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Abstract. Recent results on pin structures on hypersurfaces in spin manifolds are re-
viewed. A new form of the Dirac operator is used to compute its spectrum on n-dimensional
spheres. This constrbution is based on two papers by the author, where details and proofs
can be found (Ref.4 and 5).

1. This research has been motivated by, and can be summarized in, the
following observations:

(i) In odd dimensions, it is appropriate to use the twisted adjoint represen-
tation p : Pin(n) — O(n) to find a cover of the full orthogonal group O(n)
which extends the standard homomorphism Spin(n) — SO(n). Here p is
given by p(a)v = a(a)va™!, where v ER™, a € Pin(n) C Cl(n) and « is the
grading (main) automorphism of the Clifford algebra Cl(n) [1]. Using the
twisted representation leads to modifying the Dirac operator [2].

(ii) The bundles of ”Dirac spinors” over even-dimensional spheres are trivial
[3]; this observation generalizes to hypersurfaces in R"*!: every such hy-
persurface, even if it is non-orientable, admits a pin structure with a trivial
bundle of Dirac (n even) or Pauli (n odd) spinors [4]

(iii) The spectrum and the eigenfunctions of the Laplace operator A on the
n-dimensional unit sphere S,, are easily obtained from the formula

n+1

> 0%/0a? = r72A + v~/ 0r(r"0/0r) (1)

t=1 /
This formula generalizes to a foliation of R"*! by hypersurfaces and extends

to the Dirac operator, allowing a simple computation of the Dirac spectrum
of n-spheres [5].
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2. Consider the vector space R"™ with the standard scalar product (u | v) and
the associated positive-definite quadratic form (u | u), where v = (u*) €R",
p = 1,...,n. The corresponding Clifford algebra Cl(n) contains R@ R",
one has

wo+ vu = —2(u |v), where u,v€ R", (2)

and wv is the Clifford product of u and v. Let (e,) be the canonical frame
in R™ so that u = u*e, for every u €R"; similarly, (e;),¢ =1,...,n+ 1, is
the canonical frame in R™"*!. The group Pin(n) is defined as the subset of
Cl(n) consisting of products of all finite sequences of unit vectors.

Let Cl(n) = Clo(n)@ Cli(n) be the decomposition of Cl(n) defining its
Z, grading so that Spin(n) = Pin(n)[) Clo(n). Let a = ao + a1 be the
corresponding decomposition of a € Cl(n). The map h : Cl(n) — Clo(n + 1)
given by ¢ — agp + ajen41 is an isomorphism of algebras with units. By
restriction, it defines the commutative diagram of group homomorphisms

Pin(n) - Spin(n + 1)
g | - (3)
o(n) £ som+1)

where the horizontal (resp., vertical) arrows are injective (resp., surjective).

For every n, there is a representation ¥ of Cl(n) and a representation
7' of Cl(n + 1) in the same complex vector space S. The representation 5’
extends v in the sense that ¥ = 4’ o h. One puts

xn=9le) i=1. . n+l (4)

and defines the helicity automorphism T' = (—=1)"("~D/4y,5, ..., so that

I'? = 1. Note that y(e,) = 7,Yn+1 and y(ese,) = Yu70. For n = 2m, 7 is
the Dirac representation in a complex vector space of dimension 2™ and 4’
is one of two Pauli representations, characterized, say, by y,41 = / — 1T.
For n = 2m — 1, 4’ is the Dirac representation, whereas v is a faithful
representation that decomposes into two irreducible Pauli representations.
This terminology generalizes the one used by physicists in dimensions 3 and
4.

3. Consider now an n-dimensional pin manifold M, i.e. a Riemannian man-
ifold with a pin structure

Q>PS M (5)

where P is the O(n)-bundle of all orthonormal frames on M so that o(q) =
(0u(9)), ¢ € @, is an orthonormal frame at #(¢) = mo o(g) € M and
T :@Q — M is a Pin(n)-bundle such that o 0 §(a) = 6(p(a)) o o, where é(a)
is the (right) translation by a € Pin(n) of elements of Q. The Levi-Civita
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connection on M defines a ”spin” connection on the pin-bundle @ — M
which can be described by giving on @ a collection of n horizontal vector
fields V, (p =1,...,n) such that, for every ¢ € Q, one has T,7(V,(q)) =
ou(q)-

By restriction, one has the representation v: Pin(n) — GL(S) and one
defines a spinor field on M, with its pin structure (5), as amap ¢ : Q — S,
equivariant with respect to the action on Pin(n), ¥ 0 §(a) = y(a™1!) 0 9.
Alternatively, and equivalently, a spinor field can be described as a section
of the bundle ¥ — M, associated with  — M by the representation 7.

The Dirac operator V = y#V, transforms spinor fields into spinor fields.
4. A hypersurface M in an (n + 1)-dimensional connected Riemannian
manifold M’ is an n-manifold M with an immersion f : M — M'. The
metric tensor on M’ induces a Riemannian metric on M. If M’ is orientable
and P’ is its bundle of orthonormal frames of coherent orientation, then the
bundle P of all orthonormal frames on M can be identified with the set

{(z,p) € M x P':p=(pi),i =1,...,n+ 1 where pis a frame at f(z) such
that p,41 is orthogonal to T, f(T, M) C Tf(x)M'}.

The group O(n) actsin P via H. Assume now that M’ has a spin structure

'l s P M’; a spin-structure on M is (5), where @ — P is the Z,-bundle
induced [6] from Q' — P’ by the map F : P — P',F(z,p) = p, i.e.

Q={lpagePxq :Ep=7dld}

As an example illustrating this construction, one can mention the embedding
of real projective spaces, RP,, =RP, ;. Since RP4,,+3 is a spin manifold,
there is a pin structure on RP 4,42 [7].

Immersions of M, which are differentiably homotopic one to another, give
rise to equivalent pin structures on M, but otherwise not, in general. For
example, the ”identity” and the ”square” immersions of S; in R? give rise
to the non-trivial and the trivial spin structures on the circle, respectively.

Assume now that the spin structure on M’ is trivial, i.e. there exists a
map ¢ : Q' — Spin(n + 1) such that g(qa) = g(¢)a for every ¢ € Q' and a €
Spin(n +1). The pin structure on the hypersurface M need not be trivial, but
the bundle E — M of spinors, associated by v wzth Q — M, is isomorphic
to the direct product M x S.

Indeed, the bundle E can be identified with the set of equivalence classes
of the form [(p,g,@)], where (p,q,6) € P x Q' x S, F(p) = o'(q) and
[(p,q,9)] = [(P, ¢, ¢")] iff there is a € Pin(n) such that p’ = pp(a), ¢’ = qh(a)
and ¢ = y(a)¢'. The map [(p,q,9)] — (7(p),7'(9(q))¢) trivializes E. For ex-
ample, if M is a hypersurface in R"t!, then its bundle of Dirac or Pauli
spinors is trivial. Since RP3 =SO(3) has a trivial spin bundle, the bundle
of two-component ”Dirac” spinors on RP; is also trivial. In general, the



28 ANDRZEJ TRAUTMAN

bundles of Weyl (half) spinors on even-dimensional hypersurfaces in R"*1
are not trivial (example: even-dimensional spheres).

5. Let f : M — M’ be an embedding (i.e. injective immersion) of the
hypersurface M in the manifold M’ with a trivial spin structure Q' — P’ —
M'. The maps P — P’ and Q — Q' are then also injective and the extension
Q” of the Pin(n)-bundle @ to the group Spin(n) is also trivial. A spinor fiels
¥ :Q — S extends to a map ¥” : Q7 — S such that ¥”(qa) = 7'(a~1)9¥"(q)
for every ¢ € @” and a €Spin(n+1). Instead of working with 1, one can now
take a global section s of the trivial bundle @” — M and the composition
¥ =19”0s: M — § as an equivalent way of describing the spinor field. One
defines the Dirac operator D acting on ¥ by the formula

DV = (V)" o s. (6)

6. The above considerations are particularly useful and simple when M is
an orientable hypersurface embedded in R™*!. This being so, let (X?) be
the unit normal vector field on M and let (z*) be the Cartesian coordinates
in R™*1. Each of the n(n + 1)/2 vector fields

X =X:0.— X0, where 0;=0]02;; 1<i<)<n,
is tangent to M. Introducing the notation

aij = (v — 1m)[2, X=Xy, div X = 9, X",
so that

oij = 8ij + 7%
one can write (6) as

1
2
The right side of (7) is invariant with respect to the replacement of X by
—X and one can show that the assumption of orientability of M is irrelevant.
Assume now that R™*! is foliated by a family of hypersurfaces so that
the field X of unit normals is defined over an open subset of R"*!. The
identity

‘)’ia,' = X(X"E)i + %O'inij) (8)

DV = ~X(0" X;;—divX)V. (7)

leads to a decomposition of the Dirac operator 7'9; on R™*! into parts
tangential and transverse to the foliation,

7'0i = D + X(8/0r + 1divX), (9)

where 8/0r = X'0; is the derivative in the "radial” direction, transverse
to the foliation. There is an analogous formula for the Laplace operator
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[4]. Since the operator D anticommutes with X and X% = —1, if ¥ is an
eigenfunction of D, then (14+X)V is an eigenfunction of XD with the same
eigenvalue. Therefore, for M orientable, it is enough to consider the spectrum
of the latter operator.

7. As a simple application, consider the spectrum of the Dirac operator on
the unit sphere S,,. The space R"*! with its origin removed is foliated by
the spheres r = \/(a:% + ...+ z',21+1) = const. so that Xt = mi/r,the vector
fields X;; are generators of rotations, divX = n/r and equation (9) gives

Xv'0; =XD—(8/dr + n/2r). (10)

Let ®:R"*! — S be a spinor-valued harmonic polynomial of degree ! +
1, where [ = 0,1,... The polynomial ¥ = (4'0;)® is of degree ! and is
annihilated by the Dirac operator 4'9;. Therefore, on the unit sphere r = 1,
one has

XDV = (I + n/2)¥ and XD XV = —(I 4+ n/2)XV¥. (11)

and the spectrum of the Dirac operator on S,, for n > 1, is the set of
all numbers of the form +(I + n/2), where [ = 0,1,2,... . There is a gap
of length n and 0 is never an eigenvalue, this being a simple consequence
"of the celebrated Lichnerowicz theorem [8]. For n = 1, there are two spin
structures. The previous formula applies to the non-trivial structure; for the
trivial one, the spectrum is Z.
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