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It is shown that a hypersurface immersed isometrically into the Euclidean space IRE+‘, where 
n=2~ or 2v+ 1, has a pin structure such that the associated bundle of 2”-component 
spinors is trivial. This is used to derive a new formula for the Dirac operator on hypersurfaces. 
The Dirac operator is slightly modified to be compatible with the twisted adjoint 
representation of the pin group. When R”+’ is foliated by hypersurfaces, then the Dirac 
operator in R”+t splits into a radial and a tangential part with respect to the foliation. There 
is a corresponding new formula for the Laplacian. 

1. INTRODUCTION 

The Dirac equation, introduced in 1928 in the con- 
text of special relativity theory,’ was soon afterwards gen- 
eralized to curved spaces,’ but it started attracting the 
attention of pure mathematicians only about 35 years 
later.3-5 Lichnerowicz3 obtained the first global result on 
the properties of the Dirac operator 7v: on a compact 
Riemannian space with a positive Ricci scalar R, the op- 
erator Y has no eigenfunctions with eigenvalue 0. This 
“vanishing theorem” and its generalizations4 have been 
used by Gromov and Lawson6 to determine the existence 
of Riemannian metrics with positive R on compact, non- 
simply-connected manifolds. Much work has been done 
to give a geometrical estimate of the eigenvalues of TV, on 
Killing spinors and the index theorem’ for 7v; there is a 
review and a bibliography of this material in Ref. 7. 

Under the influence of the Kaluza-Klein theory and 
supergravity, mathematicians and physicists have deter- 
mined spin structures on symmetric spaces8’9 and found, 
in many cases, the spectra and eigenfunctions of the 
Dirac operator on those spaces.‘0-‘2 

In this paper I consider pin structures and the Dirac 
operator on hypersurfaces in the flat, Euclidean space 
R”+ ‘. The hypersurfaces need not be orientable nor admit 
any symmetries; they may have a complicated topology 
and be merely immersed (self-intersections are allowed). 
Thus, for example, the Klein bottle immersed in R3 is 
covered by these considerations. It is shown here that the 
hypersurfaces always have a pin structure and the asso- 
ciated bundle of Dirac or Pauli spinors is trivial. This 
observation is used to derive a convenient, “global” form 
of the Dirac operator on hypersurfaces in R”+l. 

The original motivation was to derive for !V an equa- 
tion analogous to the formula 
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A(R”+‘) =+A(§,) +r-” $ F; 
i 1 

(1.1) 

expressing the Laplacian in Rpn+’ in terms of the Laplac- 
ian on the unit n-sphere 9, and an operator involving 
differentiation only in the direction of the coordinate r 
=(x,2+***+x,+1 2, 1’2. It turned out that there are gen- 
eral formulas for both A and V, expressing these opera- 
tors as sums of parts tangential and transverse with 
respect to a foliation of R ‘+’ by hypersurfaces. These 
formulas are suitable for finding the eigenfunctions of A 
and V by the method of separation of variables and for 
approximate computations. The triviality of the associ- 
ated spinor bundles makes easier global considerations: 
there is no need to consider local sections of the principal 
bundle of spin frames-which, in general, is nontrivial- 
and one thereby avoids the necessity of using “double- 
valued spinor wave functions”.‘3 

The paper is organized as follows: in Sets. II and III 
there is a review of Clifford algebras, spin groups, and 
their representations. Section IV is devoted to pin struc- 
tures and to a formulation of the Dirac operator, suitable 
also for odd-dimensional spaces. Section V contains a 
general lemma on trivial associated bundles; the lemma is 
applied in Sec. VI to spin structures on hypersurfaces. 
The new formulas for the Dirac and Laplace operators 
are presented in Sec. VII and applied to spheres in Part II 
of the paper. In agreement with the custom prevailing in 
physics, tensor, but not spinor, indices often appear and 
the Einstein summation convention is used throughout 
the paper. 

II. CLIFFORD ALGEBRAS AND THEIR 
REPRESENTATIONS 

Standard notions and results on Clifford algebras and 
their representations are summarized here in a form 
adapted to the needs of the paper; proofs and further 
details can be found in Refs. 14-17. 
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Let g be a scalar product of signature (k,Z), k+ I= n, 
in the real vector space V=W”. The scalar product is 
chosen so that the standard linear frame (e,) in Y is 
orthonormal with respect to g, i.e., if g,,=g(e,,e,), then 
~~==“,p )(L#v, gpg= 1 for Z.L= l,..., k, and gW= - 1 for 

,...,n. The Clifford algebra associated with the 
pair ( V,g) is denoted by Cl( k,Z). The space V is a sub- 
space of the algebra and generates it. If I(,uEV, then 

uLJ+uu=2g(u,u). (2.1) 

The scalar product g defines an isomorphism from V to 
the dual space v*, also denoted by g: if u,u~Y, then g(v) 
is a one-form on V such that (u,g(v)) =g( u,u). 

The main automorphism a of Cl(k,Z) is defined by 
a( 1) = 1 and a(u) = - u for UEV. It defines the Z2-grading 
of the Clifford algebra, 

Cl(k,Z) =CI,,(k,Z) @Cl,(k,Z), 

where 

(2.2) 

Cl,(k,Z) ={a&l(k,Z) la(a) = (- l)Eu}, &=O,l. 

Every element a&1( k,Z) decomposes according to (2.2), 
a=a,+a,, where ugCl,(k,Z). The components a0 and u1 
are called the even and the odd part of a, respectively. 

Recall that the vector space AV= ~XI AkV is an alge- 
bra with respect to the exterior product of multivectors. 
If ,%zEV* and WEA V, then the inner product of w by 
;l,il -1 WEA V, is characterized by (i) linearity with respect 
to w, (ii) A-1 l=O and 1-I v=(u,n) for every UEV, and 
(iii) if usAkV, then 

a2-I (uAw)=(;lJ11)Aw+(-l)kllA(~Jw). 

Dually, if UEV and weAY*, then there is the inner prod- 
uct v J ~E.AV*. In particular, if w is a k-form and 
u2 ,..., ukev, then (UJ W)(q ,..., Uk)=W(U,uz ,... Uk). 

The underlying vector space of Cl(k,Z) can be iden- 
tified, in a natural manner, with that of the exterior alge- 
bra AV. The canonical isomorphism of vector spaces, 
r:AV+Cl(k,Z), is characterized by r( 1) = 1, r(u) =u for 
every WV, and 

u’r(w)=r(uAw+g(u) J w) (2.3) 

for every EV and WEAV. The product on the left of (2.3) 
is the Clifford multiplication. If 1 <pi <p2 < **a <~~,(n, 
then (2.3) grves r(epI A e-e Aepp) = ep;-*ep. 

The space A2 V of bivectors has a natural s&ucture of 
a Lie algebra that can be identified with so( k,Z), the Lie 
algebra of the group SO( k,Z). If A-eA2 V, then Aog: V-t V 
is defined by (Aog) (v) = -g(v) J A and the Lie bracket 
is given by 
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[AA%= [&O=gl. (2.4) 

The image of A2V by r is also a Lie algebra with respect 
to the Clifford bracket and 

d [A,4 1 =iMAMB) -dBWA)) (2.5) 

for every A,BEA~V. The map A +T(A)/~ is an isomor- 
phism of Lie algebras. The factor f reappears in the for- 
mulas linking spin and linear connections (see Sec. IV). 

In this paper, an important role is played by the iso- 
morphism of algebras with units, 

h:Cl(k,Z) -+Cl,,(k,Z+ 1) (2.6) 

defined by h(uo+ul) =uo+ulenfl and holding for every 
pair of non-negative integers k and 1. For every such pair, 
there is a representation y of Cl( k,Z) and a representation 
y’ of Cl( k,Z+ 1) in the same complex vector space S. The 
representation y’ extends y in the sense that 

y= ph. (2.7) 

Putting 

yi=y’(ei) for i= l,...,n+ 1 =k+Z+ 1, (2.8) 

and defining the helicity automorphism 

r= (_ l)‘k-“‘k-‘-“/4yly2.. .y It* 

so that lY2=I, one obtains 

l?y,= (- l)‘+‘r,r for p= l,...,n, (2.9) 

and 

Y(e~) =YpYn+i, y(epe,) =y,y,, (2.10) 

for p, v= 1 ,...,n. Up to complex equivalence, the repre- 
sentations are uniquely defined by the following condi- 
tions. 

(i) If n=k+Z is euen, n=2v, then y is the faithful 
and irreducible “Dirac representation” of the simple al- 
gebra Cl( k,Z) in a space 5’ of complex dimension 2” and 
y’ is one of two irreducible “Pauli representations,” say 
the one characterized by (2.7) and yn+l = nl?. 

(ii) If n=k+Zis odd, n=2v- 1, then y’ is the Dirac 
representation of the simple algebra Cl (k,Z+ 1) in a space 
S of complex dimension 2” and y is the faithful “Car-tan 
representation” which decomposes into the direct sum of 
two irreducible Pauli representations in spaces of com- 
plex dimension 2y-‘. 

Except for the name “Car-tan representation,” which 
seldom appears, this terminology is a natural generaliza- 
tion of the one used by physicists for dimensions 3 and 4. 
(Physicists, however, attach the names of Dirac, Pauli, 
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TABLE 1. Dimensions and names of spinor spaces. 

dim 

vectors 
2v- 1 
2v 

2v 
Cartan 
Dirac 

spinors 

y-1 
Pauli 
Weyl 

and Weyl to spinors rather than to representations.) To 
make our conventions visible at a glance, we summarize 
them in Table I, which contains information about the 
dimensions of vector and spinor spaces and the names of 
spinors. The name “helicity” automorphism for l? usually 
appears only when n is even: its eigenvectors are Weyl 
spinors. For n odd, the eigenvectors of I are Pauli 
spinors. 

From the point of view presented in this paper, there 
are two reasons for considering the Cartan representa- 
tion: first, it is a faithful representation of the full Clifford 
algebra of an odd-dimensional vector space and, second, 
if M is a hypersurface in I%*“, then a Dirac spinor field in 
R*’ restricts to a Cartan spinor field on M. The latter 
observation is crucial in Sec. VII. 

III. SPINOR GROUPS 

With every pair (k,Z) of non-negative integers there 
are associated spinor groups Pin(k,Z) and Spin( k,Z) de- 
fined as follows. Let UE V= I@+’ be a unit vector, u’= 1 or 
- 1, and VEX the map v--r -uvu -I is a reflection in the 
hyperplane orthogonal to U. The vector --u gives the 
same reflection and this ambiguity is the root of the 
“double-valuedness of the spinor representations,” cf. 
(3.2) below. The group Pin(k,Z) is the subset of Cl(k,Z) 
consisting of products of all finite sequences of unit vec- 
tors with group multiplication induced from that of the 
algebra. There are two important homomorphisms from 
Pin(k,Z) to the orthogonal group O(k,Z): 

(i) the adjoint representation of the group Pin in the 
vector space V, ad: Pin(k,Z) +O(k,Z), defined by ad(a)v 
=ava-1, where EV; 

(ii) the twisted adjoint representation p in the same 
vector space, given by 

p(a)v=a(a>vd (3.1) 

For every pair (k,Z) there is the exact sequence 

1 -+&+Pin(k,Z) -+O(k,Z) + 1. (3.2) 

If n=k+Z is even, then -uvu-‘=(~vol)v(~vol)-‘, 
where 

vol=ele2*-*e, (3.3) 

is the volume element and there is an exact sequence like 
(3.2) with p replaced by ad. In the adjoint representation, 
the reflection in the hyperplane orthogonal to u is covered 
by the elements u vol and -a vol. This is familiar to 
physicists who favor the adjoint representation: in 
Minkowski space R4, the time reflection is represented on 
Dirac spinors by the matrices f~1~2~3. 

The spin group is the subgroup of Pin( k,Z) consisting 
of all its even elements, 

Spin(k,Z)=Pin(k,Z)nCle(k,Z). (3.4) 

The groups Spin( k,Z) and Spin(Z,k) are isomorphic to 
each other, but the groups Pin(k,Z) and Pin(Z,k), in gen- 
eral, are not. This observation has interesting geometri- 
cal’ and physical” consequences. The representations ad 
and p coincide when restricted to the spin group and, for 
every pair (k,Z), there is the exact sequence 

l+a,-tSpin(k,Z) +SO(k,Z) + 1. (3.5) 

If n= (k,Z) is even, then the Clifford-Hodge duality 
map 

Cl(k,Z) +C!l(k,Z), given by a-+a vol, (3.6) 

restricted to V has the Clifford property, (v vol)* 
= -v~(vo~)~. By universality of Clifford algebras, the 
map v + v vol extends to an isomorphism of algebras 

I 
Cl(W), if (vol)*= - 1, 

j:CUW + cl(z k) if (vol)*= 1. (3.7) 
, , 

By restriction to the pin groups this yields an isomor- 
phism, also denoted by j, such that 

ad =poj. (3.8) 

Therefore, up to the isomorphism j [and signature swap 
for (vol)*= 11, the covering homomorphisms ad and p 
are equivalent. For this reason, in even-dimensional 
spaces, there is no essential difference between the twisted 
adjoint representation p and the adjoint representation 
ad, traditionally used by physicists. 

The situation is entirely different for n = k+ Z odd: in 
this case, the volume element is in the center of the full 
algebra and the automorphism a is not inner. To repre- 
sent reflections faithfully, it is necessary to use the twisted 
adjoint representation. For the sake of uniformity, it is 
convenient to use the twisted adjoint representation in all 
cases, and this is done in this paper. There is, however, 
the possibility of embedding Cl(k,Z) into the larger alge- 
bra Cl (k,Z+ 1) : for every a&1( k,Z) one has 
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and (3.9) 

I/(a(a))=y,+da)yi+!,9 

so that a appears as an inner automorphism in the larger 
algebra. 

By restriction of the homomorphisms h, y, and y’ of 
the Clifford algebras, one obtains homomorphisms of the 
corresponding spinor groups. The restrictions are de- 
noted by the same letters. For every k and Z with k+Z 
=2v or 2v- 1 (v= 1,2,...) one has the commutative dia- 
gram of group homomorphisms 

Pin(k,Z) h , Spin(k,Z+ 1) $ 

Pi PJ 
H 

O(W) -, SO(k,Z+ 1) : 

where 

H(A)e,=Ae,, p= l,...,n 

and 

fUk,+l= (detAk,+l , 

Pin(k,Z+ 1) ” - GL(S) 

PJ 

O(W+ 1) 

(3.11) 

AEO(k,Z), and S is a complex vector space of dimension 
2y. 

The Lie algebra spin( k,Z) of the group Spin( k,Z) can 
be identified with the vector subspace r( A* V) of Clc( k,Z); 
it is spanned by the elements e,e, where 1 (Z.L < v<n; the 
bracket coincides with the commutator obtained from the 
associative Clifford product. The Lie algebra so(k,Z) of 
the group SO(k,Z) is A*V with the bracket defined in 
(2.4). If %Spin( k,Z), then exp t2 is a one-parameter 
subgroup of Spin( k,Z). The homomorphism 
p:Spin (k,Z) -+ SO( k,Z) induces the derived isomorphism 
of Lie algebras: 

p,:spin(k,Z) -so(k,Z) 

given by 

(3.12) 

p,(z) =$pCexp tx) Id, i.e., p,(E)u= [Z,u], 

where UEV. Since [~(A),u] =2Aog( u), one obtains 

P* -l=$+o(k,Z), i.e., p;‘(e,Ae,) =jePev p#v. 
(3.13) 

IV. PIN STRUCTURES AND THE DIRAC OPERATOR 

Consider an n-dimensional smooth manifold M with 
a metric tensor g of signature (k,Z), k+Z=n. The princi- 
pal bundle rr:P+M of all linear frames on M, orthonor- 
ma1 with respect to g, has O( k,Z) as its structure group 
and is endowed with the Levi-Civita connection deter- 

(3.10) 

I 

mined by g. One says that M has a pin structure [some- 
times: Pin ( k,Z) -structure] 13-16 if there is a manifold Q and 
a map p: Q-+ P such that TOP: Q-M is a principal bundle 
with structure group Pin(k,Z) and p(qa) =p(q)p(a), 
where qa=S(a)q is the result of the action of aePin(k,Z) 
on the “pin frame” qE@, similarly p(q)p(a) is the result 
of the action ofp(a)EO(k,Z) on the linear framep(q)d? 
Explicitly, applying (3.1) to the pth vector ep of the stan- 
dard frame in V=R”, one has 

e,pvP(a> =a(a)e,,a-‘, aEPin(k,Z), (4.1) 

and 

/‘&a) =Pv(qW’pW, qEQ, (4.2) 

where pP(q) is the pth vector of the orthonormal frame 
P(4). 

Since the groups 0( k,Z) and O( Z,k) are isomorphic, 
but the groups Pin( k,Z) and Pin( Z,k), in general, are not, 
one should distinguish from each other the pin structures 
on nonorientable manifolds corresponding to the cover- 
ing homomorphisms Pin(k,Z) -O(k,Z) and 
Pin( Z,k) -, O( k,Z). For example, it is known’ that the real 
projective spaces of dimension = 0 mod 4 ( resp., 
2 mod 4) have two inequivalent Pin(4k,O) structures 
(resp., Pin(0,4k+2) structures). 

If the manifold M is orientable, then its bundle of 
frames can be restricted to SO( k,Z). If, moreover, it ad- 
mits a pin structure, then the bundle Q of “pin frames” 
can be restricted to the group Spin( k,Z) = Spin( Z,k) and 
one says that M has a spin structure. Conversely, the 
injections Spin(k,Z)+Pin(k,Z) and Spin(Z,k)-Pin(Z,k) 
can be used to extend a spin structure to two pin struc- 
tures corresponding to the two coverings of 0( k,Z). 

In theoretical physics, one often considers the behav- 
ior of spinor fields (“wave functions of fermions”) under 
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reflections. For this reason, it is appropriate to use pin 
structures even on orientable manifolds, such as the 
space-time manifolds of relativistic physics. 

The standard, differential geometric notions relative 
to principal bundles with connections (Ref. 19, Ch. II) 
can be applied to the bundle Q-M. The soldering form 
on Q is a one-form e=e,@ with values in VCCl(k,Z) 
defined as follows: if UET~Q, then (u,@(q)) is the pth 
component of the projection of u to M with respect to the 
linear frame p(q) . The soldering form is of type p, 

6(a)*sc1=p@,,(a-1)e’ for aePin(k,Z), (4.3) 

where S(a)* denotes the pullback by 6(a). 
The one-parameter subgroup exp(tr (A ) /2) of 

Spin (k,Z), where AEA* V, induces the vertical vector field 
W(A) on Q, 

W(A)f=~fOS(expfh(A))I~=~,~Q--I. (4.4) 

One puts WILY= W( ep A e,) and notes ( W,,,,e”) =O. 
Given a representation y: Pin( k,Z) -. GL(S), as de- 

scribed in Sec. III, one defines a spinor field (HarveyI 
would say: a pinor field) on M as a zero-form of type y, 
i.e., a smooth map $t:Q-S, equivariant with respect to 
the action of Pin( k,Z), 

S(a)*$=y(a-‘)tC, for aEPin(k,Z). (4.5) 

Alternatively and equivalently, a spinor field can be de- 
fined as a section of the bundle E-+M associated with 
Q-+M by the representation y. 

Substituting in (4.5) the function exp( te,eJ2) for a, 
differentiating with respect to t, evaluating at t=O, and 
defining 

+v=t(YpYv-YvY/J 

one obtains 

(4.6) 

W,,.*= -a,,$, 1 <p < 6th (4.7) 

as the infinitesimal form of the transformation law (4.5). 
The Levi-Civita connection on P lifts to a “spinor 

connection” on Q described by a one-form w of type ad, 
with values in the Lie algebra spin( k,Z). Referring to 
(3.13) one obtains the explicit formula’4”7 

a=&Fe e P V’ (4.8) 

where (&“‘) is the pullback by p:Q+P of the Levi-Civita, 
so(k,Z)-valued connection one-form on P. Note that &‘” 
+w”p=O. Under the action of Pin( k,Z) the connection 
form transforms according to 

6(a)*o=a-‘oa 

and it satisfies 

(4.9) 
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W(A) -I W=&(A). 
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(4.10) 

The last property is equivalent to 

wpy -1 Iif”= s”,s;- s;t$ (4.11) 

According to general theory, the covariant exterior 
derivative Dlc, of a spinor field 1c, is the horizontal part of 
d+ By virtue of (4.7) and (4.1 l), the vertical part of d$ 
is -$p+?“lc, so that 

D$=d$+fo,,&“tC,=&T,$ (4.12) 

where VP@= l,..., n) is a horizontal vector field on Q, 
such that (V,,@‘) =S,“. In other words, for every qEQ, 
the collection of in (n + 1) one-forms (e(q) ,ovp( q)) con- 
stitutes a linear frame in r,*Q, dual with respect to the 
linear frame (VP(q) , W,,p (4)) in r,Q. 

By virtue of (4.3) and (4.5), the covariant derivative 
of II, transforms according to 

S(a)*V,llr=y(a-‘)V,lCpv~(a). (4.13) 

Applying the homomorphism y:Cl( k,Z) + End S to both 
sides of (4.1) and using (2.10) and (3.9), one obtains 

ygvp(a) =y(a)y,y(a-‘1. 

Therefore, the Dirac operator 

(4.14) 

v=yc”v, (4.15) 

transforms in such a way that Vlc, is a spinor field, 

6(a)*9$=r(a-‘)9lC, for aePin(k,Z). (4.16) 

It should be noted that the operator (4.15) looks like 
the standard Dirac operator, but, in fact, involves a mod- 
ification due to the definition (2.8) of the matri 

! 
es y,. In 

the standard approach, one uses the matrices y ‘ep). The 
standard Dirac operator behaves well under (is equivari- 
ant with respect to) the adjoint representation, whereas 
the modified operator is adapted to the twisted adjoint 
representation p. 

If $ is a spinor field satisfying (4.5), then ‘:y”+,$ 
transforms with respect to the twisted represeitation 
yea. If M has a spin structure, then one can restrict $ to 
the reduction of Q to Spin(k,Z) and consider there also 
the spinor field yn+,$. In this case, if $ is an eigenfunc- 
tion of 1v with eigenvalue 1, then ye+ l$ is an eigenfunc- 
tion of 9 with eigenvalue -;1: the spectrum of 9 on ori- 
entable manifolds is symmetric with respect to the origin. 

If n is even, then y,,+, coincides, up to a factor of 
n, with the helicity endomorphisms l? of S, its eigen- 

vectors are Weyl spinors. If M has a spin structure, then 
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it admits fields of Weyl spinors; if such a field is an eigen- 
function of 9, then the eigenvalue is 0. 

If n is odd, then the eigenvectors of I’ are Pauli 
spinors and y,,+ i anticommutes with I. Since now l? 
commutes with y, (p=l,...,n), there are Pauli spinor 
fields on an odd-dimensional manifold with pin structure, 
even if the manifold is nonorientable. The Dirac operator 
V commutes with I and, therefore, can be restricted to 
fields of Pauli spinors: this is the PauZi operator, general- 
izing the operator a*grad of nonrelativistic quantum me- 
chanics. The spectrum of the Pauli operator need not be 
symmetric, even if the manifold is orientable.*’ 

It is convenient to express the Dirac operator in 
terms of differential forms on Q. The horizontal volume 
n-form at qEQ is 

q(q) =8*(q) A - Aeyq). (4.17) 

The field 7 is well defined even if M is nonorientable. It 
transforms according to 

S(a)*q=q detp(a) for aePin ( k,Z) . (4.18) 

Putting 

qp=V, J rl, rlpv=Vv J rip, etc., 

and noting the formulas 

(4.19) 

8” A r],=S,~77, ev 7+=Sv~~p-L3p~~vl etc. 
(4.20) 

one checks the validity of 

@‘$=VWAvp. (4.21) 

V. A CONDITION EQUIVALENT TO THE TRIVIALITY 
OF AN ASSOCIATED BUNDLE 

Consider a principal bundle n:P+M with structure 
group G and a representation y of G in a vector space S. 
The homomorphism y:G+GL(S) defines an associated 
vector bundle 

E=Px&-+M. (5.1) 

The canonical map PXS+ E is characterized by 
(~4) -[(p,~)l=[(pa,y(a-‘)~)l, where pd: +S aG 
and square brackets denote an equivalence class with re- 
spect to the action of G. 

Lemma: The bundle E is trivial if and only if there 
exists a group G’, a homomorphism h:G+G’, and an 
extension y’:G’ +GL(S) of the representation y such 
that the associated principal G’-bundle PX ,$‘-M is 
trivial. 

Indeed, assume first that E is trivial, as a vector bun- 
dle, i.e., that there is a trivializing map 

f:P-GUS) and f (pa) =f (p)oy(a) (5.3) 

such that 

for every @ and aeG. Take now G’ =GL(S) , h = y, and 
y’ =id so that y’ extends y. The bundle PX ,$’ + M is 
trivial because it has a global section corresponding to the 
equivariant map e:P+ G’, where e(p) =f (p) -’ for every 
p@. Conversely, given an extension y’ of y and a homo- 
morphism h:G-+ G’ such that PX GG’ -+ M is trivial, there 
is a map e:P-+G’ such that e(pa) =h(a-‘)e(p) for every 
pd, and aEG, If fiP-+GL(S) is defined by f(p) 
= y’(e(p)-‘1, then the map [W)l-(dp),f (PM) trivi- 
alizes the vector bundle E-+M. 
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(5.2) 

In Sec. VI the Lemma is applied to prove the trivial- 
ity of the spinor bundle associated with the pin structure 
on a hypersurface immersed in flat space. 

I give here another example of application of the 
Lemma. It played a role in motivating the research pre- 
sented in this paper: during a conference held in Trieste in 
1986, I learned from Simone Gutt that her work on Kill- 
ing spinors implied the triviality of the bundles of Dirac 
spinors on even-dimensional spheres. 

Example: If G is a closed subgroup of G’ and P 
=G’ -+G’/G=M, then the principal G’-bundle P 
X &’ -+ M is trivial because it admits the global section 
aG-+ [ (a,a-’ )], where aEG’. In particular, if G’ = Spin( n 
+ 1) and G=Spin(n), then M=§, is the n-dimensional 
sphere. Since the spinor representation y of Spin (n ) in S 
extends to a representation of y’ of Spin( n + 1 ), as de- 
scribed in Sec. III, our Lemma proves the triviality of the 
bundle of spinors 

associated with the spin structure Spin (n + 1) -+ SO (n 
+ 1) -*§,, of the n-sphere.*l 

VI. PIN STRUCTURES ON HYPERSURFACES 

A simple topological argument** shows that a hyper- 
surface in a Euclidean or Lorentzian space has a pin 
structure. To be more precise, consider an n-dimensional 
hypersurface (Ref. 18, Ch. VIII), i.e., a connected n- 
dimensional manifold M with an immersion f:M -t IV+ ‘. 
Assume that M has a proper Riemannian metric induced 
from R”+l by f. Denoting by T’M the line bundle nor- 
mal to TM, we have that TM CB T’M is trivial and its 
total Stiefel-Whitney class w is equal to 1. From the 
Whitney product theorem23 one obtains 
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l=w(TMeTlM) 

=I+wl(TM)+wl(TIM)+w,(TM)wl(TIM) 

+wdTM). 

Therefore, 

(6.1) 

w,(TM)=w,(T’-M) and w~(TM)~+w~(TM)=O. 
(6.2) 

There are two cases to consider, depending on the 
signature of the metric in the ambient space: 

(a) R”+’ is the flat Euclidean space with the metric 
defined by the standard, positive-definite scalar product. 
The hypersurface M need not be orientable and the sec- 
ond equality in (6.2) is the condition for the existence of 
a Pin(O,n)-structure on M.24 

(b) R”+’ is the flat Lorentzian space with the metric 
defined by a scalar product of signature (n, 1). Assume 
that the normal bundle is timelike, i.e., its fibers are 
spanned by vectors with negative squares. The metric 
induced on M by f is then proper Riemannian and the 
bundle T’M is trivial. Therefore, M is orientable, 
w1 ( TM) =0, and Eq. (6.2) shows that it has a spin struc- 
ture, w2( TM) =O. 

Only case (a) is considered from now on. The nota- 
tion 

Pin(n) instead of Pin(O,n) (6.3) 

is used and “pin structure” means “Pin (0,n )-structure.” 
Let p:P-tM be the principal O( n)-bundle of all or- 

thonormal frames on the hypersurface M isometrically 
immersed in the flat Euclidean space IF+‘. One extends it 
to the trivial bundle P’=MXSO(n+l) by defining the 
embedding k:P-+P’ as follows. Let (ei), i= l,...,n+ 1, be 
the standard frame in the vector space V’ = II%“+ ‘. The 
dual frame (e’) is characterized by (e#) = 8;. Denote by 
f*u the image of ueT,,&f by the map tangent to f at 
m& and consider the vector f*u as an element of V’. If 
P’(PJ, p=l ,..., n, is an element of P, then one puts 
F,,(p) = fd,, and defines another unit vector F,+ 1 (p) by 
requiring it to be orthogonal to f*( T&f) in V’ and such 
that the collection (Fi(p)), i= l,...,n+ 1, is a frame in V’ 
of the same orientation as that of (ei). This gives a map 

F=(F>):P+SO(n+l), F>(p)=(Fj(p),ei), (6.4) 

such that F(pA) =F(p)H(A), whereAEO(n) and His as 
in (3.11). Note that 

Fn+,(pA)=(detA)Fn+I(p) for AWn), (6.5) 

i.e., the normal vector F,,+l(p) changes sign when the 
orientation of the frame p is reversed. 
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The map k:P+P’ defined by k(p) =(n(p),F(p)) is an 
injective homomorphism of principal bundles over M. 
The manifold P’ is doubly covered by the manifold 
Q’ = M X Spin (n + 1). Consider the induced bundle 

Q={(m,a)@‘I(m,p(a))~k(P)} (6.6) 

and denote by I the canonical injection of Q into Q’. Since 
k is injective, there is a map p:Q+P such that kop(m,a) 
=(m,p(a>). This makes Q into a double cover of P. De- 
fining the action of Pin(n) in Q by (m,a)b=(m,ah(b)), 
where bePin( n) and h is as in (3. lo), one establishes the 
commutativity of the diagram 

Qx Pin(n) + 

L b M 

P 
(6.7) 

Px O(n) + P 

and thus completes the construction of a pin structure on 
the hypersurface M. The relations between the bundles Q, 
Q’, Rn+’ X Spin(n + 1 ), etc., are summarized in the dia- 
gram 

t 
Q+Q’+ R”+l x Spin(n+l) 

P‘1 4 L 

R 
P -+ P’ + R”+’ x SO(n+l) 

(6.8) 

f 
M + fR”+l 

Consider now the bundle of spinors E-M associated 
with the principal Pin(n)-bundle Q-M by the represen- 
tation y:Pin (n ) -. GL( S) . The elements of E are equiva- 
lence classes [ ( m,a,c$ >] of elements of Q x SC M X Spin ( n 
+ 1) X S, the equivalence being given by 

(m,a,+) =tm,ah(b),y(b-‘I+), (6.9) 

where (m,a)sQ, &.S, and bEPin( n). Since, according to 
(2.7), the representation y’:Spin(n+ 1) -tGL(S) ex- 
tends y, the situation is covered by the Lemma of Sec. V 
and the bundle E+ M is trivial. A trivializing map is given 
by 

[ (wd) 1 -hr’(aM). (6.10) 

Let $:Q-s be a spinor field; by adapting (4.5) to the 
present situation one can write 
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~m,ah(b))=y(b-‘)tCt(m,a), (6.11) 

where ( m,a ) EQ and kPin ( n ) . Therefore, one can extend 
+, in a unique manner, to a map $‘: Q’ +S such that 

$‘o I=$ and $‘(m,ab)=y’(b-‘)$‘(m,a) 
(6.12) 

for every m&f and a&Spin (n + 1) . Consider the stan- 
dard section s of the trivial bundle Q’ -+ M, 

s:M+Q’=MXSpin(n+l), s(m)=(m,l), (6.13) 

where 1 is the unit element of Spin( n + 1). The corre- 
sponding section of the trivial bundle P’ -) M has a simple 
geometrical meaning: it defines over M the constant field 
of standard frames (ei) . Defining 

Y:M-+S by Y=$‘os, (6.14) 

one introduces a “spinor field” Y globally defined on the 
base M, with values in the typical fiber S of E, rather than 
in the fibers of E. The Dirac operator can be translated to 
an operator acting on Y that is denoted by V. 

It is clear that the result on the existence of a pin 
structure on M is valid under the weaker assumption that 
M is a hypersurface in a spin manifold N. If the principal 
bundle of spin frames on N is trivial, then the associated 
vector bundle of Dirac or Pauli spinors on M is also 
trivial, but, in general, the bundle of Weyl spinors on an 
even-dimensional hypersurface is not. 

VII. NEW FORMULAS FOR THE DIRAC AND 
LAPLACEOPERATORSONHYPERSURFACES 

If $ is a spinor field on a hypersurface M in !Rp”+ ‘, 
then so is the field V$ and one can extend the latter field, 
in the manner indicated in (6.12), to (Vr,6) ‘:Q’ -S. One 
then puts 

VW=(7v~)‘os, (7.1) 

where s and Y are as in (6.13) and (6.14), respectively. 
It is clear that (7.1) defines a linear differential operator 
of the first order acting on S-valued functions on M. To 
compute it explicitly, one can proceed according to the 
following plan: first, one extends D$ to a one-form (04) ’ 
of type y’ on Q’. Second, one uses Eq. (4.21)) and its 
extension to Q’, to write the Dirac operator. Third, the 
extension is pulled back to M by means of the standard 
section sM-+ Q’. 

According to the general theory of connections on 
principal bundles (Ref. 18, Ch. II), the spin( n)-valued 
connection form w on Q extends to the spin( n + l)- 
valued connection form w’ on Q’, w’ =$“egj (ij 
= l,...,n+ l), where o’~+u’~~=O and 

pWrin+l,o, pwv=flve (7.2) 

Therefore, the extension (D$) ’ of the derivative Dlc, can 
be written as 

(D$)‘=d$‘+$aip”$‘, (7.3) 

where 

~Y=t(r$j-rjr ‘1. (7.4) 

To alleviate the exposition, assume that M is orient- 
able and let PO be a restriction of P to SO(n); then Qc 
=p-’ ( PO) is the corresponding restriction of Q to 
Spin ( n ) . The hypersurface M has now a well-defined field 
X of unit normals given by 

X(dp) 1 =F,+l(p) for PESO 

and2’ 

(7.5) 

s*w~‘i=xid$-xj& , (7.6) 

where $ is the jth component of X with respect to (pi). 
Denoting by lo the injection of Q, into Q’, one can intro- 
duce a V’*-valued n-form (vi) on Q’ in such a way that 

n+l eqi=Si 7 and S(a)*qi=qjd(a) (7.7) 

for a&pin( n + 1). Similarly, there is the A2 V’*-valued 
(n- l)-form (qij) on Q’ such that 

i$qii= (S~+1~-6~+1~)~p, etc. (7.8) 

Multiplying both sides of Eq. (4.21) on the left by 
f” one finds that the resulting equation extends to Q’ to 
yield 

#~i(V~)‘=Bi(D$)‘A~~. (7.9) 

Pulling both sides of this equation back to M by the 
section s, using (7.3), (7.6), and properties of the sigma 
matrices resulting from 

~i~j+~j~i= -22su (iJ= l,...,n+ l), (7.10) 

one obtains the new form of the Dirac operator on the 
hypersurface M, 

VY=(r#)(BiX&divX)Y, 

where div X = afik, 

(7.11) 

X,i=XJdi-XJj 3 (7.12) 

and &=a/& denotes differentiation with respect to the 
Cartesian coordinate xi in Rn+ ‘, i.e., a,Y =ci _I dY. The 
vector indices ij,k= l,..., n+ 1 relative to V’ are raised 
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and lowered by means of the Euclidean metric tensor 
with components S, For example, (yak)‘= -Xak 
= - 1. If M is the hyperplane xn+‘=O, then Xi=8;+’ 
and VY =fa,Y. 

The $z( n + 1) vector fields (differential operators) 
Xii( 1 <i<j<n+ 1) are tangent to M; they satisfy the 
identity Xrfiti, =0 and the integrability condition 
X[$k]=O. The latter condition is used in the derivation 
of (7.11) from (7.9). 

The anticommutativity of the operator (4.15) with 
‘yn+ , results in 

(rkXk)V+WrkXk> =a (7.13) 

Note that the right sides of Eqs. (7.6) and (7.11) are 
invariant with respect to the replacement of X by -X: 
this shows that the assumption of orientability is irrele- 
vant and the formula for the Dirac operator holds good 
also for nonorientable M. 

Assume now that there is (at least locally) a foliation 
of R”+l by a family of hypersurfaces. The field of unit 
normals X is now defined on (an open subset of) R”+‘. 
From 2aii= Sii+ riyj one obtains the identity 

ja,=(ygk)cxiai+Bix,). (7.14) 

Introducing the derivative in the “radial” direction, a/& 
=Xiai one obtains a decomposition of the Dirac operator 
in Rn+’ into parts tangential and transverse to the folia- 
tion. 

There is an analogous formula for the Laplacian, 

It+1 a2 
c a: =f X$?+p+ (div X) -$. 
i=l 

(7.15) 

(7.16) 

The first term on the right side of Eq. (7.16) is the La- 
placian on the hypersurface; it generalizes the often-used 
formula connecting the Laplacian on the two-sphere with 
the square of the quantum-mechanical operator of orbital 
momentum. 

Formula (7.15) bears a close relation to Eq. (4.1) of 
Ref. 20. Spinor fields on hypersurfaces have been recently 
considered by Baum26 in the context of Killing spinors; 
the physical aspects of spectral asymmetry of the Dirac 
operator were investigated by Gibbons.27 
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