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A new derivation is given of the Vahlen (1902) form of the local conformal 
transformations of C”, u w (av+b) (cv+d) -I, where ~4” and a, 6, c, d are 
suitable elements of the complex Clifford algebra Cl(n) . The derivation is based 
on the homomorphism of groups Spin( n i-2) +SO( n + 2), the isomorphism of 
algebras Cl(n+2)~C(2)eCl(n), and the action of the Mobius group 
SO (n + 2) on the quadric Q, , the conformal compactification of C”. It is shown 
how the conformal geometry of Q, lifts, for every n= 1,2,..., to a unique 
conformal spin structure. The Hermite-Sylvester interpolation method is used 
to represent the map exp: spin(n) -~Spin( n) in such a manner that exp a 
becomes a Clifford polynomial in aE A ‘C”. 

I. INTRODUCTION 

In 19 10 Cunningham and Bateman’ observed that Maxwell’s equations without sources are 
invariant with respect to conformal transformations of Minlcowslci space. Somewhat later, 
Bessel-Hagen derived the corresponding conservation laws. Ever since that time, invariance 
with respect to the conformal group-exact for particles of zero mass and approximate, in the 
limit of high energies,3 otherwise-has attracted the attention of physicists. It has given rise to 
a wealth of new ideas and developments, especially in connection with twistors,4 strings,5 and 
two-dimensional conformal field theory.6 

In geometry, the conformal group appeared already around 1850 in the work of Liouville’ 
and Mobius.’ In modern terminology and notation, their results can be summarized as follows: 
every global conformal transformation of the n-sphere S, is induced by the action of an element 
of the group 0 (n + 1,l) on null lines in the vector space R n+2 endowed with the quadratic form 
3+ * - * +x2+ r -2+P Global conformal transformations of S, form a Lie group; its connected 
component is the Miibius group. For n > 2 every local conformal transformation of S, extends 
to a global one, whereas S2 = CT1 z C U { oz 3 admits local conformal transformations given by 
holomorphic functions. Among the latter, only the fractional-linear functions, i.e., those given 
by 

z’= (uz+b)/(cz+d), where a,b,c,deC! and ad-bc#O (1.1) 

extend to all S2. Since the coefficients a, 6, c, d can be made to satisfy ad - bc= 1 without 
changing the map ( 1.1) , one has the exact sequence of group homomorphisms 

1-&+sL(2,c) +SOe(3,1) + 1, (1.2) 

which exhibits Spin& 3,l) =SL( 2,C) as the simply connected double cover of the Mobius 
group of S2. The action of the group SL( 2,C) on C U ( 03 3 provides a realization of the Mobius 

L)Pe-ent address: Programs in Mathematics, University of Texas at Dallas, Richardson, Texas 75083-0688, USA. 
b)Permanent address: Instytut Fiyki Teoretyculej, Uniwersytet Warszawski, Hoia 69, Warszawa 00-681, Poland; 

Gnail:amt@fuw.edu.p1. 

J. Math. Phys. 34 (1 I), November 1993 
0022-2488/93/34(11)/5391/16/$6.00 
@  1993 American Institute of Physics 5391 



5392 I. Robinson and A. Trautman: Mobius transformations 

group easier to handle than that of SOc( 3,l) on S2CR3. Explicit formulas for the action can 
be obtained by means of the stereographic projection S2+CU{ 03 3 given, in terms of the 
spherical coordinates ( 0,~) , by z= 2e@ cot f0, so that d& + sin2 8 dq2 = 1 dz 1 2/( 1 + f 1 z 1’) 2. 
The observation that the Lorentz group SOe(3,l) induces conformal transformations of the 
“celestial sphere” S2 contributed to correcting’ some early m isconceptions about the visibility 
of the relativistic length contraction. lo 

Vahlen, ’ ’ Ahlfors, I2 and, under their intluence, several other authors,t3 noticed that the 
fractional-linear expression of the Mobius transformations can be generalized to higher dimen- 
sions by replacing the complex numbers a, b, c, d, and z by elements of a suitable Clifford 
algebra. Those authors did not, however, emphasize the role of the null lines acted upon by the 
conformal group. 

In this article, we give a complete derivation of the fractional-linear form of the Mobius 
transformations by making use of the notions of Clifford algebras, Spin groups, and (projec- 
tive) quad&s. Recall (see also Sec. III) that a complex, n-dimensional quadric Q, is a 
manifold consisting of all null lines in the complex vector space Cn+2. The quad& Q, has a 
natural conformal geometry, but no complex-bilinear Riemannian structure.‘4 The complex 
orthogonal group SO( n + 2,C) acts transitively on Q, and preserves its conformal geometry. 
The fractional-linear formula for this action is obtained from the homomorphism Spin(n 
+2,C)+SO(n+2,C), by using the embedding Spin(n+2,C)+CI(n+2)a:C(2)8CI(n), 
where Cl(n) is the Clifford algebra of C!” and C( 2) is the algebra of complex 2 by 2 matrices. 

Complex quadrics play a fundamental role in (complex) conformal geometry: they are the 
holomorphic analogs of spheres.15 In particular, the quadric Q4 is the conformally compacti- 
fied, complexified M inkowski space of twistor theory.‘*16 

The article is organized as follows: in Sec. II we give the necessary prerequisites on Clifford 
algebras” supplemented by a formulation of Hodge duality in the spirit of Kahler.‘* Section III 
contains an exposition of the elements of the conformal geometry of complex quadrics; it 
complements the results of Ref. 14. In Sec. IV we derive the exact sequences of homomor- 
phisms connecting the conformal spin and orthogonal groups and extend the classical notion of 
spin structure on a manifold to the conformal case. Section V contains our new derivation of 
the fractional-linear form of the Mobius transformation. An easy by-product of our research, 
a description of the “conformal spin structure” on the complex quad&s, is given in Sec. VI. It 
complements the workI on proper spin structures on the real projective quadrics (E&X S&/Z,. 
A practical method for computing the exponential map from the Lie algebra of Spin(n,C) to 
the group, based on Hermite-Sylvester interpolation, is given in Sec. VI. 

II. CLIFFORD ALGEBRAS AND HODGE DUALITY 

( 1) Let V be an n-dimensional vector space over the field K of real or complex numbers. 
Assume V to be given a scalar product, i.e., a K bilinear, symmetric, and nondegenerate map 
g:Vx V+K. The Clifird algebra Cl(g) is an associative algebra over K with unit element 1; it 
is generated by the elements of K $ VC Cl(g) subject to all the relations resulting from 

u * u=g(u,u), UE Y. (2.1) 

The product of elements of Cl(g), the CI&%rd product, is denoted by a dot, as in Eq. (2.1). 
Most of the time, the dot is omitted; e.g., u * u is usually written as u2. One shows that the 
Clifford algebra Cl(g) exists and is unique up to isomorphisms of the algebras. There holds the 
following uniuersul property: if & is an algebra over K with unit element l& and f:V-+& is 
a linear map with the Clifford property 

fW2=gW> l.d, UC v (2.2) 
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then there exists a homomorphism of algebras with units, F:Cl(g) + ,pP, extendingf: The linear 
map V+CI(g), u I--+ -0, has the Clifford property and extends to the involutive main auto- 
morphirm as of cl(g). It defines the Z,-grading 

Wg) =cbk) @~,k), (2.3) 

where 

cl,(g) =(aEcl(g):aJu) = (- I)%), e=O,l. (2.4) 

Elements of CIe(g) [resp., Cl,(g)] are called even (resp., odd). The main uutiuutomorphism of 
CI(g) is the linear isomorphism &:CI(g) -+ Cl(g) characterized by 

S,C 1) = 1, &(u) =u, and BJab) =Bg(b)Pg,(a) (2.5) 

for every UE Y and u, kCl(g). We write a and fi instead of as and &, respectively, whenever 
this cannot lead to ambiguities. 

(2) Let W= Ye K2 be given the scalar product h such that, if w = (u,A.,~) E IV, where UE V 
and A,,u&, then 

h(w,w) =g(w> +Ap. (2.6) 

Denoting by K(2) the algebra of 2 by 2 matrices with entries in K, one recognizes the tensor 
product &=K( 2) 8 cl(g) to be an algebra over K, consisting of all 2 by 2 matrices with 
entries in Cl(g) . The linear map 

W-d given by w=(v&)H 

has the Clifford property 

(; ~~)“=h(w,w)(~ ;) 

(2.7) 

(2.8) 

and extends to an isomorphism of algebras CI (h > + K( 2) Q Cl(g) . Moreover, if a, b, c, de Cl(g) 
then 

ah 
--a,(b) 

as(d) 

and 

flh(; ;)=c 49 

(2.9) 

(2.10) 

where z= a,o&( a). The latter notation is motivated by the following observation: if K= R and 
g is a negativedefinite scalar product in V=R (resp., V=R2), then CI(g)=C [resp., cl(g) 
=H, the algebra of quatemions] and z is the complex (resp., quatemion) conjugate of u. 

( 3 ) The Grassmann (exterior) algebra of multivectors 

AV= ; AkV, A’V=K 
k=O 

(2.11) 
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isZgraded:ifu~AkVandb~AAV,thenuAb~A . ki’V The interiorproduct of ue A V by VE V 
is the multivector v J a characterized by the following properties: the map ~I-W _I a is linear, if 
uEAkVand be AV, then 

VJ (uAb)=(z4u)Ab+(-l)kuA(UJb), 

if UCV, then VA u=g(u,u). (2.12) 

Consider the algebra & = End A V of all K-linear endomorphisms of the 2*-dimensional 
vector space A V. Its unit element is the identity endomorphism id,, y. The map 

f:V+d given by f (v)u=vAu+u -I a, (2.13) 

where UE V and UE A V, is linear and has the Clifford property, f(v)2=g(v,v)id,, y. It extends 
to an injective homomorphism F:C!l(g) + & of algebras with units and defines the isomorphism 
of vector spaces 

A!l(g) -) A V, where L(U) =F(u) 1 (2.14) 

is the result of the evaluation of the endomorphism F(u) on the unit 1 of the Grassmann 
algebra. As L is natural, one can identify the vector spaces Cl(g) and A V and abuse the 
notation by omitting to write L altogether. Since F is a homomorphism extending $ one has 
F(vu)=f(v)F(u) and Eq. (2.13) gives 

v*a=vAu+v -I a (2.15) 

for VE V and aECl(g) G  A V. 
Let uk denote the component of a E A V belonging to A k V, 

as A kV. By a repeated application of Eq. (2.15) one obtains 
so that a = ak is equivalent to 

I < Ik-Zl, or 
(ak-bl),=O for m =k--I+1 mod 2, or 

>n- In-k-Zl. 

SiIlCe fl(uk) = (- l)k’k-1)‘2uk one has 

It is worth noting that 

(ak bbk+i=UkAbl 

(2.16) 

(2.17) 

(2.18) 

(uHb>)o= (al b) (2.19) 

is the scalar product of a and bE A V. If a=+, b=bl, and k # I, then (al b) =0 follows from 
EQ. (2.16). If K=R and g is positive definite, then Eq. (2.19) defines a positive-de&rite 
extension of g to A V and, therefore, to Cl(g). If g is not definite, then this extension is neutral, 
i.e., A V contains totally null subspaces of the maximal dimension 2=-l. 
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(4) Let (e,), p= l,...,n be a frame (linear basis) in V, orthonormal with respect to g. We 
choose the vectors of the frame as follows. Let g,,=g(e,,e,), P,Y= l,...,n. For K=C we take 
g,,= &, and for K = R and signature (p,q), we have g,,=O for p # Y and g,= 1 for CL= l,...,p 
and q,,, = - 1 for p=p+ l,...,p+q=n. The volume element 

rl=el *--e,,E A”V (2.20) 

satisfies 

I 

( - l)n(n-1)‘2, for K=C 
+ ( - 1 )(p-q)(P-q-*)‘2, for signature (p,q). 

According to Kiihler,i* the Hodge dual of aE A V is the multivector 

(2.21) 

*u=q. (2.22) 

If a=ak, then *a= (*a)n-k and **u=q2u iS given by Eq. (2.21), i tTeSpe&iVe of the VdUe of 
k. 

Let UE V and u E A V. The Clifford multiplication being associative, ( va ) q = u ( UT), formula 
(2.15) yields 

*(uAa)=vJ*u. (2.23) 

Similarly 

(a - $!b)k=*(a*b)+k (2.24) 

and, in particular, if a and b are of the same degree, then 

(alb)q=uA*fl(b). (2.25) 

For every a, 6, E A V one puts 

2ub= [a, b] +{a, b), where [a, b] =ab-bu. 

The bracket [,I (resp., {,}> makes cl(g) into a Lie (resp., Jordan) algebra. 
If k is even, then the product in A kV given by 

(2.26) 

(a&) I--+ tub),, where u,be A kV (2.27) 

makes A kV into an algebra which is either commutative (when ks0 mod 4) or anticommu- 
tative (when ks 2 mod 4). In particular, for k= 2, one has 

ab=-(uIb)+f[u,b]+aAb, where a,beA2V (2.28) 

and the commutator [a, b] is a bivector, [a, b] = 2 (ub) 2. The bracket [,] makes A 2 V into the Lie 
algebra of the group Spin(g). If n = 2k=O mod 4 and q*= 1, then there is the decomposition 

AkV=Ak,V@ Ak_V (2.29) 

of k-vectors into self-dual and antiself-dual parts. Since, in this case, Eq. (2.24) gives (a * *b) k 
=*(ub)kforu,bEAkV,theproduct (2.27) inducesineachofthesubspaces A$Vand Ak_V 
the structure of an algebra. In particular, for n =4 and k=2 one has 
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*[a, b] = [a, *b] (2.30) 

and Eq. (2.29) reduces to the well-known decomposition spin(4)=spin(3) @spin(3). The 
next lowest dimension, where there is a nontrivial product (2.27), is n=8. The commutative 
algebras ALK8 are each 35-dimensional. 

Incidentally, Hodge duality is useful-though not essential-in proving the least obvious 
(i.e., the third) implication among those appearing in Eq. (2.16). Clearly, if m  > k+Z, then 
( ak * bl) ,,, = 0. The elements ak. bl and *ak - *bl differ at most by a sign. Since *ak and *bl are 
multivectors of degree n-k and n - 1, respectively, the m th component of their Clifford prod- 
uct vanishes for m  > 2n -k-I; if k + I> n, then this inequality coincides with the last one in Eq. 
(2.16). 

III. THE CONFORMAL GEOMETRY OF COMPLEX QUADRICS 
( 1) Let W  be an (n + 2)dimensional complex vector space with a scalar product h. If 

WE W ’= W\{O), then 

[w] ={Awe WAEC} (3.1) 

is the Zinc through w. The line is said to be null, if w is a null vector, h (w,w) =O. The set of all 
null lines, the quadric 

Q=i-[W]:WE W ’ and h(w,w)=O), (3.2) 

is a compact, complex, n-dimensional manifold. 
By considering a null curve u:R+ W ’ and differentiating both sides of the equation 

h(u (t),u (t)) =0 with respect to t, one obtains the following description of the tangent bundle 
of Q: for (w,u) E W ’ X W  let [(w, u)] be the equivalence class characterized by 

[(w, u>l=[(w’, u’)l, 

itf there are ;l,@Z., 2 # 0, such that w’=jlw 

and u’=k+~w. (3.3) 

The total space TQ of the tangent bundle is then 

TQ={[ (w, u)]:[w] EQ and h(w,u) =O). (3.4) 

The scalar product h induces in Q a conformal geometry: the null cone at [w]cQ is the set 

N[wl=~Nw, ~)l~~~,lQ:h(w)=OI. (3.5) 

A simple topological argument14 shows that Q  does not admit any complex-bilinear Rie- 
mannian metric. It admits, however, a Hermitean (even Kahler) metric induced by a Her- 
m itean positive form on W. 

ThespecialorthogonalgroupSO(h)={A~GL(W):detA=1 andh(AwJw)=h(w,w) for 
every WE w), considered as a group of transformations of Q, is called the M6bius group. If 
w#O is a null vector and A E SO( h), then A[w] = [A w]. The action of the Mobius group on Q 
is transitive and preserves the distribution of null cones: if [(w, u)] l iVl~1, then A[( w, u)] 
=[w4 WhyA,] * In other words, the Mobius group consists of conformal transformations 
of Q  and, in fact, it is the connected component of the group of all conformal automorphisms 
of Q.19 

(2) Assume now Wand h to be as in Sec. 11(2) with K=C and dim V=n> 1. If 
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i :V-+W’ is given by i(u)=@,-g(v,v),l) (3.6) 

then the map 

j:V+Q, where j(v)=[i(v)] (3.7) 

is injective, the image j ( V) is open and dense in Q, and the complement of the image is the 
compact (n - 1 )-dimensional “null cone at infinity” consisting of all elements of Q  of the form 
[(v, il, 0)] where u is null, g(v,v) =O. 

For every UE V the linear map 

j”:v+i(v)L, j”(U) =b,--2g(w),O) (3.8) 

of V into the subspace i(v)* of W, orthogonal to the vector i(v), is an (injective but not 
surjective) isometry 

h(j,(u),j,(u))=g(u,u),u~ v. (3.9) 

Using the identification TVr VX V, one finds the map j, :TV+ TQ, tangent toj, given by Eq. 
(3.7), to be such that 

j*(w) = [(i(u), jtJ(u))l. (3.10) 

By virtue of Eq. (3.9) the mapj is conformal: if UE V is null, then i*( u,u) EN~i(“)l. Since V is 
conformally flat, so is Q. 

(3) The action of the Mobius group on Q induces local conformal transformations of V, 
defined as follows. For every UE V and A ESO( h) one has 

Aj(v)=[Ai(u)], where i(v>=[i(v)]. 

In general, Aj (0) does not belong to j ( V) . Let 

(3.11) 

V(A)={v~:vs4j(u)~j(V)). 

The set V(A) is open and dense in V. The map 

(3.12) 

&(A) -.+ V(A-l), defined by j(k) =Aj(v), UE v(A) (3.13) 

is a composition of conformal transformations; therefore, it is a conformal difkomorphism of 
V(A) onto V(A-‘). We refer to A as the local Miibius transformation of V, defined by the 
global Mobius transformation A of Q. 

(4) From now on, throughout the article, we assume K=C and use a notation emphasiz- 
ing the dimension of the underlying complex vector space V. Thus Cl(n) is the Clifford algebra 
of V=C” with the standard scalar product and GL(n) [resp. O(n)] denotes the complex 
general linear (resp., orthogonal) group. A similar notation will apply to the quadrics and spin 
groups; it is at variance with the traditional notation, used in the Introduction, where the letter 
C appears explicitly in the context of complex orthogonal and spin groups. 

IV. CPIN GROUPS AND STRUCTURES 

( 1) Consider the space V=C” with its standard scalar product g. The complex conformal 
group CO(n) is the set of all AEGL(n) for which there is il(A)eGL( 1) =C’ such that 

g(Av,Au) =n(A)g(v,v), for every UE V. (4.1) 
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If A EO( n) and p EC’, then @  E CO( n) and there is the exact sequence of group homomor- 
phisms 

l+&-C’XO(n)+CO(n)+l. (4.2) 

Noting that I=idy can always be connected to --I by a curve in CO(n) and that -IeSO(n) 
if, and only if, n is even, one sees that 

(i) for n = 2m + 1 odd, the group CO( 2m + 1) is connected and isomorphic to 
C’XS0(2m+ I), and 

(ii) for n = 2m even, there is the exact sequence 

l+Z2+C’XS0(2m)+COo(2m)+l, (4.3) 

where COo(2m> is the connected component of CO(2m). 
(2) Since, for every UE VCCl(n), one has g(v,u)=3 (the Clifford square), from now on 

we always write v2 instead of g( u,v). The Cl@wd group,2o or the conformal spin group, asso- 
ciated with V, is the set Cpin(n) of products of all fmite sequences of non-null vectors, 
Cpin(n)={ut.*. ukEC!l(n):uiEV, u”#O for i=l,..., k and k=1,2 ,..., ), with a multiplication 
induced by the Clifford product. IfseCpin(n), then sF=EsEC!‘; recall [Sec. 11(2)] that the map 
s-bF=aofl(s) is C linear and ut”‘ukur”‘2(k = ( - l)k~:... 
map UH -uuu-‘(uE V) 

u$ If UE V is non-null, then the 
is a reflection in the hyperplane orthogonal to u. For every 

sECpin(n), define 

p(s):V+ V by p(s)u=M (4.4) 

so that p(s) is linear and (p(s)u)‘= (E)*r?, i.e., p(s) EGO(n) with A(p(s))= (Es)*. 
By the Cartan-Dieudonne Theorem,21 the homomorphism p:Cpin ( n ) + CO ( n ) is surjec- 

tive. To compute its kernel, note that p(s) U= u for every UE V implies E= f 1 so that either 
su= US or su= -US. The volume element 77 commutes (resp., anticommutes) with all vectors for 
n odd (resp., even). Since the volume element (2.20) is normalized so that /I( r])~ = 1, one has 
p( r]) = --I and obtains ker p = { f 1, A &iv}. Therefore, the kernel is isomorphic to Z, 
for nz0 or 1 mod4 and Z2XZ2 for n=2 or 3 mod 4. 

For every n, the group Cpin(n) is the disjoint union of two nonempty subsets 

Cpin,(n)=Cpin(n)flCl,(n), e=O and 1, (4.5) 

which are both open and closed in Cpin(n): the group is not connected and Cpine(n) is the 
connected component containing 1. The latter group gives rise to the exact sequences 

l-+Z2~Cpinc(2m+1)~COc(2m+l)=CO(2m+l)~l, (4.6) 

l+&+Cping(4m) :COo(4m) + 1, (4.7) 

I +Z2X&+C!pin(4m+2) LCOo(4m+2) -+l. (4.8) 

(3) One defines 

Pin(n) ={sECpin(n)$(s)s= 1) (4.9) 

and, by restricting p to Pin( n ), obtains the exact sequence 

(4.10) 
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where now p(s)v=suF=ma(s-‘) and ker pj h(8) = { f 1) = Z2. Similarly, the connected 
component of Pin (n ) 

Spin(n) =Pin(n) n%(n) (4.11) 

gives rise to the exact sequence 

l-+&+Spin(n) 4SO(n) 4 1. (4.12) 

It is well-known that Spin(2) =GL( l), Spin(3) =SL(2), Spin(4) =SL(2) xS~(2), Spin(S) 
=Sp(4), and Spin(6) =SL(4). 

There are also the obvious exact sequences 

l+Z2+C’XPin(n)+Cpin(n)+l (4.13) 

(4.14) 

(4) Let I and T be one of the groups 

and 

Cpin(n),Cp&(n),Pin(n),Spin(n), 

respectively, so that, in every case, there is the epimorphism 

p:Lr, p(s)v=sLg where SET and LJEV. (4.15) 

Let mP+X be a I-structure on a complex, n-dimensional manifold X. In other words, P is a 
restriction of the bundle of complex linear frames of X to the subgroup I of GL( n). For 
example, a conformal geometry on X is equivalent to a CO( n)-structure on X. Recall that a 
frame PEP at x E X is a linear isomorphism p: V+ TJ; if A E I?, then the composition poA E P is 
another frame at x. A-F-structure on X is a prolongation of the I’-@ndle P-+X to f, i.e., a 
principal T-bundle EP+X- such that there is a sujective map a:P+P, i i=~ou and a@) 
=a@ p(a) for every FE P and aE I. This notion generalizes the classical one of the spin 
structure. If T  =Cpin( n) or Cpin,,( n), then one uses the expression “conformal spin stmc- 
ture.” 

(5) Let X be a manifold with a I-structure r:P--r X and consider a connected Lie group 
G, acting transitively on X, and preserving this structure. Let HC G be the isotropy (stability) 
group of a point XEX, so that X s G/H, and let 

r:H+ Z (4.16) 

be the linear isotropy representation of H, determined by the tangent action of H in TJ: given 
a iixed frame p at x, one puts 

7(t) =p-h*op, (4.17) 

where f* is the map tangent to the map tXdX, %H. The set GX ,.I of equivalence classes of 
the form [(s, A)],, where (s,A) EGxIY, and 
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[(s,A)].=[(s’,A’)]. iff there is f&T such that s’=st and A=r(t)A’, 
(4.18) 

can be identit?ed with P: one sends [(s, A)], to the frame s,opoA and checks that this is a 
well-defined map, equivariant with respect to the action of r. 

A homomorphism 

F:H+ f 

is said to be a lift of T  to T  if poF=r. Given such a lift, one constructs the set 

(4.19) 

&-=Gx$, (4.20) 

makes it into a manifold, defines &+ P by a([ (s, (I)].$ = [(s, p(a))], , and the action of T  in p 
by b,j)l$=[(s, ab)l?, where .reG and a, her. Clearly, the principal T-bundle iT 
=n-%:P+X is a l?-structure on X. Conversely, an argument given in Ref. 14 shows that, if G  
is simpZy connected, then every T-structure on X can be obtained in this manner. 

V. THE FRACTIONAL-LINEAR FORM OF LOCAL M6BlUS TRANSFORMATIONS 

( 1) Consider the complex quadric Q, consisting of all null lines in the (n + 2) -dimensional 
vector space W= Ye C*, with the scalar product h, cf. Sets. II (2) and III ( 1). The homomor- 
phism 

p:Spin(n+2) +SO(n+2), p(s)w=sws-‘, (5.1) 

where s~Spin(n+2) and w= (v&p) E W, defines a transitive action of Spin(n+2) on Q,: the 
map 

Qn3 [WI ++ P(S) [WI = hs-‘I EQ,, (5.2) 

is the Mobius transformation and, since p is sujective, all Mobius transformations of Q, can 
be so represented. 

(2) According to Sec. 11(2), there is the isomorphism of algebras with units, Cl(n+2) 
rC(2) @Cl(n), resulting from the map (2.7). If w=i(v) is the null vector given by Eq. (3.6), 
then its image in C(2) @Cl(n) is 

(; ;)=(+,a,. 
An element 

s= 

(5.3) 

(5.4) 

of Cl (n + 2) belongs to Spin ( II + 2) if, and only if, the following conditions are satisfied: 
(i) s is even; according to Eq. (2.9) this is equivalent to 

as elements of C!l( n), a and d are even and b and c are odd, (5.5) 

(ii) &(s)s= 1; according to Eq. (2.10) this is equivalent to 

(3 ;) (: fi)=(A Y); (5.6) 
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(iii) for every WE W  there is w’ E W  such that 

.yws-I=w’. 

The normalization condition (5.6) can be written as 

;la+&= 1 

and 

(5.7) 

(5.8) 

(5.9) 

whereas Eq. (5.7) is equivalent to 

u&b&d&C, b&z% V, 

uvb- bvli,cvz-- dvFE C and avJ- bvFe V 

(5.10) 

(5.11) 

for every VE V=C”. It is clear that the relations (5.8)-(5.11) are also satisfied when 

a, b, c, and d are replaced by L?, % , E, and l , (5.12) 

respectively. 
(3) Referring to Sec. 111(3), we can now determine the local Mobius transformation 

p(s), seSpin(n+2). We take VE V(p(s)), so that [si(v)s-‘]=[i(v’)]Ej( I’), replace w and w’ 
in Eq. (5.7) by i(v) and pi(v’), respectively, and, by virtue of Eq. (5.3), obtain 

(cv+d,av+b)=p (5.13) 

Since i(v) # 0 implies Z.L # 0, we see that (cv+d)/pis-the inverse of cv+d and the fractional- 
linear formula for the local Miibius transformation p(s) 

v’=,o<s)v=(uv+b)(cv+d)-’ (5.14) 

holds for every 

VE V(p(s))={v~ V:cv+d is invertible}. (5.15) 

To describe explicitly the domain V(p(s)) of the definition of the local Mobius transfor- 
mation (5.14) we note that, by virtue of Eqs. (5.10) and (5.12)) the element dc is a vector and 

(cv+d) (cv+d) =zd+2g(&,v) --Cc&C (5.16) 

holds for every VE V. There are three cases to consider: 
(i) In the generic case Fc # 0 and V(p(s)) equals V with the nuN cone of vertex at &/Fc 

removed. 
(ii) If Fc=O and & # 0, then the vector & is null and V@(s)) consists of V m inus the 

null hyperplane of the equation 2g(&,v) +Jd=O. 
(iii) If EC=0 and k=O, then c=O, zd # 0 and V(p(s))= V. In this case s equals 

where uEC!ping(n), UE V 
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and p(s) is a global afline transformation of V, consisting of a translation by II, followed by a 
composition of a rotation and a dilation. 

Vi. THE CONFORMAL SPIN STRUCTURE ON A COMPLEX QUADRIC 

The group G=Spin( n+2) is simply connected for n) 1 and acts transitively on the com- 
plex quadric X=Q,. We can, therefore, use the method outlined in Sec. IV(5) to determine 
the conformal spin structure on the quadric. 

( 1) The isotropy group H of the “point at infinity” [w,], where w, = (O,l,O) E ;cY is 

H={teG:tw,t-l=Aw,, Ad!‘). (6.1) 

Using Eqs. (5.4) in (6.1) and taking Eqs. (5.8)-( 5.11) into account, one obtains 

u=d-‘ECping(n) and il=uZ, (6.2) 

b=uu, where ueV=C”, and c=O (6.3) 

so that every element of H is of the form (5.17), i.e., 

t=(%  :I) (:, :) (6.4) 

and H is isomorphic to the semidirect product of groups, Hz C!” X Cpin, (n ) . 
According to the Cartan-Dieudonne Theorem, the first factor in Eq. (6.4) is the product 

of an even sequence of no more than n non-null elements of V. If u is non-null, then the second 
factor can be written as a product of two vectors 

(k :)=(: “.) (“6’ -h*)- 
If u#O is null, then four vectors are necessary. 

(A ;)=(: I,) (: 1:) (:, 1:) (:, “J 
(2) The liner isotropy representation (4.16) is obtained as follows. Consider the frame 

(linear isomorphism) 

P:V-+T[,~IQ given by p(v)= [(w,, (v,O,O))]. 

According to the definition (4.17) 

7(f)v=p-‘of*op(v)=p-‘[(tw,t-‘, t(v,0,0)t-I)]. 

If t is given by Eq. (6.4), then tw,t-‘=Aw,, where ,%=a& and 

t(v,O,O)t-‘=(uvu-‘,-Ug(u,v),O)= (uvu-‘,O,O)mod w,, 

Therefore 

(6.5) 

7(t)v=A-‘uvu-’ and 2=COo(n). 
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The lift of r to %=Cpin&n) given by 

F(t) =A-‘a, where tE;H and A=& (6.7) 

is unique because H is connected. Therefore, for every n > 1, the quadric Q, has a unique 
conformal spin structure. This is in contrast with the rcsult22 on the proper spin structure 
associated with the KZihler metric on Q,: the latter structure exists only for n= 1 or n even. 

(3) In Riemannian geometry, if G  is a group of isometries acting on a manifold transi- 
tively and e@ctiveZy, then the linear isotropy representation r:H-+O(n) is injective and G is the 
total space of a restriction of the bundle of linear frames to H.14 In our case the situation is 
rather different: there is a nontrivial kernel N= ker rC H; its connected component is Ne 
=ker%C” and H/N,~Cpin,(n). The bundle G/N,=Spin(n+2)/C”-+Q, is isomorphic 
to the Cpin,(n)-bundle P+Qn defining the conformal spin structure and PYG/N. 

VII. HERMITE INTERPOLATION AND THE EXPONENTIAL MAP 

The well-known formula 

exp vm=cosh il+d-‘vasinh d, (7.1) 

where A is a square root of v*, VEC’, and the sigmas are Pauli matrices, provides a convenient 
parametrization of the group Spin( 3) = SL( 2). In this section, we present a method for gen- 
eralizing (7.1) to arbitrary Spin groups. 

( 1) Let JZ! be a complex, N-dimensional, associative algebra with unit element. As such, 
it has a natural topology and a faithful and continuous representation y in the algebra C(n) of 
complex, n by n matrices, where n<N. An entire analytic function f:C+C extends, in an 
obvious manner, to a function f :C(n) +C(n). Since y( .&‘) is a closed subspace of C(n), for 
every UE.B’, the element f(y(u))EC(n) belongs to y( &) and defines an element of A. To put 
it shortly, every entire analytic function f :C + C, such as a polynomial or exp, extends to a map 
f:&+d. For every a~& the set {l,u ,..., dy] is linearly dependent: there thus exists a poly- 
nomial p of degree M, where 1 <M<N, such that p(u) =O. Therefore, every positive power of 
a can be represented as a linear combination of the elements l,u,...,a”-‘. If f is entire, then 
there are complex numbers qo, ql,...,qM-i such that 

f(a)=%+~pla+*.*+Q)M-#-l. (7.2) 

(2) A method for computing the coefficients appearing in E@. (7.2) is based on Hermite 
(or Lagrangtiylvester) interpoZation.23 Recall that, given a sequence (zi ,...,z,J of m  distinct 
complex numbers, one associates with a complex function f the Lagrange interpolation poly- 
nomial 

i$l f (zi>Pi(z)/Pi(zi)9 

wherepi(z)=p(.z)/(z--zi) andp(z)=(z-z~)***(z-z,). 
The Taylor polynomial of degree Z at 0 

f[(Z) = z fYO)z%! (7.3) 
k=O 

gives an approximation of differential order Z  to a function f smooth in a neighborhood of 0. 
Hermite and Sylvester found a generalization of these two approximation methods. 
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(3) Let (z ~,...,z,,h and (4 ,...,Z,J be sequences of distinct complex numbers and of non- 
negative integers, respectively. Such a pair of sequences defines, and is defined by, the normal- 
ized polynomial 

p(z) = (z--2$1+1’* * (z-z,ym+l (7.4) 

of degree M=Zl+**~+Z,,,+m. Put 

pi(Z) =p(Z)/(Z-Zi)“+’ (7.5) 

SO that pi(zi) # 0 and, if i # j, then 

pj”(Zj) =O for I= l,...,Zj and i,j= l,...,m. (7.6) 

The function qik (k= I,..., Zi,i=Z ,..., m), defined by 

pj(z)qik(z) = (z-zi) k (7.7) 

is rational and has a zero of order k at zi, but is not a polynomial unless m = 1. If this function 
is replaced on the left side of Eq. (7.7) by its Taylor polynomial sik of degree Zi at Zi 

(7.8) 
r=k 

then the resulting function 

hik(Z) =pj(z)sjk(z) (7.9) 

is a polynomial of degree <M. Note that the polynomials hi~j (i = l,...,m) are of degree M- 1. 
Using Eq. (7.6) and the formula 

(7.10) 

and noting that sik-qik has a zero of order Zi+ 1 at Zi, one obtains 

h$‘(z.)=kW.S I - L, kl for k= l,...,Zi, Z=l,...,Zj, and i,j=l,..., m. (7.11) 

Therefore, if f is smooth, then its Hermite interpolation polynomial associated with p 

j(Z)= g % fck'(Zi)hik(Z)/k! 
i=l k=O 

(7.12) 

is of degree < iU and 

~‘k’(zi)=f(k)(zi), for k=l,..., Zi, and i=l,..., m. (7.13) 

The hat map is idempotent. Iffis a polynomial, then f=O is equivalent tofbeing divisible 
by p. If f is an entire function, thenA f(z) =limZ_,, fi(z) for every ZEC, where fr is the 
polynomial (7.3). The difference fi- fr is a polynomial divisible by p. Therefore, if UE & and 
p are as in Sec. VI(l), then 

A 
f/(a) = fi(u) for Z=O,l,..., and f(u) = lim f,(u) =1(u). 

/+a, 
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These observations can be summarized in 
Proposition: Let f be an entire analytic function and let d be a complex, finite-dimensional, 

associative algebra with unit element. If UE d and p(u) =0, where p is a (normalized) poly- 
nomial of positive degree, then 

f(a) =Zbh (7.14) 

where?is the Hermite interpolation polynomial off, associated with p. 
It is convenient, but not necessary, to take for p the m inimal polynomial of a, i.e., the 

normalized polynomial of lowest positive degree such that p(u) =O. 
(4) Let d be the even Clifford algebra CI,,( n) associated with V=C”. The vector space of 

bivectom, A * VC Cpp, is the underlying space of the Lie algebra of the group Spin(n) C d. The 
map exp:.& + &, restricted to A *V, has values in the group Spin(n) and coincides with the 
exponential map in the sense of the theory of Lie groups. The above Proposition can be used 
to compute it explicitly. 

According to Rq. (2.28), if a is a bivector, then its Clifford square is u* = - (a 1 a) +a A u. 
Therefore, there exists a polynomial P of degree not larger than 

dime A4kV=2”-2+iRe(l+ m)” 
k 

(7.15) 

and such thatp(u)=P(a*)=O. Putting A*=-(u/u) and p4=(uAu)i, one obtains 

p(z)=d-A*, for n<3 

and 

p(~)=(s-A’)~-p~, for n=4 and 5. 

Formula (7.1) is obtained from Eqs. (7.12) and (7.14) by putting u=vo and f =exp. 
If the bivector a is nilpotent, i.e., if dH=O for a positive integer M , then exp a= 1 +u/l! 

+ * *. +der-‘/(M- l)!. If a*=O, then a is a null bivcctor: it is decomposable, its scalar square 
vanishes, and s=exp u= 1 +a. The “null rotation” (Ref. 24) p(s) of a vector v is easily 
obtained from Rq. (2.15) 

p(s>v= (l+u)v( l-u) =v-2va+2(vu)a. (7.16) 
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