) or (Budinich and Trautman, 1988b))

B(ψ,ϕ) =
2m∑

k=0

Bk(ψ,ϕ), where Bk(ψ,ϕ) ∈
k∧
C2m, (16)

such that
ϕ⊗B ψ = γ (B(ψ,ϕ)) (17)

and

Bk(ψ,ϕ) = 2−m
∑

µ1<...<µk

〈B ψ, γµk . . . γµ1ϕ〉eµ1 . . . eµk
. (18)

The following theorem summarizes well-known results, which are
obtained from the preceding definitions and the properties of the Dirac
representation.

THEOREM 1. Let γ be the representation (8), let B(ψ,ϕ) be the
multivector defined by (16–18) and v ∈ C2m . Then

(i) B(ψ, γ(v)ϕ) = (c(v) + e(v))B(ψ,ϕ);

(ii) Bk(ψ,ϕ) = (−1)
1
2 (k−m)(k−m−1)Bk(ϕ,ψ);

(iii) ∗B(ψ,ϕ) = B(ψ,Γϕ);

(iv) Bk(ψ,Γϕ) = (−1)k−mBk(Γψ,ϕ);

(v) if ϕ and ψ are Weyl spinors, then

λ(ϕ) + λ(ψ) + k +m ≡ 1 mod 2 implies Bk(ψ,ϕ) = 0;

(vi) in particular, if ϕ is a Weyl spinor, then

k −m 6≡ 0 mod 4 implies Bk(ϕ,ϕ) = 0.

The representation (11) of the real algebra is faithful (injective),
but γ is not surjective: the multivector defined by (17) is not real, in
general. There holds, by virtue of (13), the equality

B(ψ,ϕ) = B(ψc, ϕc). (19)
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Therefore, if q − p ≡ 0 or 3 mod 4, and ϕc = ϕ, ψc = ψ, then the
multivector B(ψ,ϕ) is real. In general, the multivector Bk(ϕc, ϕ) is
real or pure imaginary, depending on whether 1

2(q − p)(q − p + 1) +
1
2(k−m)(k−m−1) is even or odd, as may be seen by referring to part
(ii) of Theorem 1 and (13).

3.3. Pure spinors associated with C2m

Let again γ be the Dirac representation of Cl (2m) in S and W = C2m;
if ϕ ∈ S and ϕ 6= 0, then the vector space

N(ϕ) = {v ∈ W : γ(v)ϕ = 0}

depends only on the direction of the spinor ϕ and is totally null, i.e. v2 =
0 for every v ∈ N(ϕ). If N(ϕ) is maximal (in this case: m-dimensional),
then ϕ is said to be pure. Let W = N ⊕ P be a decomposition of W
into a direct sum of maximal, totally null (mtn) subspaces and let
(n1, . . . , nm, p1, . . . , pm) be the corresponding Witt basis,

nµnν + nνnµ = pµpν + pνpµ = 0, nµpν + pνnµ = δµν ,

for µ, ν = 1, . . . ,m. Since the representation γ is faithful, there exists
ω ∈ S such that ϕ = γ(n1 . . . nm)ω 6= 0 and then N(ϕ) = N so
that ϕ is pure. Conversely, given a pure spinor ϕ, one can find an mtn
subspace P complementary to N = N(ϕ). In terms of the Witt basis,
η = [n1, p1] . . . [nm, pm] and one sees that a pure spinor is Weyl. The col-
lection of 2m pure spinors γ(pµ1 . . . pµk

)ϕ, where 1 ≤ µ1 < . . . < µk ≤
2m, is a ‘Fock basis’ in S. There is a bijective correspondence between
the set of all mtn subspaces of W and the set of all directions of pure
spinors. If v is a non-null vector, v2 6= 0, and ϕ is a pure spinor, then
γ(v)ϕ is a pure spinor of opposite helicity and N(γ(v)ϕ) = vN(ϕ)v−1.
The group O(2m) acts transitively on the space of directions of pure
spinors and SO(2m) acts transitively on the manifold of directions of
pure spinors of one helicity: this is the complex, 1

2m(m−1)–dimensional
symmetric space Qm = SO (2m)/U(m) (Ehresmann, Porteous).

Using Theorem 1 one proves

THEOREM 2. I. Let ϕ be a non-zero Weyl spinor associated with
W = C2m. The following conditions are equivalent:

(i) ϕ is pure and N = N(ϕ) = span {n1, . . . , nm};
(ii) Bm(ϕ,ϕ) = n1 ∧ n2 ∧ . . . ∧ nm and Bk(ϕ,ϕ) = 0 for

k 6= m;

(iii) the vector space N = {B1(ψ,ϕ) ∈ W : ψ ∈ S} is mtn.
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GEOMETRY OF SPINORS 9

II. If ϕ and ψ are pure spinors, then the dimension of
N(ϕ) ∩ N(ψ) is the least integer r such that Br(ψ,ϕ) 6= 0; moreover,
Br(ψ,ϕ) = n1 ∧ . . .∧nr and N(ϕ)∩N(ψ) = span {n1, . . . , nr}, so that

(iv) λ(ϕ) + λ(ψ) + r +m ≡ 0 mod 2.

If the pure spinors ϕ and ψ are linearly independent, then

(v) ϕ+ ψ is pure iff r = m− 2 and then N(ϕ+ ψ) ∩N(ψ) =
N(ϕ) ∩N(ψ).

III. Consider now a real vector space V with a scalar prod-
uct of signature (2p+ ε, 2q+ ε) and let W =C⊗V . For every spinor ϕ
one has

(vi) N(ϕc) = N(ϕ).

If ϕ is pure, as a spinor associated with W , then so is ϕc; its real
index r is the dimension of the intersection N(ϕ) ∩ N(ϕc). There is
a decomposition of the space Qm of directions of pure spinors of one
helicity into submanifolds Qp,q,ε,r of directions of pure spinors having
the same helicity and real index,

(vii) Qm =
⋃

r Qp,q,ε,r, where r = ε, ε+2, . . . , ε+2min {p, q}.

Pure spinors with the least value ε of the real index are generic in the
sense that Qp,q,ε,ε is open and dense in Qm. The action of the group
SO (2p + ε, 2q + ε) is transitive on every Qp,q,ε,r, a manifold of real
dimension m(m− 1)− 1

2r(r − 1).

According to part (ii) of Theorem 2 a pure spinor associated with
C2m is the square root of a self- (or anti-self-)dual and decomposable
m-vector. A proof of the equivalence of parts (i) and (iii) is based on
the equation (Budinich and Trautman, 1988b)

c(v)B1(ψ,ϕ) = B0(ψ, γ(v)ϕ).

Another proof was given by Hughston and Mason (1988). Most of the
statements in Parts I and II are due to Cartan and Chevalley, see also
Benn and Tucker. The real case (Part III) is taken from Kopczyński
and Trautman.
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4. Analogies between Complex and Optical Geometries

4.1. The Algebraic Aspect

Consider a real, n-dimensional vector space V . A complex vector sub-
space N of W =C⊗V defines a complex flag (K,L, J) in V , i.e. a
pair (K,L) of subspaces of V such that K ⊂ L and J is a complex
structure in L/K, i.e. a linear map such that J2 = − id. Namely, given
N , one puts K =Re (N ∩ N̄), L =Re (N + N̄) and J(n+ n̄ mod K) =
i(n− n̄) mod K, where n ∈ N . One easily sees that there is a bijective
and natural correspondence between the set of all complex flags in V
and the set of all complex subspaces ofW . Denote by r the dimension of
K. If, in particular, V and N are 2m- and m-dimensional, respectively,
and r = 0 , then L = V and J is a complex structure in V . When
V is given a scalar product g, then a natural question, in relation to
a complex flag, is to ask whether g descends to L/K and makes J
orthogonal. This is answered by the following (Nurowski and Trautman,
1993)

THEOREM 3. Let (K,L, J) be a complex flag in an even-dimensional
real vector space V with a scalar product g and let N be the corre-
sponding subspace of the complexification W of V . The following two
conditions are equivalent:
(i) N is maximal among totally null subspaces of W ;
(ii) g descends to a scalar product in L/K, the complex structure J is
orthogonal and K = L⊥.

The case of m = 2, g of signature (3, 1) and r = 1 leads to an ‘optical
structure’: the line K is interpreted as corresponding to a ray of light
and L/K is a 2-dimensional ‘screen space’; see (Trautman, 1984 and
1985; Robinson and Trautman, 1988) and the references given there.

4.2. Complex, Cauchy–Riemann and Optical Geometries

4.2.1. Geometries Defined by Subbundles of the Complexified Tangent
Bundle

Consider an n-dimensional, paracompact, connected, smooth manifold
M and let W denote the complexification of its tangent bundle V =
TM. The preceding algebraic constructions can be applied, ‘pointwise’,
to the fibres of the bundles. In particular, a complex flag geometry
(K,L,J ) on M consists of two smooth subbundles K and L of V, such
that K ⊂ L ⊂ V, and an automorphism J of the vector bundle L/K
such that J 2 = −id. By Theorem 3, such a geometry is equivalent to
giving a smooth, complex vector subbundle N of the complex vector
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GEOMETRY OF SPINORS 11

bundle W. Denoting by Kx the fibre of K over x ∈ M, and similarly
for other bundles, one has Kx =Re (Nx ∩Nx), etc.

Let S(N ) be the module of sections of the vector bundle N → M;
a similar notation is used for other vector bundles over M and, in
particular, S(M) is the algebra of smooth functions on M. One says
that the complex flag geometry defined by N is integrable if

[S(N ),S(N )] ⊂ S(N ). (20)

In the general case, when 0 < r < m < 1
2(n+ r), condition (20) implies

[S(K),S(K)] ⊂ S(K), (21)

and
[S(K),S(L)] ⊂ S(L). (22)

Therefore, the bundle K defines a foliation on M, which is assumed to
be regular in the sense that the set M′ = M/K of all its leaves has the
structure of a smooth,
(n−r)-dimensional manifold such that the canonical mapM → M′ is a
submersion. The following theorem rephrases well-known facts concern-
ing complex and Cauchy–Riemann (CR) geometries (Wells, 1983; Yano
and Kon, 1984).

THEOREM 4. Let N → M be a complex vector subbundle of the
complexified tangent bundle of an n-dimensional manifold M; denote
by (K,L,J ) the associated complex flag geometry, and let m and r
be the dimensions, complex in the first and real in the second case,
respectively, of the fibres of the bundles N and K. Then

(i) If r = 0 and n = 2m, then J defines an almost complex structure
on M and (20) is its classical integrability condition, equivalent to the
vanishing of the Nijenhuis tensor of J ;

(ii) If r = 0, but n > 2m > 0, then (20) is the integrability condition
of a (non-trivial) CR geometry defined by J on the fibres of L ⊂ V;

(iii) In the general case, when 0 < r < m ≤ 1
2(n + r), condition

(20) implies the Frobenius integrability condition (21) of K; by virtue
of (22) the quotient manifold M′ = M/K inherits, by projection, a
subbundle L′ of its tangent bundle and J descends to M′, defining
there a CR geometry. The latter geometry is simply a complex geometry
when n = 2m− r.
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4.2.2. Hermitian and Optical Geometries
Let M be now a 2m-dimensional manifold satisfying, in addition to
what is stated at the beginning of §4.2.1, the following assumptions:
M has a metric tensor g of signature (2p+ε, 2q+ε), is orientable and has
a spin structure, i.e. a principal bundle P over M, with structure group
G =Spin (2p + ε, 2q + ε), doubly-covering the bundle of orthonormal
frames on M of coherent orientation; see Lawson and Michelsohn for
details. The last assumption is, in fact, not essential because all that is
needed here are bundles of ‘projectivized’ spinors which are associated
with the bundles of orthonormal frames. It is often, however, convenient
to work with spinor fields and to represent them by the corresponding
maps from P to the typical fibre S equivariant with respect to the
action of the group G: a spinor field is a map ϕ : P → S such that
ϕ(ξa) = γ(a−1)ϕ(ξ) for every ξ ∈ P and a ∈ G; similar representations
are applied to vector fields and differential forms. For the sake of clarity,
the same symbols will be used to represent such fields, irrespectively of
whether they are considered as equivariant maps from P to a typical
fibre or as sections of the corresponding associated bundle. The metric
tensor determines a Levi-Civita connection and ∇ denotes the corre-
sponding covariant derivative. With the pair (ϕ,ψ) of spinor fields one
associates the multivector-valued field B(ψ,ϕ), given by

B(ψ,ϕ)(ξ) = B(ψ(ξ), ϕ(ξ)).

The manifoldM being orientable, it is meaningful to consider spinors of
the same heliciy overM. Generalizing the constructions due to Penrose,
Atiyah et al. and O’Brian–Rawnsley, one defines the total space of the
twistor bundle Tr of real index r as consisting of directions of all pure
spinors onM of one, say positive, helicity and of real index r. According
to Theorem 2, if a section of the twistor bundle exists, then it can
be represented (in ‘homogeneous coordinates’) by a nowhere vanishing
field ϕ : P → S of pure spinors; such a section defines a complex vector
bundle N → M; its fibres are mtns, Nx = N(ϕ(ξ)), where ξ ∈ Px.
With the field ϕ one associates the self-dual and decomposable complex
m-form

Φ = g(Bm(ϕ,ϕ)), (23)

so that

u ∈ S(N ) iff c(u)Φ = 0 iff g(u) ∧ Φ = 0. (24)

THEOREM 5. Let ϕ be a nowhere vanishing field of pure spinors on
M, let N be the corresponding bundle of mtn subspaces of the com-
plexified tangent bundle of M and let Φ be the m-form defined by (23).
The integrability condition (20) is equivalent to each of the following:
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(i) the Penrose–Sommers equation ϕ ∧ ∇uϕ = 0 holds for every
u ∈ S(N );

(ii) there exists a 1-form µ such that dΦ = µ ∧ Φ.

A spinorial proof of this theorem is given by Hughston and Mason who
provide references to Penrose and Sommers; they also point out that,
locally, by rescaling Φ, one can reduce the 1-form µ to 0 ; this is a
‘generalized Robinson theorem’.

If (20) holds and the dimension r of the fibres of the bundle K is
> 0, then the leaves of the corresponding foliation are r-dimensional
null geodetic manifolds; a similar result was obtained by Plebański
and Hacyan in the context of complex, four-dimensional Riemannian
geometry.

From now on it is assumed that the field ϕ of pure spinors is generic,
i.e. r = ε. There are two cases to consider: either (i) g is pseudo-
Euclidean, ε = 0, or (ii) g is pseudo-Lorentzian, ε = 1. The prefix
pseudo is dropped whenever p or q = 0.

4.2.2.1. (i) Hermitian Geometry. In the pseudo-Euclidean case, a
section of the twistor bundle T0 defines an orthogonal almost complex
structure J on M; the orthogonality property is equivalent to the
statement that the bilinear map j : S(V)× S(V) → S(M) given by

j(u, v) = 〈g(u),J (v)〉
defines a two-form on M; using J to give a complex structure in
the fibres of V, one introduces in this bundle, with fibres of complex
dimension m, the pseudo-Hermitian form g + ij of signature (p, q).
There is a convenient, spinorial expression of j in terms of the field ϕ.
Since r = 0 and ϕ is nowhere zero, so is the function B0(ϕc, ϕ) and
j = i g(B2(ϕc, ϕ))/B0(ϕc, ϕ). Moreover, the form Φ can be scaled so
that Φ ∧ Φ = ∧mj. A manifold M with g of signature (2p, 2q) and
an orthogonal almost complex structure J is called an almost pseudo-
Hermitian space; if J is integrable, then M is pseudo-Hermitian; it is
a pseudo-Kähler space if, in addition, one of the following equivalent
conditions is satisfied: (a) dj = 0, (b) ∇J = 0, (c) there exists a field
of 1-forms µ such that ∇ϕ = µ⊗ ϕ.

4.2.2.2. (ii) Optical Geometry. In the pseudo-Lorentzian case, a sec-
tion of the twistor bundle T1 defines an almost optical geometry, i.e.
a complex flag geometry (K,L,J ) on M with a metric tensor g of
signature (2p + ε, 2q + ε) such that K = L⊥ is a real line bundle
and J is orthogonal with respect to the metric induced by g in the
fibres of L/K. An almost optical geometry satisfying the integrability
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condition (20) is called optical : the trajectories of K are then null
geodesics and the quotient M′ = M/K is a (2m− 1)-dimensional CR
manifold. In the proper Lorentzian case (p = 1, q = 0) the integrability
condition is equivalent to the statement that the trajectories of K form
a congruence of null geodesics without shear, cf. p. 193 in vol. 2 of
Penrose and Rindler. Such congruences play a fundamental role in the
study of algebraically special gravitational fields; see e.g. Kramer et al.,
Robinson and Trautman (1986 and 1988) and the numerous references
given there.
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numéro hors série, 401–420.

Waerden, B. L. van der: 1929, Spinoranalyse, Nach. Ges. Wiss. Göttingen, math.–
phys., 100–115.

Waerden, B. L. van der: 1960, Exclusion principle and spin, pp. 199–244 in The-
oretical physics in the twentieth century, M. Fierz and W. F. Weisskopf, eds
(Interscience Publ., New York).

Wells, R. O., Jr.: 1983, The Cauchy–Riemann equations and differential geometry,
Proc. Symp. Pure Math. 39, Part I, 423–435.

Yano, K. and Kon, M.: 1984, Structures on Manifolds (World Scientific, Singapore).

GASPIN.tex; 3/01/2010; 17:54; p.15


