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A new derivation is given of the Vahlen (1902) form of the local conformal
transformations of C”, vi— (av+b)(cv+d) !, where veC" and a, b, ¢, d are
suitable clements of the complex Clifford algebra Cl(n). The derivation is based
on the homomorphism of groups Spin(n+-2) —»SO(n+2), the isomorphism of
algebras Cl(n4-2)=C(2) ® Cl(n), and the action of the M&bius group
SO(n+2) on the quadric Q,, the conformal compactification of C". It is shown
how the conformal geometry of Q, lifts, for every n=12,.., to a unique
conformal spin structure. The Hermite-Sylvester interpolation method is used
to represent the map exp: spin(n) —.Spm(n) in such a manner that expa
becomes a Clifford polynomial in ae A*C".

I. INTRODUCTION

In 1910 Cunningham and Bateman' observed that Maxwell’s equations without sources are
invariant with respect to conformal transformations of Minkowski space. Somewhat later,
Bessel-Hagen? derived the corresponding conservation laws. Ever since that time, invariance
with respect to the conformal group—exact for particles of zero mass and approximate, in the
limit of high energies,” otherwise—has attracted the attention of physicists. It has given nse to
a wealth of new ideas and developments, especially in connection with twistors,* strings,” and
two-dimensional conformal field theory.®

In geometry, the conformal group appeared already around 1850 in the work of Liouville’
and Mobius.? In modern terminology and notation, their results can be summarized as follows:
every global conformal transformation of the n-sphere S,, is induced by the action of an element
of the group O(n+1,1) on null lines in the vector space R”Jr endowed with the quadratic form
x4 +xf,+1—xf, +2- Global conformal transformations of S, form a Lie group; its connected
component is the Mobius group. For n>2 every local conformal transformation of S,, extends
to a global one, whereas S,=CP;=CU{«} admits local conformal transformations given by
holomorphic functions. Among the latter, only the fractional-linear functions, i.e., those given
by

z'=(az+b)/(cz+d), where a,b,c,deC and ad—bc#0 (1.1)

extend to all S,. Since the coefficients a, b, ¢, d can be made to satisfy ad—bc=1 without
changing the map (1.1), one has the exact sequence of group homomorphisms

1-Z,-SL(2,C) »S0y(3,1) -1, (1.2)

which exhibits Sping(3,1)=SL(2,C) as the simply connected double cover of the Mdbius
group of S,. The action of the group SL(2,C) on CU{ « } provides a realization of the Mobius
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group easier to handle than that of SO,(3,1) on S, CR>. Explicit formulas for the action can
be obtained by means of the stereographic projection §;,-CU{x} given, in terms of the
spherical coordinates (6,p), by z=2¢ cot 10, so that d6*+sin’ 6 d<p2= |dz|2/ (1+%|z|2)2.
The observation that the Lorentz group SO;(3,1) induces conformal transformations of the
“celestial sphere” S, contributed to correcting® some early misconceptions about the visibility
of the relativistic length contraction.'©

Vahlen,!! Ahlfors,12 and, under their influence, several other authors,!® noticed that the
fractional-linear expression of the Mébius transformations can be generalized to higher dimen-
sions by replacing the complex numbers a, b, ¢, d, and z by elements of a suitable Clifford
algebra. Those authors did not, however, emphasize the role of the null lines acted upon by the
conformal group.

In this article, we give a complete derivation of the fractional-linear form of the Mdbius
transformations by making use of the notions of Clifford algebras, Spin groups, and (projec-
tive) quadrics. Recall (see also Sec. III) that a complex, n-dimensional quadric Q, is a
manifold consisting of all null lines in the complex vector space C**2. The quadric Q, has a
natural conformal geometry, but no complex-bilinear Riemannian structure.!* The complex
orthogonal group SO(n+2,C) acts transitively on Q,, and preserves its conformal geometry.
The fractional-linear formula for this action is obtained from the homomorphism Spin(n
+2,C) -S0(n+2,C), by using the embedding Spin(n-+2,C) -Cl(n+2)=C(2) @ Cl(n),
where Cl(n) is the Clifford algebra of C" and C(2) is the algebra of complex 2 by 2 matrices.

Complex quadrics play a fundamental role in (complex) conformal geometry: they are the
holomorphic analogs of spheres.!® In particular, the quadric Q, is the conformally compacti-
fied, complexified Minkowski space of twistor theory.*!®

The article is organized as follows: in Sec. II we give the necessary prerequisites on Clifford
algebras!” supplemented by a formulation of Hodge duality in the spirit of Kihler.!® Section III
contains an exposition of the elements of the conformal geometry of complex quadrics; it
complements the results of Ref. 14. In Sec. IV we derive the exact sequences of homomor-
phisms connecting the conformal spin and orthogonal groups and extend the classical notion of
spin structure on a manifold to the conformal case. Section V contains our new derivation of
the fractional-linear form of the Mdbius transformation. An easy by-product of our research,
a description of the “conformal spin structure” on the complex quadrics, is given in Sec. VL. It
complements the work'* on proper spin structures on the real projective quadrics (S,XS,)/Z,.
A practical method for computing the exponential map from the Lie algebra of Spin(n,C) to
the group, based on Hermite-Sylvester interpolation, is given in Sec. VI.

ll. CLIFFORD ALGEBRAS AND HODGE DUALITY

(1) Let ¥ be an n-dimensional vector space over the field X of real or complex numbers.
Assume V to be given a scalar product, i.e., a X bilinear, symmetric, and nondegenerate map
&:VX VK. The Clifford algebra Cl(g) is an associative algebra over K with unit element 1; it
is generated by the elements of K& V'CCl(g) subject to all the relations resulting from

v-v=g(vv), veV. (2.1)

The product of elements of Cl(g), the Clifford product, is denoted by a dot, as in Eq. (2.1).
Most of the time, the dot is omitted; e.g., v v is usually written as v>. One shows that the
Clifford algebra Cl(g) exists and is unique up to isomorphisms of the algebras. There holds the
following universal property: if o is an algebra over K with unit element 1, and f:V— & is
a linear map with the Clifford property

fW)Y=gw)l,, veV (2.2)
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then there exists a homomorphism of algebras with units, F:Cl(g) — o/, extending f. The linear
map V—-Cl(g), v+ —u, has the Clifford property and extends to the involutive main auto-
morphism ag of Cl(g). It defines the Z,-grading

Cl(g) =Cly(g) ® Cly(g), (2.3)
where
Cl(g) ={aeCl(g):az(a) =(—1)%}, €=0,1. (2.4)

Elements of Cl,(g) [resp., Cl,(g)] are called even (resp., odd). The main autiautomorphism of
Cl(g) is the linear isomorphism 3,:Cl(g) —»Cl(g) characterized by

Be(1)=1, By(v)=v, and B,(ab)=P,(b)B,(a) (2.5)

for every ve ¥V and a, beCl(g). We write « and B instead of ag and B,, respectively, whenever
this cannot lead to ambiguities.

(2) Let W=V @ K? be given the scalar product 4 such that, if w=(v,4,u) € W, where ve ¥’
and A,u €Kk, then

h(w,w) =g(v,0) +Apu. (2.6)

Denoting by X(2) the algebra of 2 by 2 matrices with entries in K, one recognizes the tensor
product & =K(2) ® Cl(g) to be an algebra over K, consisting of all 2 by 2 matrices with
entries in Cl(g). The linear map

v A
W/ given by w=(v,/l,u)n—>(‘u —v) 2.7

has the Clifford property

v AV, 10
(u -v) = (w’w)(o 1) (2.8)
and extends to an isomorphism of algebras Cl(4) —K(2)  Cl(g). Moreover, if g, b, ¢, deCl(g)
then
a b a&'(a) ~'_a,g(b)
ah(c d)=(_ag(c) ag(d)) (2.9)
and
. 2 10
B"(C d)—(c" 5)’ (2.10)

where @=0,08,(a). The latter notation is motivated by the following observation: if K=R and

g is a negative-definite scalar product in V=R (resp., V=R?), then Cl(g) =C [resp., Cl(g)

=H, the algebra of quaternions] and & is the complex (resp., quaternion) conjugate of a.
(3) The Grassmann (exterior) algebra of multivectors

AV= o A*V, AV=K (2.11)
: k=0
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is Z graded: if ae A*V and be AV, thenaAbe A*+'V. The interior product of ae A Vby veV
is the multivector v 1 a characterized by the following properties: the map a—v J a is linear, if
ae A*V and be A V, then

vl (aAb)=(wda) Ab+(—1)*aA (v]b),

if ueV, then vdu=g(u,w). (2.12)

Consider the algebra & =End AV of all K-linear endomorphisms of the 2”-dimensional
vector space A V. Its unit element is the identity endomorphism id 5 ;. The map

Voo given by f(w)a=vAa+vda, (2.13)

where ve€V and a€ AV, is linear and has the Clifford property, f (v)2=g(v,u)id av- It extends
to an injective homomorphism F:Cl(g) — « of algebras with units and defines the isomorphism
of vector spaces

uCl(g) - AV, where i(a)=F(a)l (2.14)

is the result of the evaluation of the endomorphism F(a) on the unit 1 of the Grassmann
algebra. As . is natural, one can identify the vector spaces Cl(g) and AV and abuse the
notation by omitting to write ¢ altogether. Since F is a homomorphism extending f; one has
F(va)=f(v)F(a) and Eq. (2.13) gives

vca=vAa+vda (2.15)
for veV and aeCl(g)= AV.
Let a; denote the component of ae A V belonging to A*¥, so that a=ay is equivalent to

ac A*V. By a repeated application of Eq. (2.15) one obtains

<|k—I}, or
(ag b)) y=0 for m{=k—I+1mod2, or (2.16)
>n—|n—k—l|.

Since B(a;) = (—1)*=1/2q, one has

(@ b)) = (—1)HFWDGH=m gy (2.17)
It is worth noting that
(ak b ky1=arN\b; (2.18)
and
(aB(b))o=(a|b) (2.19)

is the scalar product of @ and be A V. If a=a, b=b,, and k £ I, then (a|b) =0 follows from
Eq. (2.16). If K=R and g is positive definite, then Eq. (2.19) defines a positive-definite
extension of g to A ¥ and, therefore, to CI(g). If g is not definite, then this extension is neutral,
i.e., AV contains totally null subspaces of the maximal dimension 2"~!.

J. Math. Phys., Vol. 34, No. 11, November 1993



I. Robinson and A. Trautman: Mdbius transformations 5395

(4) Let (e,), u=1,...,n be a frame (linear basis) in ¥, orthonormal with respect to g. We
choose the vectors of the frame as follows. Let 8.v=8(e,.e,), u,v=1,..,n. For K=C we take
8uv="0,, and for K=R and signature (p,q), we have 8uy=0forps~vandg, =1foru=1,..p
and g, = —1 for u=p+1,....p+g=n. The volume element

n=e, e, AV (2.20)
satisfies

, [(=D"=D72 for K=C

= 2.21
7 (—=1)e—D—e-D72" for signature (p,q). ( )
According to Kihler,'® the Hodge dual of ac AV is the multivector
*a=a]. (2.22)

If a=ay, then *a=(*a),_, and **a=1’a is given by Eq. (2.21), irrespective of the value of
k.

Th intiva 1) Y P G S, I
LetveVandac AV. The Cl aivive, \va jij=uviai, 101imiia

(2.15) yields

i~ 11143emlin
UL LG,

*(vAa)=v.dxa. (2.23)
Similarly
(a-*b)=%(a-b),_i (2.24)
and, in particular, if ¢ and b are of the same degree, then
(a|b)yn=a A*B(b). (2.25)
For every a, b, € AV one puts
2ab=1a, b] +{a, b}, where [a, b]=ab—ba. (2.26)

The bracket [,] (resp., {,}) makes Cl(g) into a Lie (resp., Jordan) algebra.
If k is even, then the product in A*V given by

(a,b) — (ab),, where abe A*V (2.27)

makes A*V into an algebra which is either commutative (when k=0 mod 4) or anticommu-
tative (when £=2 mod 4). In particular, for k=2, one has

ab=—(a|b)+ila, bl +aAb, where abe A’V (2.28)

and the commutator [a, 5] is a bivector, [a, b]=2(ab),. The bracket [,] makes A2V into the Lie
algebra of the group Spin(g). If n=2k=0 mod 4 and 5?=1, then there is the decomposition

ANV=N Ve AtV (2.29)
of k-vectors into self-dual and antiself-dual parts. Since, in this case, Eq. (2.24) gives (a- *b);

=x(ab), for a, be A*V, the product (2.27) induces in each of the subspaces A% ¥ and A¥ ¥
the structure of an algebra. In particular, for n=4 and k=2 one has
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*[a, b] =[a, *b] (2.30)

and Eq. (2.29) reduces to the well-known decomposition spin(4)=spin(3) @ spin(3). The
next lowest dimension, where there is a nontrivial product (2.27), is n=8. The commutative
algebras A* K® are each 35-dimensional.

Incidentally, Hodge duality is useful—though not essential—in proving the least obvious
(i.e., the third) implication among those appearing in Eq. (2.16). Clearly, if m> k-1, then
(a - b;),,=0. The elements a, * b; and *a, - *b, differ at most by a sign. Since *a; and *b; are
multivectors of degree n—k and n—1, respectively, the mth component of their Clifford prod-
uct vanishes for m>2n—k—1I; if k+ 1> n, then this inequality coincides with the last one in Eq.
(2.16).

lll. THE CONFORMAL GEOMETRY OF COMPLEX QUADRICS

(1) Let W be an (n+42)-dimensional complex vector space with a scalar product A. If
we W' =W\{0}, then

[w]={AweW:AeC} (3.1)

is the line through w. The line is said to be null, if w is a null vector, A(w,w) =0. The set of all
null lines, the guadric

O={[w]:weW’ and h(w,w)=0}, (3.2)

is a compact, complex, n-dimensional manifold.

By considering a null curve #:R— W’ and differentiating both sides of the equation
h(u(1),u(t))=0 with respect to ¢, one obtains the following description of the tangent bundle
of Q: for (w,u)e W’ X W let [(w, u)] be the equivalence class characterized by

[(w,w)]=[(w", u")],
iff there are A,ueC, A 50, such that w’' =Aw
and u'=Au+puw. (3.3)

The total space TQ of the tangent bundle is then

TO={[(w, ¥)]:[w]eQ and h(w,u)=0}. (3.4)

The scalar product 4 induces in Q a conformal geometry: the null cone at [w]eQ is the set

Ny ={[(w, u)1 €T ,;)Q:h(u,u) =0}. (3.5)

A simple topological argument'* shows that Q does not admit any complex-bilinear Rie-

mannian metric. It admits, however, a Hermitean (even Kihler) metric induced by a Her-
mitean positive form on W.

The special orthogonal group SO(%) ={4€GL(W):det A=1 and h(Aw,4w) =h(w,w) for
every we W}, considered as a group of transformations of Q, is called the Mobius group. If
w0 is a null vector and 4e€SO(4), then 4[w]=[Aw]. The action of the Mébius group on Q
is transitive and preserves the distribution of null cones: if [(w, u)]eNp,;, then A{(w, u)]
=[(4w, Au)]€Ny,,;. In other words, the Mobius group consists of conformal transformations
of 0 ?;ld’ in fact, it is the connected component of the group of all conformal automorphisms
of Q.

(2) Assume now W and A to be as in Sec. II(2) with K=C and dim V=n>1. If
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VW' is given by i(v)=(v,—g(v,v),1) (3.6)
then the map
j:V-0, where j(w)=L[i(v)] (3.7)

is injective, the image j(¥) is open and dense in @, and the complement of the image is the
compact (#—1)-dimensional “null cone at infinity” consisting of all elements of Q of the form
[(v, A, 0)] where v is null, g(v,v) =0.

For every veV the linear map

JoV=i()t,  j(u)=(u,—2g(u,0),0) (3.8)
of V into the subspace i(v)* of W, orthogonal to the vector i(v), is an (injective but not
surjective) isometry

h(jo(u),j,(u))=g(u,u)ueV. (3.9)

Using the identification TV =¥ X ¥, one finds the map j,:T'V— T'Q, tangent to j, given by Eq.
(3.7), to be such that

J*(v!u)’__[(’(l’): ]v(“))] (3.10)

By virtue of Eq. (3.9) the map j is conformal: if u€ ¥ is null, then j, (v,u) € N;(,y;. Since Vis
conformally flat, so is Q.

(3) The action of the Mdbius group on Q induces local conformal transformations of ¥,
defined as follows. For every ve ¥ and 4€SO(4) one has

Aj()=[4i(v)], where j(v)=I[i(v)]. (3.11)

In general, 4/ (v) does not belong to j(¥). Let
V(d)={veVAdj@)ej(M}. (3.12)

The set ¥ (4) is open and dense in V. The map
A:V(A4) >V (4~Y), defined by j(Av)=Aj(v), veV(d) (3.13)

is a composition of conformal transformations; therefore, it is a conformal diffeomorphism of
V(4) onto ¥V (A~!). We refer to A as the local Mébius transformation of V, defined by the
global Mdbius transformation A4 of Q.

(4) From now on, throughout the article, we assume K=C and use a notation emphasiz-
ing the dimension of the underlying complex vector space V. Thus Cl(#n) is the Clifford algebra
of ¥=C" with the standard scalar product and GL(n) [resp. O(n)] denotes the complex
general linear (resp., orthogonal) group. A similar notation will apply to the quadrics and spin
groups; it is at variance with the traditional notation, used in the Introduction, where the letter
C appears explicitly in the context of complex orthogonal and spin groups.

IV. CPIN GROUPS AND STRUCTURES

(1) Consider the space V=C" with its standard scalar product g. The complex conformal
group CO(n) is the set of all AeGL(n) for which there is A(4)eGL(1)=C’ such that

g(4v,Av) =A(A4)g(v,v), for every veV. 4.1)
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If AcO(n) and peC’, then u4eCO(n) and there is the exact sequence of group homomor-
phisms

1-Z,-C"'X0(n)-CO(n)—1. (4.2)

Noting that I=id can always be connected to —I by a curve in CO(n) and that —IeSO(n)
if, and only if, n is even, one sees that

(i) for n=2m+1 odd, the group CO(2m-+1) is connected and isomorphic to
C'XS0O(2m+1), and

(i) for n=2m even, there is the exact sequence

1-2Z,—C’' XSO(2m) - COy(2m) -1, (4.3)

where COy(2m) is the connected component of CO(2m).

(2) Since, for every ve ¥CCl(n), one has g(v,v) =v* (the Clifford square), from now on
we always write v* instead of g(v,v). The Clifford group,? or the conformal spin group, asso-
ciated with V, is the set Cpin(n) of products of all finite sequences of non-null vectors,
Cpin(n) ={u; - ueCl(n):ucV, u? #0 for i=1,...,k and k=1,2,...,}, with a multiplication
induced by the Clifford product. If se Cpin(n), then ss=3seC’; recall [Sec. I1(2)] that the map
s—5=aoB(s) is C linear and u;* - upuy - uy = ( — l)ku%---ui. If ueV is non-null, then the
map v+ —uvu~'(veV) is a reflection in the hyperplane orthogonal to u. For every
seCpin(n), define

p(s):¥V=-V by p(s)v=s§ (44)

so that p(s) is linear and (p(s)v)*= (5)%7 i.e., p(s)€CO(n) with Ap(s))=(5)2

By the Cartan-Dieudonné Theorem,?! the homomorphism p:Cpin(n) - CO(n) is surjec-
tive. To compute its kernel, note that p(s)v=v for every ve ¥ implies 5s= + 1 so that either
sv=uvs or sv= —us. The volume element 7 commutes (resp., anticommutes) with all vectors for
n odd (resp., even). Since the volume element (2.20) is normalized so that B(n)n =1, one has
p(n)=—Iand obtains ker p = { + 1, & \/?1- 1}. Therefore, the kernel is isomorphic to Z,
for n=0 or 1 mod 4 and Z,XZ, for n=2 or 3 mod 4.

For every n, the group Cpin(#) is the disjoint union of two nonempty subsets

Cpin (n) =Cpin(n)NCl(n), €=0 and I, (4.5)

which are both open and closed in Cpin(#n): the group is not connected and Cping(n) is the
connected component containing 1. The latter group gives rise to the exact sequences

15Z,—Cping(2m+1) 5 CO(2m+1) =CO(2m+1) -1, (4.6)
12— Cping(4m) 5 COo(4m) - 1, @7
122y X Zy~ Cpin(4m+2) 5 CO(4m+2) - 1. (4.8)

(3) One defines
Pin(n) ={seCpin(n):8(s)s=1} (4.9)

and, by restricting p to Pin(n), obtains the exact sequence

1-Z,-Pin(n) 20(n) =1, (4.10)
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where now p(s)v=svs=sva(s~") and ker Plpin(my = { £ 1} = Z,. Similarly, the connected
component of Pin(n)

Spin(n) =Pin(n) NCly(n) (4.11)

gives rise to the exact sequence

12, Spin(n) 5>SO(n) - 1. (4.12)

It is well-known that Spin(2) =GL(1), Spin(3)=SL(2), Spin(4)=SL(2) XSL(2), Spin(5)
=Sp(4), and Spin(6) =SL(4).
There are also the obvious exact sequences

1-Z,-C’ XPin(n) —»Cpin(n) -1 (4.13)
and
1-Z,-»C’' XSpin(n) - Cping(n) - 1. (4.14)
(4) Let T and T be one of the groups
CO(n),COy(n),0(n),S0(n)
and
Cpin(n),Cping(n),Pin(n),Spin(n),
respectively, so that, in every case, there is the epimorphism
pT T, p(s)v=sv5, where seI' and veV. (4.15)

Let 7:P—X be a I'-structure on a complex, n-dimensional manifold X. In other words, P is a
restriction of the bundle of complex linear frames of X to the subgroup I' of GL(n). For
example, a conformal geometry on X is equivalent to a CO(n)-structure on X. Recall that a
frame pe P at x€ X is a linear isomorphism p:¥V— T ,X; if A€T’, then the composition po4eP is
another frame at x. A F-structure on X is a prolongation of the I'-bundle P-X to T, ie., a
principal T-bundle 1TP—»X such that there is a surjective map aP—»P, F=mwoc and a(pa)
=o(p)p(a) for every peP and aeT. This notion generalizes the classical one of the spin
structure. If f=Cpin(n) or Cping(n), then one uses the expression “conformal spin struc-
ture.”

(5) Let X be a manifold with a I'-structure 7:P—X and consider a connected Lie group
G, acting transitively on X, and preserving this structure. Let HC G be the isotropy {stability)
group of a point x€X, so that X=G/H, and let

TH-Z (4.16)

be the linear isotropy representation of H, determined by the tangent action of H in T, X: given
a fixed frame p at x, one puts

7(¢t)=p~'ot,0p, (4.17)
where ¢, is the map tangent to the map #.X - X, te H. The set GX,I" of equivalence classes of
the form [(s, 4)],, where (5,4)eGXT, and
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[(s,4)],=[(s",4")], iff there is teH such that s'=st and A=7(1)4’,
(4.18)

can be identified with P: one sends [(s, 4)], to the frame 5,°P°A and checks that this is a
well-defined map, equivariant with respect to the action of T".
A homomorphism

FH-T (4.19)
is said to be a lift of 7 to T if poF=r. Given such a lift, one constructs the set
P=GxT, (4.20)

makes it into a manifold, defines o:P— P by o([(s, @)1 =[(s, p(a))],, and the action of " in P
by [(s,a)lsp=[(s,ab)];, where s€G and a, bel. Clearly, the principal I'-bundle 7
=mog:P—X is a T -structure on X. Conversely, an argument given in Ref. 14 shows that, if G
is simply connected, then every I'-structure on X can be obtained in this manner.

V. THE FRACTIONAL-LINEAR FORM OF LOCAL MOBIUS TRANSFORMATIONS

(1) Consider the complex quadric Q, consisting of all null lines in the (74 2)-dimensional
vector space W=V & C?, with the scalar product A, cf. Secs. II(2) and III(1). The homomor-
phism

p:Spin(n+2) -S0(n+2), p(s)w=sws™!, (5.1)

where seSpin(n+2) and w= (v,A,u) € ¥, defines a transitive action of Spin(n+2) on Q,: the
map

Q.3 [w] — p(s) [w]=[sws"!1€Q, (5.2)

is the Mdbius transformation and, since p is surjective, all Mobius transformations of Q,, can
be so represented.

(2) According to Sec. II(2), there is the isomorphism of algebras with units, Cl(n+2)
=C(2) ® C1(n), resulting from the map (2.7). If w=i(v) is the null vector given by Eq. (3.6),

then its image in C(2) @ Cl(#n) is
vow v _
(1 5)=(1)(1’v)' (5.3)

a b
§== (c d) (5.4)

of Cl(n+-2) belongs to Spin(n+2) if, and only if, the following conditions are satisfied:
(i) sis even; according to Eq. (2.9) this is equivalent to

An element

as elements of Cl(n), a and d are even and b and ¢ are odd, (5.5)

(ii) By(s)s=1; according to Eq. (2.10) this is equivalent to

(Z g) (Z Z)=(é (1)); (5.6)
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(ifi) for every we W there is w’€ W such that
sws™l=w’, (5.7)

The normalization condition (5.6) can be written as

da+be=1 (5.8)
and
db+bd=ca+ac=0, (5.9)
whereas Eq. (5.7) is equivalent to
a@bb,cc,ddeC, bdateV, (5.10)
avbh—bva,cvd—dveeC and avd—bvceV (5.11)

for every ve ¥'=C". It is clear that the relations (5.8)—(5.11) are also satisfied when
a, b, ¢, and d are replaced by d b ¢ and a, (5.12)

respectively.

__(3) Referring to Sec. III(3), we can now determine the local Mdbius transformation
p(s), seSpin(n+2). We take ve F{p(s)), so that [sz(v)s“l] [i(v")]ej(¥V), replace w and w’
in Eq. (5.7) by i(v) and ui(v’), respectively, and, by virtue of Eq. (5.3), obtain

av+4 - v’ o
(cv+d) (Cv+d,av+b) =#( 1 )(I,U ). (5.13)

Since i(v) 5~ 0 implies u 5= 0, we see that (cv+d)/u is the inverse of cv+d and the Jfractional-
linear formula for the local Mébius transformation p(s)

v’ =p(s)v=(av+b) (cv+d) " (5.14)
holds for every
ve V(p(s))={veV:icv+d is invertible}. (5.15)

To describe explicitly the domain ¥(p(s)) of the definition of the local Mé&bius transfor-
mation (5.14) we note that, by virtue of Egs. (5.10) and (5.12), the element de is a vector and

(cv+d) (cv+d) =dd+2g(de,v) —cer*eC (5.16)

holds for every ve V. There are three cases to consider:

(i) In the generic case ¢c = 0 and F(p(s)) equals ¥ with the null cone of vertex at de/cc
removed.

(ii) If cc=0 and dc 5~ O, then the vector dc is null and V(p(s)) consists of ¥ minus the
null hyperplane of the equation 2g(de,v) +dd=0.

(iii) If éc=0 and dc=0, then c=0, dd 0 and V(p(s))="V. In this case s equals

a au
(o 5_1), where aeCping(n), ueV (5.17)
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and p?:) is a global affine transformation of ¥, consisting of a translation by u, followed by a
composition of a rotation and a dilation.

Vi. THE CONFORMAL SPIN STRUCTURE ON A COMPLEX QUADRIC

The group G=Spin(n+2) is simply connected for n>1 and acts transitively on the com-
plex quadric X=Q,,. We can, therefore, use the method outlined in Sec. IV(5) to determine
the conformal spin structure on the quadric.

(1) The isotropy group H of the “point at infinity” [w_], where w_=(0,1,0)e W is

H={teGw t '=Aw_, AeC'}. (6.1)

Using Eqs. (5.4) in (6.1) and taking Eqgs. (5.8)—(5.11) into account, one obtains
a=d~'eCping(n) and A=ag, 6.2)
b=au, where ueV=C" and c=0 (6.3)

so that every element of H is of the form (5.17), i.e.,

a 0 1 u
t=(o 5—‘) (o 1) (64)

and H is isomorphic to the semidirect product of groups, H=C"X Cpingy(n).

According to the Cartan-Diendonné Theorem, the first factor in Eq. (6.4) is the product
of an even sequence of no more than n non-null elements of V. If u is non-null, then the second
factor can be written as a product of two vectors

1 u u 0 u/u? 1
(O 1)=(0 —u) ( 0 —u/uz)'

If u=£0 is null, then four vectors are necessary.

A T T N

(2) The liner isotropy representation (4.16) is obtained as follows. Consider the frame
(linear isomorphism)

pV-Tp, 1@ given by p(v)=[(w,, (0,0))]. (6.5)
According to the definition (4.17)
T(Dv=p~lot,op(v) =p~[(tw 7", 1(v,0,0)t~1)].
If z is given by Eq. (6.4), then twwt"1=/1ww , where A=aa, and
t(v,O,O)t“l=(ava_1,—2/1g(u,v),0)= (ava=1,0,0)mod w,, .
Therefore

r(t)v=A"lava=! and ==COy(n). (6.6)
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The lift of 7 to S=Cpiny(n) given by
T(t)=A"la, where teH and A=aa (6.7)

is unique because H is connected. Therefore, for every n> 1, the quadric Q, has a unique
conformal spin structure. This is in contrast with the result? on the proper spin structure
associated with the Kihler metric on Q,,: the latter structure exists only for n=1 or n even.

(3) In Riemannian geometry, if G is a group of isometries acting on a manifold transi-
tively and effectively, then the linear isotropy representation 7:H—O(n) is injective and G is the
total space of a restriction of the bundle of linear frames to H." In our case the situation is
rather different: there is a nontrivial kernel N=ker rCH; its connected component is N,
=ker F=C" and H/Ny=Cpiny(n). The bundle G/Ny=Spin(n+2)/C"-Q, is isomorphic
to the Cpiny(n)-bundle P—Q, defining the conformal spin structure and P=G/N.

VIl. HERMITE INTERPOLATION AND THE EXPONENTIAL MAP
The well-known formula

exp vo=cosh A+ A~ !vo sinh 4, (7.1)

where A is a square root of v2, veC?, and the sigmas are Pauli matrices, provides a convenient
parametrization of the group Spin(3)=SL(2). In this section, we present a method for gen-
eralizing (7.1) to arbitrary Spin groups.

(1) Let o be a complex, N-dimensional, associative algebra with unit element. As such,
it has a natural topology and a faithful and continuous representation ¥ in the algebra C(n) of
complex, n by n matrices, where n<N. An entire analytic function f:C—C extends, in an
obvious manner, to a function f:C(n)—C(n). Since y() is a closed subspace of C(n), for
every a€ o, the element f(y(a))eC(n) belongs to y(«) and defines an element of & To put
it shortly, every entire analytic function f:C—C, such as a polynomial or exp, extends to a map
f:of = o . For every ac o the set {1,a,...,a"} is linearly dependent: there thus exists a poly-
nomial p of degree M, where 1<M <N, such that p(a) =0. Therefore, every positive power of
a can be represented as a linear combination of the elements La,...a¥ L If fis entire, then
there are complex numbers @q, @;,....,¢y—; such that

fl@)=@o+@a+-+@p_ a1l (7.2)

(2) A method for computing the coefficients appearing in Eq. (7.2) is based on Hermite
(or Lagrange—Sylvester) im‘erpolation.23 Recall that, given a sequence (z,...,Z,,) of m distinct
complex numbers, one associates with a complex function f the Lagrange interpolation poly-
nomial

;1 f(zdp(2)/pi(z;),

where p,(z)=p(2)/(z—z;) and p(z)=(z—2z) - (z2—2z,,).
The Taylor polynomial of degree / at O

1
fiz)= kZ F®0)z*/k! (7.3)
=0

gives an approximation of differential order / to a function f smooth in a neighborhood of O.
Hermite and Sylvester found a generalization of these two approximation methods.
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(3) Let (z4,...,2,,) and (Iq,...,/,,) be sequences of distinct complex numbers and of non-
negative integers, respectively. Such a pair of sequences defines, and is defined by, the normal-
ized polynomial

p(2)=(2—2))"1+" - (z—2,,) ] (7.4)
of degree M=I,+++-+1,,4+m. Put
pi2)=p(2)/(z—2)"*! (7.5)
so that p,(z;) 5= 0 and, if { = j, then
2%(z)=0 for I=1,..,]; and ij=1,.,m. (7.6)
The function ¢, (k=1,...,l;,i=I,...,m), defined by
Pi2)gu(2) = (z—z)* (1.7)

is rational and has a zero of order k& at z;, but is not a polynomial unless m=1. If this function
is replaced on the left side of Eq. (7.7) by its Taylor polynomial s; of degree /; at z;

U
sie(z) = Zk 4% (z) (z—z)"/ (7.8)
r=
then the resulting function
hi(2) =p(2)sy(2) (7.9)

is a polynomial of degree <M. Note that the polynomials hi,’, (i = 1,...,m) are of degree M —1.
Using Eq. (7.6) and the formula

hi(2) = (z2—2)* 4+ p(2) (s (2) — qun(2)) (7.10)

and noting that s;; —g,; has a zero of order /;+1 at z;, one obtains

hP(2;)=K6;8y for k=1,..1;, I=1,.,1;, and ij=1,.,m. (7.11)

Therefore, if fis smooth, then its Hermite interpolation polynomial associated with p

m
fory=2 X fP)hu(z)/k (7.12)
i=1 k=0
is of degree <M and

FO(z)=FPB(z), for k=1,..,I;, and i=1,..,m. (7.13)

The hat map is idempotent. If fis a polynomial, then F=0is equivalent to fbeing divisible
by p. If fis an entire function, then f(z)=lim,,, f)(z) for every zeC, where f; is the
polynomial (7.3). The difference f;,— f;is a polynomial divisible by p. Therefore, if ac & and
p are as in Sec. VI(1), then

fl@)=Ffya) for I=0,1,.., and f(a)=lim fi(a)=Ff(a).

-
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These observations can be summarized in

Proposition: Let f be an entire analytic function and let =/ be a complex, finite-dimensional,
associative algebra with unit element. If ae o and p(a) =0, where p is a (normalized) poly-
nomial of positive degree, then

fla)=F(a), (7.14)

where f' is the Hermite interpolation polynomial of £, associated with p.

It is convenient, but not necessary, to take for p the minimal polynomial of g, i.e., the
normalized polynomial of lowest positive degree such that p(a)=0.

(4) Let o be the even Clifford algebra Cl,(n) associated with ¥'=C". The vector space of
bivectors, A2V C «, is the underlying space of the Lie algebra of the group Spin(n) C «/. The
map exp: — &, restricted to A2V, has values in the group Spin(n) and coincides with the
exponential map in the sense of the theory of Lie groups. The above Proposition can be used
to compute it explicitly.

According to Eq. (2.28), if a is a bivector, then its Clifford square is a*=—(a |a)+aAa.
Therefore, there exists a polynomial P of degree not larger than

dime A*V=2""24+1Re(14 {—1)" (7.15)
k

and such that p(a) =P(a*) =0. Putting A*= — (a|a) and u*=(aAa)}, one obtains
p(z)=22—A? for n<3

and

p(2)=(22—=A1)2—pu*, for n=4 and 5.

Formula (7.1) is obtained from Eqgs. (7.12) and (7.14) by putting a=vo and f=exp.

If the bivector a is nilpotent, i.e., if @ =0 for a positive integer M, then exp a=1+a/1!
4o ta¥ 4 (M-DLIf a*=0, then a is a null bivector: it is decomposable, its scalar square
vanishes, and s=exp a=14a. The “null rotation” (Ref. 24) p(s) of a vector v is easily
obtained from Eq. (2.15)

p(v=(1+a)v(1—a)=v—2va+2(va)a. (7.16)
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