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An explicit construction of spinor structures on real, complex, and quaternionic projective spaces
is given for all cases when they exist. The construction is based on a theorem describing the bundle
of orthonormal frames of a homogeneous Riemannian manifold. This research is motivated by a
remarkable coincidence of spinor connections on low-dimensional spheres with simple,

topologically nontrivial gauge configurations.

I. INTRODUCTION

Spinors—and structures associated with them—are in-
dispensable in physics and important in geometry. They
have become an essential tool in theoretical physics of parti-
cles and nuclei; they are also useful in the study of gravita-
tion.! A proper treatment of spinors on manifolds, with an
account of their topology, is relatively recent.? It has led to
the deep idea of spin cobordism,? to a study of harmonic
spinors* and of the index theorem for the Dirac operator.’

In physics, spinors have recently acquired a new signifi-
cance through the twistor program,® work on supersym-
metry and unified theories based on higher-dimensional geo-
metries of the Kaluza—Klein type. There are interesting
ideas on the possible physical relevance of inequivalent
spinor structures.” The Feynman method of quantization
based on sums over classical histories applied to gravity cou-
pled to fermions requires an analysis of nontrivial spinor
configurations.

A somewhat unexpected link between spinors and an-
other part of physics consists in the recognition of coinci-
dences between spinor connections on low-dimensional
spheres and simple, topologically nontrivial gauge configu-
rations.® Indeed, any sphere S, of dimension n>2 has a
unique spinor structure. The Levi-Civita connection corre-
sponding to the standard Riemannian metric on S, lifts toa
spinor connection, which may be interpreted as a “gauge
configuration” for the group Spin(#). This configuration is
invariant under the action of Spin(»n 4 1) and satisfies the
Yang-Mills equations on S,. For example, the cases
n = 2,3, and 4 correspond to the Dirac magnetic pole of low-
est strength, the meron solution, and the instanton-cum-
anti-instanton system, respectively. Landi® has shown that
the spinor connection on Sg concides with a gauge configura-
tion described recently by Grossman, Kephart, and Stasheff
(GKS).'® Rawnsley'! generalized the duality properties of
the instanton and of the GKS solution to the gauge field
obtained from the spinor connection on any 4k-dimensional
sphere. The local, differential-geometric properties of the
spinor gauge fields and Riemannian curvature tensors of
spheres are the same, but their global properties are differ-
ent; in particular, they have different values of “topological
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charge.” For example, the Levi-Civita connection on S, cor-
responds to a magnetic pole of strength twice the lowest,
Dirac value. The meron charge is related to the Chern—Si-
mons'? conformal invariants.

These considerations have led us to study spinor struc-
tures on projective spaces, which are, after spheres, the sim-
plest homogeneous manifolds. The natural spinor connec-
tions on these spaces also may be interpreted as simple gauge
configurations, but we postpone their description to another
work. In this paper, we restrict ourselves to the construction
of the spinor structures themselves.

In order to find the spinor structures on a Riemannian
manifold it is convenient to know its bundle of orthonormal
frames. For a “generic” manifold without isometries there is
not much one can say about this bundle: it is, for example, a
parallelizable manifold, but this does not help much in con-
structing spinor structures. If, however, the manifold is ho-
mogeneous, i.e., admits a transitive Lie group G of isome-
tries, then its bundle of frames can be explicitly described in
terms of G and its subgroups. Moreover, the bundle of ortho-
normal frames can be restricted to a subgroup of the full
orthogonal group. Such a restriction is convenient because it
allows one to work with a bundle of lower dimension than
that of the bundle of all orthonormal frames.

If a Riemannian n-manifold M is orientable, then its
bundle of frames can be restricted to SO(n). This group
admits a unique, nontrivial (for n > 1) double covering by
the spin group, Spin(n)—SO(n). A spin structureon Mis a
“prolongation” of the bundle of frames that “agrees” with
this covering. (The precise definition is recalled in Sec. I1.)
It exists if, and only if, the second Stiefel-Whitney class of M
is zero. In the nonorientable case the situation is somewhat
more complicated (Whiston'?). The full orthogonal group
O(n) has, in general, several inequivalent double coverings.
For example, for n = 1, Spin(1) = Z, and SO(1) = 1, but
the orthogonal group O(1) = Z, has two different cover-
ings:

P Ly XZy—Z,
In any dimension n, two such coverings p, and p_ can be
obtained from Clifford algebras of R" equipped, respective-
ly, with quadratic forms ¢ and — &, where

H(x) =x7 + o +x2.
The topological obstructions to the existence of prolonga-

tions of the bundle of frames associated withp, andp_ are
different from each other. We use the term “pin* structure”

and p_:Z,—Z,.
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for such a prolongation corresponding top * . In Sec. III we
show that a real projective space of dimension 2k admits two
inequivalent pin™ or pin~ structures depending on whether
k is even or odd. We also give an explicit description of the
spin structures on odd-dimensional complex projective
spaces in terms of metaunitary groups.

Il. PRELIMINARIES: SPINOR GROUPS AND
STRUCTURES

This chapter contains a brief summary of the basic defi-
nitions and results related to spinor groups and structures
that are needed in the sequel. We follow rather closely the
articles by Atiyah, Bott, and Shapiro,’* Atiyah and Bott,'”
and Karoubi,'® but we adapt the notation and terminology
to our needs.’

Let (¢;), i = 1,...,n, be the standard orthonormal frame
in R". We denote by C *(n) and C ~(n) the two related
Clifford algebras generated by the e’s subject to the relations

e +ee,=+25,;, and —25,; (ij=1..n),

respectively. In any of the Clifford algebras we have the main
involution a and the main anti-involution 8. The groups
Pin* (n) and Pin~ (n) consist of all invertible elements of
C *(n) and C ~ (n), respectively, which preserve the under-
lying vector space R” under the twisted adjoint representa-
tionp , ,

Py (v=als)vs™!, seC £(n),

and are normalized by |B(s)s| = 1. [The last condition is
meaningful because the previous ones imply B(s)seR.] In
general, the groups Pin* (n) and Pin~ (n) are nonisomor-
phic. The connected components of the identity of these
groups consist of even elements and are isomorphic to each
other; they are both denoted by Spin(n). The sequences

where veR",

rd
1—Z,—Pin* (n)—i>0(n)—>1
and
P
1—»Z,—Spin(n)—>SO(n)—1, where p=p, |Spin(n),

are exact. We use the generic term “spinor group” to denote
one of the groups Spin(n), Pin*(n), or Pin—(n),
n = 1,2,... . The centers of these groups are as shown in Ta-
ble I. Here Z,={1,— 1}, Z; ={l,e}, Z; ={1,— €},
Z,={l,,—1,—¢€}, and e = ¢je, - ¢, is the “volume ele-
ment.” The products occurring in Table I are direct. Note
also that if e ePin* (n), then

€2= ( + l)n( _ 1)n(n—1)/2.

TABLE I. Centers of spinor groups.

n Spin(n) Pin* (n) Pin~(n)

4k Z; X1, Z, z,
4+ 1 Z, 27 XZ; zZ,
4k +2 z, zZ, Z,
4k +3 z, Z, Z' xX1;
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The existence of spinor structures on projective spaces de-
pends crucially on the structure of the center of an appropri-
ate spinor group. It is convenient to define

Pin*(n), for n=0,1 mod 4,
Pin—(n), for n=2,3 mod4,

and make a corresponding notational convention for the
covering map p. If 2 is one of the groups Spin(4k) or
Pin(2k + 1), k=1,2,.., then [s], denotes the coset
SZEeS/ZF,i.e., if s,tcX, then

[s], =1[r],
We inject R" into R"*' by sending (x,,..,x,) into
(x1,...4X, ,0) and extend this to injections of the correspond-
ing Clifford algebras and spinor groups.

In order to adapt to our purposes the classical definition
of a spinor structure on the tangent bundle of Riemannian
manifold M (see Haefliger and Milnor in Ref. 2), consider
the following. Let M be n dimensional with a positive-defi-
nite metric tensor g. Let ) be a closed subgroup of O(n) and
2 =p;"(Q)CPin* (n). Assume that F C F, is a restric-
tion to € of the bundle F, of all linear frames on M that are
orthonormal with respect to g. A spinor structure on M is
defined by giving a prolongation of 77: F—M to the group Z,
i.e., principal Z-bundle : S—M and a morphism of bundles
7: S—F such that there is a commutative diagram

S X 3 —— \0‘
X Ps 1 i i M
F X Q=—————F /ﬂ"

where the horizontal arrows denote the action maps. If
QCSO(n), then M is orientable and one has a spin struc-
ture. If M is nonorientable, then F, is connected, but ( is
not, and one has a pin* structure. The two structures pin*
and pin~ corresponding to the two covering maps p* and
p~ are, in general, inequivalent. In some cases one exists
whereas the other does not as may be seen from the topologi-
cal conditions for their existence'®: w, =0 for pin*, w?

+ w, = 0 for pin~, and w, = 0, w, = O for spin. (Here w,
and w, denote, respectively, the first and second Stiefel-
Whitney classes of the tangent bundle of M.) We sometimes
say “pin structure” when we mean one of the two and we use
the generic term “spinor structure” to denote a pin or spin
structure.

It is clear that, given the bundles described above, one

can always extend their structure groups  and X to O(n)
and Pin* (n), respectively. The extended bundles provide a
classical description of pin structure. Conversely, given such
a classical pin structure on M, say

Pin(n) = [

iff s=tors= +te.

’

f
Pin* (n)—P —>Fg—->M y

and a restriction F of F, to QCO(n), one can restrict the
structure group Pin* (n) of P to X by taking the induced
bundle S = f~'(F). Similar remarks apply to spin struc-
tures.

The classical definition of equivalence of spinor struc-
tures can be easily adapted to our considerations. Let, for
simplicity, 7,: S,—F (a=1,2) be two spin structures,
where each S, is the total space of a principal Z-bundle over
M. They are equivalent if there is a based isomorphism
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i: $,—S, of principal 2-bundles such that 7,°/ = 7,. The
bundles 7o7,: S,—M may be isomorphic, as principal 2-
bundles, without defining equivalent spin structures. The
equivalence classes of isomorphic spinor structures are in a
bijective correspondence with the elements of H M,Z,),the
first cohomology group of M with coefficients in Z, (see
Milnor? and Whiston'?).

. FRAME BUNDLES OF HOMOGENEOQUS SPACES

We restrict our study to very regular situations: all man-
ifolds and maps are smooth, Lie groups and other spaces are
compact, and subgroups are closed. All Riemannian mani-
folds are proper, i.e., their metric tensors are positive definite.
The italicized adjectives will be omitted from now on.

Let M be a manifold admitting a transitive left action y:
G X M—M of a Lie group G. Denoting ¥, (x) = y(a,x) one
has y, 9, = 7,,, for any a,bG, and y, = id, where 1 is the
unit of G. Let H = {aeG: y, (x) = x} be the stability (“lit-
tle””) group at xeM. The homogeneous space M is canonical-
ly diffeomorphic to the quotient space G /H. The diffeomor-
phism h: G /H—M, mapping the coset bH, beG, into y,, (x),
intertwines the actions of Gin G /H and M, hoy, = y,°h for
all aeG (cf., for example, Bredon'®). We shall often identify
G /H with M and, by doing so, make # disappear.

Let 7. denote the tangent map to ¥, at x. For any aeH,
this map is a linear automorphism of the tangent space 7, M
to M at x, and

¥': H>GL(T, M)

is a homomorphism of groups. Its kernel N is a normal sub-
group of H and, therefore, also a subgroup—but not normal,
in general—of G. According to the general theory of fiber
bundles (Steenrod'?) these data define a principal H /N bun-
dle

F=G/N-G/H=M, (N

where the action of H /N in Fis given by (aN) (bN) = abN,
aeG and beH.

Let now M be an n-dimensional Riemannian manifold
with a metric tensor g admitting a group G of isometries
acting transitively on M. The preceding construction leads
to the following theorem.

Theorem: The bundle 7: F—M, defined by (1), is a re-
striction to the group H /N of the bundle 7,: F,—M of all
linear frames on M, orthonormal with respect to the metric
tensor g.

To prove the theorem, it suffices to give an injective
immersion i: F—F, and a monomorphism of Lie groups j:
H /N—O(n) such that

{(aN) (bN)) = i(aN) j(bN) and
Recall that an orthonormal frame in an n-dimensional vec-
tor space ¥ may be identified with an isometry from R” to V.
Let £ be a frame at x, orthonormal with respect to g. This
frame is unchanged by 7., acH, if and only if aeN. For any

aeG, the composition ¥, © f is a frame at y, (x), also ortho-
normal with respect to g. The maps / and j are now defined by

i(aN) =y;°f,

m ol =1. (2)

acG,
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and

JOON)=f"toy,of, beH,
where

f~ % T.M—>R"

is the inverse, or “dual,” frame with respect to f. The mor-
phism properties (2) are now easy to verify.

Example 1: The (n — 1)-dimensional sphere S, _, with
its standard Riemannian metric admits SO(») as a group of
isometries. The action y of SO(n) on S, _, is transitive and
the stability group of any point is isomorphic to SO(n — 1),
whereas N = ker ¢’ reduces to the identity. The SO(n — 1)-
bundle,

SO(n)—-80(n)/SO(n—-1)=S§,_,,

is simply the bundle of orthonormal frames of S, _, with
coherent orientation. For n even, n = 2k, the group SO(2k)
contains a subgroup U(k), which also acts transitively on
S« _ 1. The stability group is U(k — 1) and
Uk)—-UKk)/Uk—1) =8, _,

is the bundle of “‘unitary frames.” Similarly, for n = 4/, there
is the bundle of “‘symplectic frames”
SP()—Sp(H)/Sp(I—1)=8,_, .
Example 2: Let K denote one of the three number fields:
R, C,or H. The set K™+ ! is a right module (a vector space if
K=RorC)overK:ifg=(g,)eK" "', a=1,.,n+ 1,
and A€K, then

gl = (g, A)e K"+,
so that
(@A =q(An), q(A+p)=ql+gqu, etc.,

forany A, ue K. If ge K"+ ' and g0, then the direction of ¢
is the set

dir ¢ = {gA: 0#4ie K}
and the set of all such directions is the projective n-dimen-
sional space over X,

KP, ={dirq: 0#geK"*'}.

The module K" has a natural, positive-definite quadratic
form ¢ given by

#(g) = 21 9uda >
whered = A for K = Rand is the conjugate of 4 otherwise.
Let U(n,K) be the set of all maps a: K"K " such that
¢oa=¢, a(gh) =a(g)A, and a(g+4q') =a(q) +a(q")
for any Ae K and ¢,q'e K" . With respect to composition of
maps this set is a group, namely

O(n), R,
UnK)=4U(n), for K=1C,
Sp(n), H.

The action of U(# + 1,K) in KP, given by
¥, (dir ¢) = dira(q)

istransitive. Let e, denote the elementof K™ * ' consisting of
1 at the ath place and zeros elsewhere so that
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n+1

7=y €,q,.

a=1
The stability group H of x =dire, , , € KP, may be com-
puted as follows; let

aleg) =Y e,a,5,
a

where g,3,€K and af=1,..n+1. The condition
dira(e,,,) =dire,  , impliesa,,,, =0fora=1,...
Since ¢oa = ¢ is equivalent to

E araa.yﬂ = 5aﬂ ’
14

we obtain also g, | , =0, for @ = 1,...,n, so that H is iso-
morphic to U(1,K) X U(#,K). The isomorphism is realized
as follows: if AeU(1,K) and b€U(n,K), then the correspond-
ing element of H is represented by the matrix

b 0)
= } 3
a (0 (3)
Let y: R—»>KP, be a curve through x, y(0) = x. For suffi-
ciently small |# | one can write

y(t) =dirle, ., +q(2)),
where

n

g(t) =Y e,q,(t), ¢(0)=0,

a=1
isacurvein K" . The tangent vector to y at t = O is represent-
ed by

q(0) =v= zn: e, v, .

a=1

If acH is as in (3), then the tangent vector to the curve
=7,y (1))

=dirale, ,, + ¢(2)) =dirfe, , ;4 + bq(?))

=dirle,, , + bg(t)A 1)
is represented by

y.(v) =bvd 'eK".
Therefore, the kernel N of ¥’ consists of all matrices of the
form (3) such that bv = vA forany ve K”. It follows that b is
A times the unit automorphism of X" and A belongs to the

center of K. The group N is thus isomorphic with the center
of U(n + 1K),

Z2 ’ R ’
N=43U(1), for K=1GC,
Z,, H.
Taking into account
z2 H R ’
U(LK) =4{U(l), for K=1C,
Sp(1), H,
we can compute the structure groups
O(n), RP, ,
H/N=3{U(n), for {CP, ,
(Sp(n) XSp(1))/Z,, HP, ,

and the reduced bundles of orthonormal frames
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O(n+1)/Z,, RP,,
G/N={U(n+1)/U(1), for {CP,,
Sp(n+ 1)/Z, HP, .

For n even, n = 2k, the quotient O(2k + 1)/Z, can be
identified with SO(2k + 1): the bundle of all orthonormal
frames of RP,, is connected, i.e., RP,, is not orientable.
Note that the quotient O(2k + 1)/Z, may also be represent-
ed as Pin(2k + 1)/Z;* XZ; . For n odd, n =2k — 1, the
quotient O(2k)/Z, is the disjoint sum of two copies of
SO(2k)/Z,. Therefore, RP,, _, is orientable and its bundle
of orthonormal frames of coherent orientation is diffeomor-
phic to SO(2k)/Z,. The bundle U(n + 1)/U(1) is diffeo-
morphic to the quotient SU(n + 1)/Z, ., of the group
SU(n + 1) by its center.

Example 3: Consider a Lie group G with a bi-invariant
metric; e.g., if G is semisimple, then such a metric is obtained
from the Killing form. In this case, the manifold of G is a
homogeneous Riemannian space with respect to the action
of G X G given by

Yeaw (¢) =ach ',

for any a,b,ceG. The stability group at the unit element of G
is isomorphic to G embedded diagonally in G X G. For any
aeG, the map ¥, ,, coincides with Ad,, where

Ad: GHGL(g)

is the adjoint representation of G in its Lie algebra g = T,G.
The kernel of Ad is the center Z(G) of G and the reduced
bundle of orthonormal frames is a G /Z(G)-bundle

(G XG)/Z(G)-G. (4)

Note that, unless G is Abelian, the total space of the bundle
(4) is “larger” than that obtained by considering G as a
homogeneous space with respect to left translations.

IV. SPINOR STRUCTURES ON SPHERES AND
PROJECTIVE SPACES

In this section we use our description of the restricted
bundle of orthonormal frames to construct spinor structures
on spheres and on the projective spaces: RP, (n = lorn> 1
and #1mod4), CP, _, (k=12,.), and HP,
(n=1,2,...). The case of spheres is easy and well known.
For an orientable projective space over K, the crucial infor-
mation is contained in the structure of the center Z(n,K) of
the group 2(n,K)=p~' (U(nK)nSO(m)), where p:
Spin(m)—SO(m) is the covering map and m = n dimg K.
If the center is a direct product of the form Z,XA(nK),
then there is a spin structure on KP, _, given by the se-
quence

2(nK)/A(nK)>2(nK)/Z(nK)—KP, , . (5)
A similar statement applies to the nonorientable space RP,, ;
here the relevant groups are Pin(2k + 1) and its center.
Each real projective space other than RP,,, , (/= 1,2,...)
has two pin or spin structures. We construct them both and
show that they are inequivalent.

A. Spheres

The circle S, has two inequivalent spin structures (Mil-
nor?). Since both S, and SO(2) can be identified with U(1),
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and Spin(1) = Z,, these structures are given by the maps

U(I)XZZ—>U(1);>U(1)

Pry
and

U — u(H)—-U(1).

square id

For any n>>2, there is a unique spinor structure given by
Spin(n + 1)>80(n + 1)—S, .

Forn=4/—1 (/= 1,2,..) one can restrict the bundle of
frames to (2 =Sp(/—1) and the spinor bundle to
2 =8p(l — 1) XZ,. The (restricted) spinor structure is

Sp(h) XZ,—Sp{D)—S,;_, .

There is an analogous restriction of the spinor bundle of
S, to the metaunitary group MU (k) CSpin(2k), cf.
Sec. IV C.

B. Real projective spaces

(i) Consider first the case of odd dimension. The one-
dimensional real projective space is diffeomorphic to the cir-
cle S}; its spin structures have already been given. Let now
the dimension n =2k — 1 be greater than 1. The space
RP,, _, is orientable and the fundamental group I1, of its
bundle of frames SO(2k)/Z, may be computed by consider-
ing three curves in Spin(2k) joining 1 to€, — €, and — 1,
respectively. Each of these curves projects to a loop in
SO(2k)/Z, and defines a nontrival element of I1,. No two of
these elements coincide and, since €2 = { — 1)*, one has
I, =Z, for k odd and I, = Z, X Z, for k even. The group
SO(2k — 1) is the fiber of

SO(2k)/Z,—RP,, _,

and its fundamental group Z, is embedded in II, as follows:
ifkisodd, k>3,

then Z,—Z, is given by 1 mod 2—2 mod 4;
if k is even,

then Z,—Z, X Z, is the diagonal map.

To check this for odd & one can consider the projection to
SO(2k)/Z, of the curve in Spin{(2k) joining 1 and - 1. This
projection is the square of the loop obtained by projecting the
curve joining 1 and €. The square is represented by 2 mod 4
in Z, and, since it is noncontractible, it is homotopic to a
nontrivial loop in SO(2k — 1). It is now clear that RP,,, ,
(/= 1,2,...) has no spinor structure: a noncontractible loop
in a fiber of its bundle of frames (“rotation by 360°’) can be
continuously deformed into the square of a loop in the bun-
dle (Clarke?®). This result is, of course, well known: RP,, _ ,
has w, =0and w,#0for/=1,2,....

The space RP,,_, has w;, =0, w, =0, and 7 =1Z,.
There are, therefore, two inequivalent spin structures on
RP,_, (I=12,..). Theyare

7t Spin(4l)/Z+—8S0(41)/Z,,
where the #* are obvious projections and the action of
Spin(4/ — 1) in Spin{4/)/Z} is obtained from the natural
action of Spin{4/ — 1) in Spin(4/) by passing to the quo-
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tient. To see that 7 and 7~ define inequivalent spin struc-
tures consider a curve in Spin(4/) connecting 1 with €. Its
projection to SO(44)/Z, is a loop. There are exactly two lifts
of this loop to Spin(4/) /Z;+ and they are both closed curves
(loops). There are also exactly two lifts of this loop to
Spin(4/)/Z; and neither of them is closed. This contradicts
the existence of a bundle isomorphism A: Spin(4/)/
Z;r —Spin(4!)/Z; suchthat 7~ oh=7".
There is, however, an orientation-reversing isometry

J: RPy_—RPy_,y,
dirjp(a)e,,; )—dirlp (e, a)ey,),

which lifts to an isomorphism of one spin structure onto the
other, given by[a] ,—[e e, ] .

(ii) The even-dimensional real projective spaces are
nonorientable; they will be shown to admit pin structures.
For any k = 1,2,..., the space RP,, admits two inequivalent
pin structures. Depending on whether £ is even or odd, one
has to consider the covering map Pin(2k)—O(2k) corre-
sponding to a pin group associated with an Euclidean space
R** with a quadratic form that is positive or negative, re-
spectively (cf. Sec. II).

The pin structures on RP,, are

7%: Pin(2k + 1)/Z#

—Pin(2k + 1)/Z;" XZ; =S0(2k + 1),
where the projections 7w* are obvious and the action § of
Pin(2k} in Pin(2k + 1)/Z;f comes from the natural embed-
ding Pin(2k)—Pin(2k + 1) by passing to the quotient, i.e.,

8,([al L) =1lab], ,
forany acPin(2k + 1) and bePin(2k). The inequivalence of
7" and 7~ may be seen as follows. Consider a curve in
Pin(2k + 1) beginning at 1 and ending at e, €. Its projection
to Pin(2k + 1)/Z,;" XZ; has the property that its end is
obtained by applying p(e;)e0(2k) to its beginning. There
are again exactly two lifts of this curve to each Pin(2k + 1)/
Z," and Pin(2k + 1)/Z; . The starting and end points of the
curves in Pin(2k + 1)/Z; are related to each other by the
action of + e, respectively. This difference in sign implies
that there is no isomorphism of bundles % such that
m oh=nm",

The total spaces Pin(2k + 1)/Zf are both diffeomor-
phic to Spin(2k + 1). More precisely, let

o: Spin(2k + 1)—-RP,, (6a)
be the projection a—dir p(a)e,;, ., and
&% Spin(2k + 1) X Pin(2k)—>Spin(2k + 1) {6b)

be right actions defined by

ab, if bis even,

+ =% =
S (a)=6 W’b)“{imb, if b is odd .

The two maps A+ : Pin(2k + 1)/Z; —Spin(2k + 1) given
by

[a] {a, ifaiseven,

@ +ea, ifaisodd,

define, respectively, isomorphisms of the two principal bun-
dles (6) with the bundles
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o*:Pin(2k + 1)/Zf—>RP,, , N
where 0* = 7or* and

m: SO(2k + 1)—->RP,, .
We have indeed

ooh* =0% and

for any bePin(2k).

Even though the two spin structures on RP,, are inequi-
valent, the two bundles (6) are isomorphic to each other
when considered as principal bundles over RP,, . Indeed, a
based isomorphism

i Pin(2k + 1)/Z;t —»Pin(2k + 1)/Z;
is given by

h*o08, =8Foh =,

[a] , —[a(a)ey 1] - -

C. Complex projective spaces

It is well known that even-dimensional complex projec-
tive spaces have no spinor structure. In order to understand
the difference between even and odd dimensions and to con-
struct the spin structure in the latter case, it is convenient to
consider the metaunitary group MU(n) (see Rf. 21) and
find its center. This group may be defined as that subgroup of
Spin(2n) that (doubly) covers the unitary group U(n) con-
sidered as a subgroup of SO(2n):

inj

MU (n)——=Spin (2n)
1T
U(#t) ——e SO (21)

Let (e,,...,e5, ) be an orthonormal frame in R*" embed-
ded in the Clifford algebra C * (2n). Let JeSO(2n), given by

—€rtar for a= 1,...,n ,

J(e,) = [

fora=n+1,.,2n,

define a complex structure in R*" so that U(n)
= {ae SO(2n): Joa = aoJ}. The center of U(n) is isomor-

phic to U(1) and consists of all elements of SO(2n) of the

form cos 2t + J sin2t = exp 2tJ, 0<t < 7. Let

a—ns

t=ee, ., + - +e,e,€spin(2n),
then
p(texpn)=exp2t].

Any element of Spin(2n) commuting with ¢ projects by p to
an element of SO(2n) commuting with J. One can, there-
fore, define the metaunitary group as follows:

MU(n) = {seSpin(2n): st = t5} .
Its Lie algebra is spanned by the set of n” elements
I<aB<n.

Any element of the center of MU (#) is of the form exp & or
— exp # for some z€R. Since

€., p 1 €nias

exptt = (cost+ee, ,sint) - (cost+e,e,, sint),
one sees that exp}m covers J and expim = €. Moreover,

expm=¢€=(—1)",
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and the center of MU () is the set
{expu: 0t <27} =U(1), fornodd,
and
{+expu: 0Kt<7} =2Z,XU(1), forneven.

If n is odd, then the spinor structure on CP, can be
described as follows. Let U(1) be embedded in MU(n + 1)
so as to coincide with the connected component of the identi-
ty of its center,

exp 2ty — l—expt, O<Lt<w,
and put
§=MU(n+1)/U(1) .

A right action of MU (n) in S is obtained by passing to the
quotient with the action defined by the natural embedding
MU(n)—>MU(n + 1). On quotienting, the double cover
MU(n + 1)—U(n + 1) passes to a double cover of the uni-
tary frame bundle E,,,

S->U(n+ 1)/U1)=SU(n+1)/Z,,,=E,,

and the action of MU (») in S projects to the action of U(n)
inU(n + 1)/U(1), as defined in Sec. III.

The nonexistence of a spinor structure in CP,, results
from w; = 0 and w, #0 for such a space. It also may be de-
duced directly from a comparison of the fundamental groups
of the total space of the fibration E,, —CP,, and of its fiber
U(2k). We have indeed

m(UQ2k))=1Z
and
T (Ey) =2y -

The injection U(2k)—E,, defines a homomorphism
Z—Z,, ., suchthat 2k + 1—0 mod(2k + 1). This contra-
dicts the existence of a spinor structure.?” It is known, how-
ever, that all complex projective spaces admit a natural
spin® -structure.'*?* Recently, Robinson and Rawnsley®*
have shown that any symplectic manifold admits a complex
metaplectic structure. The metaplectic structure on CP,; | ,
gives rise to symplectic spinors.?

D. Quaternionic projective spaces

This is the simplest and easiest case: since w, = 0 and
w, =0for HP,, n = 1,2,..., any such space admits a unique
spinor structure given by the sequence

S=Sp(n+ 1)>Sp(n + 1)/Z, = F>HP, .

The right action of £ = Sp(n) XSp(1) in S'is obtained from
the natural embedding. Incidentally, our considerations
prove the existence of a natural monomorphism of groups

Sp(n) X Sp(1)—Spin(4n), (8)
which covers the injection (Sp(n) XSp(1))/Z,—SO(4n).

V. CONCLUDING REMARKS

Most of the work on spinor structures is based on meth-
ods of algebraic topology and concentrates on problems of
existence. Qur approach is differential geometric and Lie-
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group theoretic. It yields an explicit construction of all
spaces and maps occurring in the description of spinor struc-
tures on projective spaces. It can be extended to other homo-
geneous spaces, such as the Grassmannians, as well as to
pseudo-Riemannian manifolds.

Besides the two coverings of the orthogonal group,
which we have used in the case of real projective spaces,
there are coverings not coming from the Clifford scheme.
The analogous coverings—Clifford and not—can be defined
also for the pseudo-orthogonal groups and related to the
transformation properties of fermions under space-time re-
flections considered by physicists.?® Our method can also be
used to construct “extended spinor structures” such as the
spin® and complex metaplectic structures. It is clear from
this work that, in the nonorientable case, the topological
condition for the existence of a pin structure depends on
which particular double cover of the orthogonal group is
being considered. It would also be of some interest to study
the spinor connections on projective and other homogen-
eous spaces. Stiefel bundles over Grassmannians, together
with their canonical connections, are universal. Can one give
a meaning to the idea of “universal spinor structures and
connections”?
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