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Abstract. The article contains a brief review of the first stage of the authors’
research on spinors associated with higher-dimensional geometries and, in particular,
on the physical relevance of Cartan’s simple (pure) spinors. Historical remarks are
followed by a short description of the relation between spinors and null elements.
General properties (grading, bilinear forms, charge conjugation) of Clifford algebras
associated with real vector spaces with scalar products are described and their
double periodicity modulo 8 is exhibited, The latter gives rise to a chessboard
arrangement of the algebras; it is shown how the relevant properties of the spin
representation of every real Clifford algebra can be simply obtained from those of
the representation of an algebra belonging to the chessboard.

1. INTRODUCTION

Spinors — and structures associated with them — are among the geometrical
notions whose importance was recognized as a result of research in physics.
For a long time, the interest of physicists in spinors was restricted to three-
and four-dimensional spaces (Euclidean and Minkowski). Spinors associated with
them have two or four components. Recent work on fundamental interactions
and their unification makes essential use of geometries of more than four di-
mensions. For this reason, spinor structures in higher dimensions and, in parti-
cular, Elie Cartan’s «simple» or «pure» spinors, have now more chance of
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becoming relevant to physics than they had at the time of the appearance of the
article by Brauer and Weyl (1935) and Cartan’s (1938) lectures.

This article contains a brief review of the first stage of our research oriented
towards physical applications of spinors associated with higher-dimensional
geometries. A fuller account is being published under the title The Spinorial
Chessboard in the Springer-Verlag series of Trieste Notes in Physics. It is intended
to be followed by an account of the spinor groups and structures, the geometry
of simple spinors and twistors, and of the associated differential equations.

2. ALITTLE OF HISTORY

There is a prehistory of spinors: the period of time, before the discovery of
the spin of the electron, when mathematicians considered notions and ideas
closely related to those of spin representations (in the present day terminology).
It begins probably with Leonhard Euler (1770) and Olinde Rodrigues (1840)
who discovered new representations of rotations in three-dimensional space. The
latter wrote an equation for a rotation (x, y, z) > (x, y', z") equivalent to

1
(1) Xi= [1 u (m? + n? +pZJ'IUXUT
where
1 1
1+ - — (im + n) 2z X—1y
2 " 2
(2) U= e ;
1 1
- (im—n) 1— =14 x +iy —z
2 2 5

and similarly for X'. The right hand side of (1) is rational in the components
of the vector (m, n, p) parallel to the axis of rotation; the angle of rotation is
Gl = 2 are tg% Vm? + n2 + p? and the unitary unimodular matrices + U cos—;- w
cover the rotation in question. This may be interpreted to mean that Euler and
Rodrigues knew that Spin(3) = SU(2). Formulae for rotations similar to (1)
were also known to Carl Ludwig Gauss (cf. Cartan 1908).

The discovery of quaternions by William Rowan Hamilton (1844)led to a much
simpler, «spinorial» representation of rotations: if ¢ = ix + jy + kz is a «pure»
quaternion and « is a unit quaternion, then

q—»uqu’1

is a rotation and every rotation can be so obtained. This observation, which can
be used to establish the isomorphism Spin(3) = Sp(1), was made by Arthur
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Cayley (1845) who mentioned, however, that the result had been known to
Hamilton. Cayley discovered also a quaternionic representation of rotations in
four dimensions that was equivalent to the statement Spin(4) = Sp(1) x Sp(1)
(Cayley 1855). Quaternions are now an important part of the structure of real
Clifford algebras. In this context, it is instructive to recall the view of Lord
Kelvin (quoted after Kline 1972):

«Quaternions came from Hamilton after his really good work had been done;
and though beautifully ingenious, have been an unmixed evil to those who have
touched them in any way . . . Vector is a useless survival, or offshoot from quater-
nions, and has never been of the slightest use to any creaturey.

The Hamilton-Cayley representation of rotations in 3 and 4 dimensions by
quaternions was generalized to higher-dimensional spaces by Rudolf O. Lipschitz
(1886) who used for this purpose the associative algebras introduced by William
K. Clifford (1878). The algebras considered by Clifford and Lipschitz were
generated by n anticommuting «units» e  with squares equal to— 1. In E. Cartan’s
«Nombres complexes: Exposé, d’aprés l’article allemand de E. Study (Bonn)»
there is a definition and classification of real Clifford algebras of arbitrary signa-
ture (Cartan 1908).

The road to spinors initiated by Euler and essentially completed by Clifford
and Lipschitz may be described as being based on the idea of taking the square
root of a quadratic form. Indeed the matrix X given by (1.2) is linear in x, y, z
and has the property

3) X2 =2 +y2 +20)1
where [ is the unit 2 by 2 matrix; Clifford algebras provide a universal method of
generalizing (3) to higher dimensions and arbitrary signatures.

Spinors have another parentage, related to the study of representations of Lie
groups and algebras. The Lie algebras of orthogonal groups have representations
which do not lift («integrate») to linear representations of the groups themselves.
For example, the Lie algebra of SO(3) is isomorphic to IR? with the vector pro-
duct playing the role of the bracket,

4) le;.e,] = e;, etc.
The representation of (4) given by e, = 0, /2i, where the Pauli matrices are

; e § i i
(5 o=0 =( ), ie=o =( ), T=0 =( ),
Sai e e Py

does not lift to a representation of SO(3), but integrates to a repreéentation of
SU(2), the simply-connected double cover of SO(3), or, in other words, to a two-
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valued representation of SO(3). Cartan (1913) determined all irreducible repre-
sentations of the Lie algebras of the groups SO(n) and found that, for every
n > 2, there are among them representations which do not lift to SO(n). This is
so because the groups SO(n) are not simply-connected; the double valuedness
comes from

6) wl(SO(n)) =z, for n >2

and Spin(n) is the double cover of SO(n) which is simply-connected for n > 2.
Cartan’s approach was infinitesimal: he considered representations of Lie alge-
bras only. Brauer and Weyl (1935) found global, spinorial represnentations of
the groups Spin(n) for all n. This road to spinors may be called topological: it is
related, in an essential way, to the non-triviality of the fundamental groups 7,
of the groups of rotations. It has the virtue of allowing a generalization of the
motion of spinorial representations to general linear groups (Ne’eman 1978).
As a manifold, the group GL* (n, IR) of n by n real matrices with positive deter-
minant is homeomorphic to the Cartesian product of manifolds,

@) SO(n) x R*n+ 12

Therefore, for n > 2, ‘ITI(GL+ (n, R)) = Z, and the group has a simply-connected
universal cover GL™ (n, IR) homeomorphic to

8) Spin(n) x R?("+D/2,

The group GL* (n, R), for n > 2, has no finite-dimensional faithful representa-
tions. In other words, spinors associated with the general linear group have an
infinity of components. They have the virtue of not requiring, for their definition,
any quadratic form or scalar product; they can be contemplated on a «bare»
differentiable manifold without metric tensor. The topological approach to
spinors is more general than the one based on the idea of linearization of a qua-
dratic form.

The importance of the two-valued representations of the rotation group for
physics became clear after the discovery of the intrinsic angular momentum —
spin — of the electron (Uhlenbeck and Goudsmit 1925) and through the work
of Wolfgang Pauli (1927), Paul A.M. Dirac (1928) and many other physicists on
wave equations describing the behaviour of fermions, i.e. particles with half-
integer spin. According to B.L. van der Waerden (1960), the name spinor is due to
Paul Ehrenfest.

Hermann Weyl (1929) put forward a relativistic wave equation for massless
particles described by a two-component spinor function. Weyl’s equation was
criticized by Pauli (1933) on the ground that it was not invariant under reflections.
Ettore Majorana (1937) introduced another equation, closely related to Weyl’s,
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based on a reality condition equivalent to the identification of the particle and
its antiparticle. Two-component equations became accepted in elementary parti-
cle physics after the discovery of parity violation in weak interactions.

At first, spinors baffled physicists who, under the influence of relativity theory
and despite Lord Kelvin’s opinion, were becoming accustomed to scalars, vectors
and tensors. In the words of C.G. Darwin (1928):

«The relativity theory is based on nothing but the idea of invariance and develops
from it the conception of tensors as a matter of necessity; and it is rather discon-
certing to find that apparently something has slipped through the net, so that
physical quantities exist, which it would be, to say the least, very artificial and
inconvenient to express as tensors».

What is a spinor? Every physicist uses this notion frequently and knows it well,
but amazingly diverse definitions of spinors are given in the literature. The dif-
ferences among the definitions of spinors are more profound than those related
to vectors and tensors; for spinors, there are differences in the substance and not
only in the form of the definitions.

Geometry and physics require a scheme to deal with fields of quantities such
as vectors, tensors and spinors. Tensors of various types are first defined in terms
of vectors: for example, they may be described as multilinear maps on Cartesian
products of vector spaces and their duals. This algebraic definition is then extend-
ed to differentiable manifolds by taking the tangent bundle and applying to it
the «functor» corresponding to the type of tensors under study. No such func-
torial or natural construction can be given for spinors because there are topolo-
gical obstructions to their existence on manifolds. Moreover, the «obvious»
algebraic definition of a spinor space may be extended in inequivalent ways
to manifolds (Trautman 1987). The algebraic definition may be formulated as
follows (Chevalley 1954): assume, for simplicity, that V is a 2m-dimensional
real vector space with a scalar product g,,. The space of (Dirac) spinors of (V, g,)
is the carrier space S, of a complex, faithful and irreducible representation of
the Clifford algebra Cl(go). Since the algebra Cl(g,) is simple, all such represen-
tations are equivalent and the 2™ -dimensional space S, is determined up to
isomorphism.

There are at least two inequivalent extensions of the algebraic definition of
spinors to manifolds. We recall them here for the special case of a 2m-dimensional
oriented manifold M with a positive-definite Riemannian metric tensor g.

(i) The standard definition (Haefliger 1956, Borel and Hirzebruch 1958-60)
of a spinor structure on M: it is a spin prolongation P of the bundle F' X of ortho-
normal frames of coherent orientation on M. There are bundle maps
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ZZ
!
Spin(2m) > P - M

| |
So(2m) — Fg M

(see, for example, Dabrowski and Trautman (1986) for details and references).
The bundle T — M of Dirac spinors is associated with P — M by the standard
representation of Spin(2m) in S, = C2" . The prolongation P exists if, and only if,
the second Stiefel-Whitney class of M vanishes.

(i) If M admits an orthogonal almost complex structure J, then one can
define a «Chevalley bundle»

S=ANCAC ®TM)

where N is the totally null subbundle of € ® TM consisting of all complex vectors
of the form u+ J(u), where u € TM. The bundle S > M has S, as its typical fibre
and there is a bundle map

Cl(g) xS =5

making the fibre of § - M at x € M into the carrier space of a representation of
the Clifford algebra Cl(g, ) associated with (T, M, g, ), where g is the restriction
of g to the tangent space T, M.

The bundles £ and S are inequivalent: among even-dimensional spheres only
those of dimension 2 and 6 admit both Chevalley and Dirac bundles. The Dirac
bundles of spheres are all trivial (Gutt 1986), but the Chevalley bundle of S, is
not. All complex manifolds admit Chevalley bundles defined by their complex
structure. In particular, this is true of the even-dimensional complex projective
spaces which have no Dirac bundles.

For most purposes, one assumes the standard definition (i). We have mentioned
definition (ii) to emphasize a certain non-uniqueness in the notion of spinors on
manifolds. The latter definition is closely related to the approach to spinors
through differential forms (Ivanenko and Landau 1928, Kéhler 1960, Graf 1978)
and to the representations of Clifford bundles considered by Karrer (1973).

3. NULL ELEMENTS AND SIMPLE SPINORS

The approach to spinors exposed by Elie Cartan (1938) is based on the use of
- mudl (1) (light-like, optical) geometrical elements: vectors with vanishing squares

(1) In pure mathematics the adjective «isotropic» is used to denote vectors with vanishing
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and linear spaces containing non-zero vectors orthogonal to the space. The con-
nection between spinors and null elements is of fundamental importance for
the applications of spinors in the theory of relativity (Penrose 1960, Penrose
and Rindler 1984, 1986). It is at the basis of the Newman-Penrose (1962) for-
malism developed to study and solve Einstein’s equations. The discovery of
twistors by Pensore (1967) is closely linked to observations concerning a re-
markable Robinson congruence of null lines in Minkowski space (Penrose 1987).
Twistors have led to deep results, such as new methods for solving both linear
and non-linear equations (Penrose and Mac Callum 1972, Ward 1977).

A connection between spinors and null vectors can be illustrated on the old
problem of Pythagorean triples, i.e. triples x, y, z of positive integers such that

) x2 +y? =22

Equation (9) means that the vector (x, y, z) is null with respect to a scalar product
of signature (2,1). It is equivalent to the statement that the symmetric matrix

1 jz+y x
(10) X=—( )
2 5 Z—y

is of rank 1: det X = 0 and X s 0. There thus exists a two-component real «spi-
nor» (p, q) such that

P
an X=( )(pq)
q
or
(12) ¥=200 y=p g =P +g

Not only does (12) give a solution of (9), but every Pythagorean triple of rela-
tively prime integers (x, y, z) can be represented as in (12) by choosing a suitable
couple of relatively prime integers p and.q.

As an example closer to physics, consider the vectors E and B of a non-zero
electromagnetic field, the complex vector

(13) F=E+iB=(F,F,,F,),

and the symmetric matrix

square and also vector spaces consisting of such vectors (Porteous 1981). Physicists refer to
such objects as «nully. The former choice is somewhat misleading since the word «isotropy»
is often used in a different context: there is the isotropy subgroup defined by the action of a
group in a space.
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F, +iF iF.
(14) . 1' 2 3‘ )
zF3 Fl-—th :

Its determinant,
L 2 2
det® = F; + Fy + F;
vanishes if, and only if, the electromagnetic field is simple or null, i.e. when
(15) E-B=0 and E? =B2.

If this is so, then there is a complex two-component spinor ¢ = (:") such that
2

b
o =( ; )(¢1,¢2).
¢,

The spinor ¢ € €2 is determined by F up to a sign and can be also used to form
the Hermitean matrix

e
(16) w=( )<¢1,¢2).
)

Equation (16) can be abbreviated to read ¢ = ¢ ¢ and the matrix ¢ represented
as a linear combination of the three Pauli matrices and the unit matrix o, = I,

17) Y =k*o, (summation over p=0,...,3)

The real vector k € IR* with components given by (17) is null with respect to
the Minkowski scalar product of signature (1, 3). Moreover,

(18) k® =|E|=|B| and k°k=ExB,

where (k!, k2, k3) = — k. Simple electromagnetic fields characterized by (15)
and (18) play a major role in the theory of shear free congruences of null geo-
desics in Lorentzian manifolds; they give rise to an «optical geometry» and a
Cauchy-Riemann structure on the space of null geodesics (Robinson 1961,
Penrose 1983a, Trautman 1985, Robinson and Trautman 1986).

To put in perspective these examples, consider the complex vector space
¥V = €2 with a scalar product g and a faithful irreducible representation

(19) v :Cl2m)—~C2™)

of its Clifford algebra CI(2m). Let ¢ €S = €2™ be a non-zero Dirac spinor. Its
direction dir ¢ defines a vector subspace of V,

(20) N(dir ¢) ={u € V| v(u)$ = 0}.

From the basic property of the representation (19),
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@1) YY) + Yo)yw) = 28, v),

it follows that N = N(dir ¢) is totally null, i.e. every vector in N is null. The
dimension of N is not larger than m. A necessary condition for N to be of the
maximal dimension m is that ¢ be a Weyl spinor, i.e. an eigenvector of the helicity
operator

22) C=i"y% .. Yo

where v = (e, ) ande, (a=1,.. ., 2m) are the vectors of an orthonormal basis
in ¥V embedded in CI(2m). This condition is also sufficient for m =1, 2, and 3:
there is a natural, bijective correspondence between the projective space of Weyl
spinors and the set of maxima, totally null planes of the corresponding helicity.
For m > 4 the complex dimension 2™~1— 1 of the projective space of Weyl
spinors is larger than the dimension m(m — 1)/2 of the manifold

(23) SO Q2m)/U(m)

of maximal totally null planes. Elie Cartan calls a spinor simple (in the French
edition, Cartan 1938; in the English translation, the adjective pure is used) if it
defines by (20) a totally null plane of maximal dimension. Cartan shows that a
Weyl spinor ¢ is simple if, and only if,

(24) Bl a9 T 0
for all sequences of integers a such that
@5) 1<a1<a2<...<cxp<2m and O<p<m—1.

Here B : S — S'* is such that "ya = B'ymB‘1 and it is understood that for p =0
condition (24) reduces to

(26) (B¢, ¢)=0.

The m-form with components given by (24) for p = m characterizes the m-dimen-
sional totally null plane associated with the simple spinor ¢.

In eight dimensions (m = 4) equation (26) is the only condition for ¢ to be
simple. Here simple spinors lie on a «null coney in the eight-dimensional space of
Weyl spinors; an interesting friality, or symmetry between the three eight-dimen-
sional spaces (vector space and two spaces of Weyl spinors), appears in this case
(Study 1903, Cartan 1925, Weiss 1933, Chevalley 1954, Tits 1959, Porteous
1981, Penrose and Rindler 1986).

Simple spinors can be defined in a similar manner for real vector spaces with a
neutral scalar product. For other signatures, if one insists on staying within the
domain of real numbers, the situation is much more complicated and subtle. For
example, if the scalar product is positive-definite, then there are no null directions
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whatsoever and the group SO(n) of rotations acts transitively on the projective
space RP, _, of vector directions. For sufficiently high n, however, the action
of Spin(n) on the projective spinor space is not transitive. The «simplicity» of a
spinor can be measured by the dimension of its orbit under the action of the
spin group: the lower the dimension, the simpler the spinor. Only partial results
have been so far obtained on the classification of orbits of Spin(k, /) and the
geometrical interpretation of simple spinors in those cases (Porteous 1981,
Igusa 1970, Popov 1977, Benn and Tucker 1988, Budinich 1986b, Budinich and
Trautman 1986).

4. GENERAL PROPERTIES OF CLIFFORD ALGEBRAS

In this paper, we describe in considerable detail the spinorial representations
of the Clifford algebras associated with complex and real vector spaces. We give
explicit methods to find the representations for arbitrary dimension and signa-
ture. We also present all the essential information about the invariant bilinear and
Hermitean forms on the carrier spaces of the representations. Special attention
is devoted to the appearance of Weyl and Majorana spinors (of two kinds), to
charge conjugation and to the symmetry and signature of the invariant forms.
Our main tool is the classical theorem about representations of simple algebras.

To obtain an overall picture of the representations of Clifford algebras it is
convenient to divide the study into several steps in such a way that at each step
a new structure is introduced.

(i) At first, one forgets about the Clifford algebra everything but its structure
of algebra & . For any algebra 8 , we denote by 24 the direct sum # @ B.
There are two types of complex algebras,

CR%) and 2C€Q™),
and five types of real algebras,
IREZ). 2RED): HED), 2H2T) and C(27).

The integer m is simply related to the dimension of the underlying vector space.
For example, considered as abstract algebras, the three algebras CI(4), Cl;(4, 1)
and CIO(2.3) are all isomorphic to C(4). Here and in the sequel CI(k, /) denotes
the real Clifford algebra associated with a scalar product of signature (k, 7). Its
even subalgebra is denoted by CI(k, D).

(i) If the Clifford algebra is considered together with its Z,-grading given by
the main automorphism a, then there are still two types of complex algebras;
but already eight classes of real algebras, cf. Table I, «The real clock». This
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provides a classification finer than at the previous step, but one cannot determine
the signature of the underlying vector space from the sole knowledge of its
graded Clifford algebra MO — & . For example, the graded algebra

2IR(8) - IR(16)

is isomorphic to CI(8, 0) - CI(8, 0), CIO(4,4) - Cl(4,4) and C1,(0,8) —» Cl(0,8).
The class of the real algebra CI(k, /) depends on

Q27 k —1 mod 8.
(i) If
(28) v: & —>EndS

is a faithful irreducible representation of a simple algebra & with an involutive
antiautomorphism @, then the contragredient representation

v : of > End S*, where ¥(a) = 'v(8(a)),

is equivalent to 7 and there exists an isomorphism B :S - S* intertwining y and
5. If o is central simple, then B is either symmetric or skew; it defines an inner
product on S. The symmetry of B depends on the dimension n of the underlying
vector space

B forn=0.12,7 mod8
(29) IR —
—B forn=3,4,5,6 mod8
The double periodicity mod 8 given by (27) and (29) gives rise to a chessboard
arrangement of real Clifford algebras alluded to in the title of this work and
presented in Tables I - V.
(iv) There is a great wealth of structure in a Clifford algebra &/ taken together
with the vector space V that generates it:
1. The natural linear isomorphisms

(30) o = AV =~ AV*

allow an interpretation of elements of the Clifford algebra as multivectors or
forms.

2. The grading, & = .210 ® .sx’l, may be used to define an associated graded
or «supery» Lie algebra. Its underlying vector space coincides with & and the
graded bracket is .

[a, b] =ab— (— 1)P9ba, where a € .dp, be ngq,

and p, ¢ = 0 or 1. Of particular interest is the graded Lie subalgebra



372 PAOLO BUDINICH, ANDRZEJ TRAUTMAN

F=KeoVeoAV.
Ifu,vEeV,then
31) [u, v] = uv + vu = 2g(u, v)
so that
K, F1=0,1V, VICK, [V. A*V]C V¥
and
[AZT, ASF)C A%Y.

The last inclusion means that A2V is an (ungraded) Lie subalgebra: it is the Lie
algebra of the orthogonal and spin groups. These groups are also submanifolds of
& ; we defer their detailed description to subsequent work.

3. If & is a minimal left ideal of a simple algebra with unity &, then

v:% ->End %, where y@)b=ab,

for every a € &/ and b € A, is a faithful irreducible representation of &/ . This
gives Chevalley’s (1954) interpretation of spinors as elements of a minimal (left)
ideal of a Clifford algebra.

All Clifford algebras are «supercentral»: numbers (scalars) are the only elements
which supercommute with all elements of the Clifford algebra (Wall 1964). If
(ea) is an orthonormal basis for a scalar product of signature (k, /), then the
square of the volume element

(32) Wb e
is
n? = (— 1)k=-DG=1-D/2

For k — 1 =2 or 3 mod 4 the square is negative and n belongs to the centre of
74 o O &/ , respectively. It may, therefore, be represented by i times the unit
endomorphism of the space of Weyl or Dirac spinors.

There are at least two other «independent» ways of introducing complex
numbers in quantum theory. The first comes from the observation that energy
and momentum are related to translations. Infinitesimal translations are repre-
sented by first-order differential operators. To make them (formally) self-adjoint
one has to multiply them by i. A related observation is that the Laplacian on
compact Riemannian spaces isa negative operator.

Another reason for considering complex wave functions and, in particular,
spinor fields, has to do with electromagnetic interactions. According to the
gauge, or «minimal interaction» principle, wave equations for charged particles
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contain the gradient operator d always in the combination d-ie4, where e is the
charge and A the potential of the (external) electromagnetic field. The i comes
from the fact that the Lie algebra of the group U(1) — the gauge group of electro-
dynamics — consists of pure imaginary numbers. It is not a trivial or obvious
matter that the three i’s (spinorial, quantum-mechanical and electromagnetic)
are one and the same; but they are as indicated by the successes of the Dirac
equation. Similar remarks have recently been made by Chen Ning Yang (1987).

(v) Let & denote Cl(k, I) or Clo(k, ) depending on whether k + / = 2m or
2m + 1, respectively. The algebra &/ is central simple and, therefore, has only
one, up to equivalence, irreducible faithful representation. Let (28) be such a
representation in a space S of complex dimension 2. The complex conjugate
representation

';':Jzi»EndS'

is real-equivalent to <. There thus exists a linear isomorphism C : § whil intertwin-
ing vy and 7,

Y@)C=Cy@), acHA.
It is defined up to a complex factor which can be chosen so that

/k for k—1=0,1,2,7 mod 8,
ClE =
—I for k—1=3,4,5,6 mod8.

Depending on whether CC = I or — I the representation v is real or quaternionic.
Ifitisreal, then there are Majorana spinors (of the first kind) defined by C¢ = + 5
For k — I = 6 mod 8 one can define Majorana spinors (of the second kind) as
eigenvectors of Cy(n), where 7 is the volume element given by (32). There are no
Majorana spinors of any kind for k —/=3, 4,5 mod 8. '

For k + [ = 2m +-1, the full algebra CI(k, I) admits an irreducible representa-
tion < in a complex 2™-dimensional space. This representation is faithful when
restricted to the even subalgebra and can be chosen so that

) = POV

where v=k —/mod 8 and 0 <v < 7.
Therefore, there is the equivalence of representations,

v for =l siand S

~

yora for Sp'=3 1 and 7,

where o is the main automorphism of CI(k, I).
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5. REPRESENTATIONS OF REAL CLIFFORD ALGEBRAS

In this section we give a short summary of the properties of representations of
Clifford algebras of real vector spaces in a language familiar to physicists. The
2™ -dimensional spinor space S is identified with sz, the endomorphisms
v, are 2 by 2™ matrices and the symbols 4, AT and A denote the usual trans-
pose, Hermitean conjugate and complex conjugate of the matrix A4, respectively.
Therefore AT =14.

If (k, 1) is the signature, k + I = 2m or 2m + 1, then there are k + [ Dirac
matrices v, € C (2™ ) such that

(33a) 7a75+7a7a=0 foroiEBraand B =1,k +1
(33b) 72 =1 for k values of a and 72 =—1 for [values of a.

We do not insist here that the first k values of the label should correspond to
Dirac matrices with positive squares; only the total numbers of positive and nega-
tive squares matter.

5.1. The case of even-dimensional spaces, k + / = 2m

Let Kk — = 8p + v, where p is an integer and 0 <» < 7. The matrix

(34) [ =-D2 s S anticommutes with 7,

and

(35) =1

There exist invertible matrices 4, B, C, D, E € C(2™) such that for every a
(36A) v =Ay A7},

(36B) Y, =BY, B,

(36C) e =01,C%

(36D) vl = —Dy D7},

(36E) e =—E'yaE”1.

They satisfy

(37B) = ¢ Iytn=hip

(37E) 'E=(—1y"tm+ D2

(37T) Te=(=18TH

The defining properties (36) determine the matrices 4, . . ., E up to complex

factors. These factors can be chosen so that
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(38) CC = (— 1y-2I8f
(39A) A=BC=At
(39B) D =EC=Dt

(40) E =BT

The remaining freedom is A - A4, B > \uB, C - uC, D - AD, E > NuE, where
Ais real # 0 and u is complex of unit modulus.

If U is an invertible matrix, U € C(2™), then the matrices
(41) Y=ty U

have the properties (33). Marking with primes on the left the matrices associated
by (36A-E) with the matrices "y, , we have

(42A) "4 = UtAU,
(42B) 'B =tUBU,
(420) 'c=U"lcu,

and similar relations for T, 'D and 'E.
The Hermitean forms o' Ag and ¢t Dy, where ¢ € €2 , are neutral except in
the following cases:

(43A) ot Ay is definite for [ =0,k >0,
(43D) oI Dy is definite for k=0,1>0.

These forms restrict to non-degenerate Hermitean forms on the spaces of Weyl
spinors, if, and only if, k is even. For odd k, the matrices A and D change the
helicity of Weyl spinors.

5.2. The case of odd-dimensional spaces, k + /= 2m + 1

Let k — I = 8p + v, where p is an integer and 1 < » < 7. One can choose the
matrices ¥y, - -+, Yo, 41 SO that

(44) AR e p=D2]

There exist matrices 4, B, and C0 such that, for every o
(45A) vl = 1)ldyv, 45!

(45B) Py, = (— 1)m307a361

450) 7, = (= 1)eb2C 4 C5l

and
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(46) B e T
47) tBo = l)m(m + 1)/230
(48) C,Cy= (— 1" -1I8]

The Hermitean form ¢t4 0¥ is neutral except in the case when either k = 0 or
[ = 0: it is then definite.

5.3. Adding one dimension to an even-dimensional space

Let k +1=2m and k — [ = 8p + v, as before. The 2m + 1 matrices

49) Vip v Vg WA Yy 5= r

are Dirac matrices for a space with signature (k + 1, /) and

A for leven,
(50A) Ay=

D for [ odd,

B for m even,
(50B) B, =

E for m odd,

@ i for v =i0ior 4,
(50C+) Cy=

7 GREfor v =205r6;

where the matrices I', 4, . . ., E are asin §5.1.
Similarly, the 2m + 1 matrices
Wi 0 andiey, - = i’

are Dirac matrices for a space with signature (k, / + 1). The intertwining matrices
A0 and B0 are asin (50A) and (50B), but

@ for v—72 onl6;
(50C-) Cy=
CT for v =0 or 4.
5.4. Adding a 2-dimensional neutral space

As an example, we give explicitly all relevant quantities for an extension from
signature (k, 1) to (k + 1, 7 + 1). We choose an extension of special kind that
allows a simultaneous treatment of even- and odd-dimensional spaces. One can take

(51) v, =08y, (a= L, k+0, %, 141=7®1 and Ves142=€@1

(i) For k + | = 2m we have
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F’;0®F, G =l C
(52) A'=1eD, D'=(—1)liev4
B'=18E, E'=(—1)*lice B
(ii) Fork +1=2m + 1 we have

ie® A, for I even,
(53A) A

,-—
s

7@ A, for I odd,

—ie® B, for m even,
(53B) B6=

T®B, for m odd,

IeC, forv=1ors,
(530) C(',=

ioeC, for v=3or7,

where k — I = 8p + v and the matrices A, B, and C; are in the same relation
to 7, as the matrices 4, B, and C, are to 7v,, cf. §5.2.

6. THE SPINORIAL CHESSBOARD

There are several «periodicity properties» of real Clifford algebras and their
representations. The type of the algebra depends only on kK — / mod 8. But the
symmetry properties of the invariant bilinear forms depend on k£ + / mod 8.
There is a «double periodicity» in the set of all real Clifford algebras: it is con-
venient to describe it by referring it to a chessboard.

We define the spinorial chessboard to be the set of 64 real algebras

{cik, Do <k 1<7}

where it is understood that CIO(O,O) - CI(0,0) is the algebra R = IR, i.e. Cll(0,0) =
= {0}. In addition to the chessboard — and representations of its elements — we
consider the two eight-dimensional Euclidean algebras CI(8,0) and CI(0,8).
According to the periodicity property, if kX' = k + 8p and I' = I + 8¢, then

(54) Cl(k', 1"y = Cl(k, ) R(16P*9).

Therefore, every Clifford algebra can be represented as in (54), with CI(k, I) on
the chessboard. The significance of this remark goes beyond the mere isomor-
phism of algebras (54): the representations of CI(k’, ") and the associated bilinear
and Hermitean forms can be easily constructed from those of CI(k, I). Adding
eight dimensions makes larger the Clifford algebra and the associated spinor
spaces, but preserves their essential properties such as the symmetry of B, type
of €, etc,
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To make the last statement more precise, consider a vector space V = R® with
a positive-definite scalar product. The faithful irreducible representation of its
Clifford algebra,
(55) CI(8,0) > End S,

is real so that S can be taken to be a real, 16-dimensional space (of Majorana

spinors). Let (ey, . . ., €g) be an orthonormal basis in V. The set of 28 products
of the form
€€ .e, , where 1<o; <o, <.. .<ap <8,
P

constitute a basis of the algebra. This basis is orthogonal for the scalar product
h on CI(8,0) defined by

h(a, b) = Try(B(a)b).

Indeed, if

a=eml ep and b=e61' eﬁq,
where

1< < <ap<8 and 1<, < <ﬁq<8,
then

B(a)b = 1 whenever p =q and o =61, cn O =Bp,
and

Tr ¥(B(a)b) = 0 otherwise.

Therefore, the scalar product % is positive-definite and the symmetric bilinear
form B is also positive-definite. We choose a basis in S such that B is represented
by a unit matrix with respect to this basis, and we use the basis to identify S with
IR!6 50 that the representation (55) can be described as

(56) 0 : CI(8,0) > IR(16)
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and 6 = 6, i.e. the Dirac matrices
0. =) a=1...8

are symmetric,

They may be chosen to be

6,=00lelel, 0,=eveclal,

f,=evo0ocel, 94=e®0®o®/£ /5
(57)
05=E®O®T®€, 06=e®1'®l®e,
07=e®r®e®a, 08=e®‘r®e®‘r,
Their product

O=70l0lel
is also symmetric and ©2 = I. There is the decomposition
6,=0, ®0_,
where
(58) 6, : Cl,(8,0) > R(8)
are the inequivalent Weyl representations of the even algebra. Since © anticom-

mutes with the Dirac matrices, one can construct a faithful irreducible represen-
tation of the opposite algebra

(58%) %0 : C1(0,8) > IR(16)
by putting
(59) o) =Sl o=t
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so that the Dirac matrices (59) are skew and

(60) ‘40, =0 «0,671.
Let
(61) v :Cltk, ) > End §

be a representation of the Clifford algebra CI(k, /). One can extend it to repre-

sentations

vy :Cl(k + 8,1) > R(16) ® End S
and

v :Cltk, I + 8) > R(16) ® End S
by putting
(62a) ¥, =08y, =7 (@=1,..,k+D),
(62b) Yorket=0,01 @=1,...,8),
and
(62c) Toizi1=60,01 (@=1,...,8)

Marking with primes or double primes the quantities corresponding to the exten-
sions ' or ", respectively, we obtain for k + [ even

'=eer=r"
A'=IeA, A"=004
B —JeB B! =0¢B
(63) = Tel =0
D'=0eD, D"=I®D

E'=0©eE E"=IoE.
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Adding 8 «positixfé» or «negativey dimensions preserves the character of A4, B,
C or D, E, C, respectively. If A or D is definite, then sois A" or D', respectively.
There are similar results for k£ 4+ / odd, namely:

(64A) A(')(forleven) andAg(forlodd) =I®A0,

(64B) B;) (for m even) and Bg (form odd) =Ie B,

(64C) Cé and C(')' (forv=1o0r5)=1eC,

(65A) Aa (for 7 odd) andAg (forleven) =@ ® 4,

(65B) By, (for m odd) and B (for m even) = ©® B,

(650) Coand Cy (forv=30r7)=0 8 C,.
—_—

=
(3}

C H

coiles

H ~-—1 _2IHH

Table I. The real clock (3.

may be used to find the Clifford algebra CI(k, I) and its even subalgebra Clo(k, D):
compute first the hour p such that / — k = 8p + u, where p is an integer and
0 < u < 7. The letters adjacent to the hour determine the type of the algebras.
The dimension of the full algebra is 2¥*!. For example, Cl,(3,5) - CI(3,5) is
C(8) - H(8) because, in this case, ¢ =2 and dim H(8) = 98

() The complex clock is much simpler: it has a two-hour dial.
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///// //// ////// //%
zo'q/i ////, % ///// -_-j--__i_
MVM}%W%/// //////’7 "-E"-J:‘
o./i "1/%////’2,;%7/////%47//////4 __i__;
w o B 000 DR

Table II. The Spinorial Chessboard.

Even- and odd-dimensional Clifford algebras CI(k, I), 0 <k, I <7, occupy, respec-
tively, black and white squares of the board. For example, the algebra CI(3,1)
of Minkowski space is at the square of the white queen’s pawn. Every real Clifford
algebra can be reached from one on the board with rook’s moves to the right and
upwards, each move being by a multiple of eight squares, as described by (62)
and (63).
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Table II. The structure of the algebras occurring on the chessboard may be determined from
the following data.

White and black dots replace here the squares of the chessboard. The figures on
the left and lower sides are values of the volume element squared. Those on the
right and upper sides determine the type (real if 1, quaternionic if — 1) of the full
(for k + I even) or even (for k + [ odd) Clifford algebra.
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B
FEA&HWHGHFAEﬁFﬁFA
B e

() (5,9 E0) (o) (#) (=00) () (o) ]
E

Table IV. The bilinear forms and their symmetries.

The isomorphisms B and E defined by ’7a = B'yaB"1 and tya = —E'yaE‘1 are
either symmetric or skew and they either commute or anticommute with the
helicity operator I'. These properties are indicated above by pairs (€, , €,) where
€; and €, = + or-. They are defined by ‘B = €,Band Bl ethB; and similarly
for E.
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D definite ~
(07) ¢

(08)

(0s)

(04) c——J

(0} OB
(0,2) ¢——
(01) O>—¢—02 o s TEE . R |
L ok 1a A |
(kD)=00)  GOF (M (300 @9 0 @) (0] 3
A definite

Table V. The Dirac (Hermitean) forms.

The isomorphisms A and D are defined by 'yl = A'ymA"1 and 'yl = —D'yaD‘l.
They both exist for even dimensional spaces. In an odd number of dimensions,
exactly one of the two exists, depending on the parity of k; this is indicated by
the letter A or D next to the corresponding white dot. The Hermitean forms
A(¢, ¢) are (positive) definite for the algebras Cl(k, 0); similarly, the Hermitean
forms D(¢, ¢) are (positive) definite for CI(0, /). Otherwise they are neutral.
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7. CONCLUDING REMARKS AND OUTLOOK

Every physicist will agree that spinors are a necessary and important tool in
the description of fundamental interactions. The success of the Dirac equation
is one of the most beautiful chapters of theoretical physics. Spinors play a major
role in essentially all recent attempts at building new models (grand unification,
supersymmetry, strings and membranes). They are also very useful in the clas-
sical, relativistic theory of gravitation (Penrose and Rindler, 1986). An impressive
example of the usefulness of spinor analysis in a new domain has been provided
by Edward Witten (1981a) who proved the «positive energy theorem» in Einstein’s
theory in a manner which is more transparent than the earlier proof due to
Schoen and Yau. Thirring (1972) showed that by considering spinors in a five-
dimensional space one can obtain CP violation in a geometrical way. Recent
renewal of interest in generalized Kaluza-Klein theories (cf., for example, the pa-
pers by Witten (1981b), Abdus Salam and J. Strathdee (1982), and Steven Wein-
berg (1983)) has led to considering spinors in spaces of dimension greater than
four. In a somewhat different context, one of us (Budinich 1979, 1986b) propos-
ed to consider fields of simple (pure) spinors in suitable higher-dimensional spaces
and to relate them to wave-functions of physical particles. There are indications
that in this manner a «natural» way of deriving interaction terms of Lagrangians
of particles with internal symmetry may be obtained. Attempts have been made
to write a differential equation for simple spinors, consistent with the quadratic
constraints (24). For example, the method of Lagrange multipliers, applied to a
variational principle in 7 space-time dimensions, leads to a Weyl equation for

~simple spinors with a «mass term» induced by the constraint (26) (cf. Budinich
and Trautman 1986 and the references given there). A remark on the possible
physical relevance of simple spinors has also been made by A.D. Helfer (1983).

There are some «unexpected» applications of spinors: spinor connections on
low-dimensional spheres coincide with simple, topologically non-trivial gauge
configurations (Budinich and Trautman 1986). Spinors provide a fine tool for
the study of topological properties of manifolds (Atiyah, Bott and Shapiro
1964, Atiyah and Singer 1968). There is a remarkable «spinorial» form of the
Enneper-Weierstrass formula for solutions of the equation for minimal surfaces
and of its extension to strings (Budinich 1986a, Budinich and Rigoli 1987, and
the references given there). It is based on a representation of complex and real
null vectors in terms of spinors, analogous to those described in §3.

Considerations such as these convince us that there may be something more
to spinors than has been said and seen so far. This view has been put forward,
quite a long time ago, by Roger Penrose who pursued the most comprehensive
and farthest reaching programme of applying spinors — and their close relatives,
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twistors — in fundamental physics. We share his view «that we have still not yet
seen the full significance of spinors — particularly the 2-component ones — in
the basic structure of physical laws» (Penrose 1983b). We are inclined, however,
to extend the belief in the significance of spinors to those associated with higher-
dimensional geometries and replace the phrase about the 2-component spinors
by one referring to simple spinors and the homogeneous spaces mentioned in §3.
(Note that, in four-dimensions, simple spinors have two components. More
generally, Weyl spinors are simple in neutral spaces of dimension < 6. In parti-
cular, twistors are simple).

Our work is an attempt to follow this road. The present article is a preparation
for a systematic study of the spin and pin groups and of their representations in
relation to simple spinors. We intend to make more precise the idea that the
dimension of the orbit is a measure of the simplicity of spinors it contains, use
our methods to derive the biquadratic spinor identities (Case 1955), study (sim-
ple) spinor fields on homogeneous spaces — such as the one arising from confor-
mal compactification — and consider the possibilities offered by various schemes
of dimensional reduction. As many before us, we draw encouragement from the
Great Masters. Some of them have already been mentioned. We conclude these
remarks with a quotation from Hermann Weyl (1946):

«The orthogonal transformations are the automorphisms of Euclidean vector space.
Only with the spinors do we strike that level in the theory of its representations on
which Euclid himself, flourishing ruler and compass, so deftly moves in the realm
of geometric figuresy.
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