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It is shown that the property of a congruence of curves to consist of null
geodesics can be defined in terms of a distribution of a co-dimension one,
without reference to the conformal structure of the underlying differen-
tiable manifold: if k is the vector field tangent to the congruence and «
is a 1-form characterizing the distribution, then the congruence is said
to be nullif k 1 k = 0 and geodesic if, and only if, k A £, « = 0. The geodesic
property of the congruence, on an n-dimensional manifold, means that

if Fisan (n—2)-form suchthat k1 F =0and kA F =0, thenxk AdF = 0.
A twisting geodesic null congruence on S, X S,;,,, associated with the
Hopf fibration S,,,, - CP,, is constructed as an illustration.

1. INTRODUCTION

Geodesics play a fundamental role in differential geometry and theoretical physics,
where they provide mathematical models for freely falling particles and the
propagation of light. There are several distinct, but related, definitions of
geodesics. Given a smooth manifold with a linear connection I, one defines a
geodesic as an auto-parallel line, that is a curve such that all its tangent vectors
are parallel to each other with respect to I'. On a Riemannian manifold, geodesics
may be defined as curves which render stationary the ‘energy integral’. These two
definitions are compatible: a geodesic in the latter sense is an auto-parallel hne
with respect to the Levi—Civita connection associated with the metric. On a
pseudo-Riemannian space there are also null (optical, light-like) geodesics: they
arc auto-parallel lines whose tangent vectors have vanishing squares. 1t is known
that the property of being a null geodesic depends only on the conformal structure
of the pseudo-Riemannian space.

A null (optical, simple) electromagnetic field in a Lorentzian space defines a
congruence of null geodesics (Mariot 1954) which is also shear free. Conversely, with

any congruence of null, shear-free geodesics there is associated a null and
non-zero solution of Maxwell’'sequations (Robinson 1961). But what1f a congruence

of null geodesics fails to be shear free? Presumably the associated fields of null
2-forms would satisfy something weaker than Maxwell’s equations. One might also
expect that the weaker equations would require for their formulation rather less
than the conformal structure underlying Maxwell’s theory. We propose to consider
these questions for a space of n dimensions, with » = 3.
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2 NOTATION AND ALGEBRAIC PRELIMINARIES

The standard terminology and notation of algebra and differential gcometry are

used in this paper. The Grassmann algebra of an n-dimensional, real vector space
V is denoted by

AV* = @ AIV*,

[=0

where A’V = R and A'V* = V* is the dual of V. If u€ 'V, then
W(u) AV > AV*
is the (anti)derivation of degree — 1 defined by

i(u)a = (u, ay ftorany o€eV*

and iu) (BAY) = ((w) ) Ay +(— 1) Ni(u)y

for any fe A'V* and ye AV*. One often writes u 1« instead of i(u)x. A metric
tensor on V is defined as a map ¢g:V x V>R which is bilinear, symmetric and
non-singular. For any u € V, we denote by g(u) the 1-form such that v 1g(u) = g(u, v)
for any ve V. _

If L is a vector subspace ot V, then

[0 ={axeV*:if ue L then ui1a = 0}

is a vector subspace of V*. If K is another subspace of V and

K< L
then L° < K°
and the vector spaces (L/K)* and K°/L°

are isomorphic to one another in a natural manner. If w € L., then u+ K denotes
its image in /K.

In particular, we define a flag in V to consist of a pair (K, L) of subspaces such
that K = L and both K and L°® are one-dimensional. Let

keK and «elb®

be non-zero elements. A metric tensor g is said to be adapted to the flag (K, L) if
k Ag(k) = 0; this implies g(k, k) = 0.

An element a of the Grassmann algebra of V is said to be simple with respect
to the flag (K, L)1t kia=0 and «Aa=0. (1)

Clearly, L° consists of simple 1-forms, and the space L™ of simple (m+ 1)-forms
is isomorphic to the tensor product (Trautman 1935)

L' ® A™(L/K)*

9 |
so that its dimension 1s (n ) Any simple (n—2)-form is decomposable.

m
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Let (e!, ..., " 1) be a linear basis on K° and
—1\!'p = # fon—
(n—1)yp=c¢€, ,, €N ... ANefn,

where the us range from 1 to n—1. For any v € L., the (n—2)-form w17 18 simple.
Moreover, if u'—u e K, then w17 = w19. Theretore, the map

L/K—-L"3
given by u+ K uiy

is an 1Isomorphism of vector spaces.
All manifolds, maps and tensor fields considered in this paper are assumed to
be of class C®. If f: M — N is a diffeomorphism and T is a tensor field on N, then

the pull-back f*T of T by fis a tensor field on M. A vector field £ on a manifold

M generates a flow, i.e. a local, one-parameter group (¢,), teR, of local
diffeomorphisms of M. The Lie derivative of a tensor field T on M, with respect to

k, 1s defined b
d £, T = (d/dt) ¥ T, -,
Since (d/dt)p; T =¢f£.T

the condition
¢ T =T for any ¢ is equivalent to £, T = 0. (2)

If « 1s a differential form on M, then

tLa=kida+d(kia).

3. GEODESIC FLAG STRUCTURES

A congruence of null curves on a real manifold M with a conformal structure
defines, at each point p of M, a flag in the vector space ') M tangent to M at p.
It turns out that such a distribution of flags on M is sufficient to define the geodesic
property of the congruence without any further reterence to the conformal

structure (Robinson & Trautman 1983).
We say that the manifold M has a flag structure if two smooth distributions

Msp—K,cT Mand Map— L, < T M are given such that (K, L)) is a flag
in T, M for each pe M. In other words, a flag structure on M 1s a pair (X", £) ot
vector bundles over M such that

H < ¥ <TM,

X 18 a line bundle and % is of codimension 1. The fibres of ¥ and £ at pe M are
K, and L, respectively. Any notion related to flags can be pointwise extended
to flag structures; for example, a metric tensor field on M is said to be adapted
to (A", &) if its restriction to T, M is adapted to (K ,, L.)) at each point pe M. The
line bundle 2" -~ M defines on M a congruence ot curves, 1.e. a one-dimensional
foliation. X™® and Z° are vector bundles whose fibres at p are K and L7,

respectively. Clearly, PO — 40 = THRM

and .Y 1s a hine bundle.
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ProrosiTioN. The following properties of a flag structure on M are equivalent .
(1) the bundle £ —M 1is invariant under the flow (§,) corresponding to any (local)
section k£ of A —-M;

(11) for any local section k of £°*—>M one has

KAE k=0, (3)
(111) the 3-form &k A dk 18 simple;
(1v) the congruence of curves defined by A~ consists of null geodesics with respect
to any metric tensor adapted to the flag structure.

Indeed, the bundle ¥ —M may be determined locally by a nowhere vanishing
section «k of ZY—>M, L, = ker«(p). Therefore, the invariance of £ under (¢,) is

characterized by kAP =0, teR,

and this, by virtue of (2), is equivalent to (3). If ¢ is a metric tensor field adapted
to (A, &), then g(k) 1s a section of X% >M and

g(e) A X g(k) = 0
is equivalent to gk ANg(V, k) =0,

where V, 1s the covariant derivative in the direction of & with respect to the
Levi—Civita connection associated with g. Clearly, the last equation is equivalent
to the geodesic property of the congruence.

A flag structure which has any — and therefore all — of properties (i1)—(iv) is said

to be geodesic. In particular, a flag structure corresponding to an integrable bundle
¥ >M, 1.e. such that

K Adk =0 (4)
18 geodesic. On a 3-manifold, conversely, the bundle £ of a geodesic flag structure
1s 1ntegrable. In general, an integrable bundle ¥ —>M defines a foliation of
co-dimension one. If % is non-integrable, then the congruence defined by 4" is said
(by physicists) to be twisting.

4. THE THEOREM

The geodesic property of a flag structure on an n-manifold M may also be
characterized 1n terms of simple (n —2)-forms on M.

Let (X, &) be a geodesic flag structure on the n-manifold M, » = 3. For any
peM there is a neighbourhood N of p and a system of local coordinates
(xt, ..., 2", 2™ = t) with domain N such that £ = ¢/0dt is a section of the bundle
A restricted to N. If « is a section of #° restricted to N, then one can find n—1

functions n, (0 =1, ..., n—1) on N such that x = n,do*. The geodesic property

(3) 18 equivalent to
KAk =10, (D)

where £ = 7, d2* and the dot denotes a derivative with respect to time.
According to §2, any simple (n—2)-form ¥ on M may be written as

F=miy,
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where m—1)!yp=c¢, . _ dorA... Adakn
and m is a section of the bundle % > N, i.e. a vector field on N such that
m i1k = 0.
Since m and m + ak give rise to the same F, one can assume m to have a vanishing
component along 0/¢f, m = mb d/oak.
This being so, let div m denote the divergence of m with respect to 7,
div m = om#/ox”
and m = m”" Q/ox".
The exterior derivative of F is
dF = pdivm+dtAF,
where F=min. (6)

" '@ —_— ¢ 1 ;
Since Kk Ay = 0 anc kAF = (maik)n=—(mik)y

it is clear that the geodesic condition (5) imphes
k ANdF = 0. (7)
Conversely, if (7) holds for any simple (n—2)-form ¥ on M, then
mi1k =0

for any section m of ¥ —M, thus implying (5).
This may be summarized in the following theorem.

THEOREM. A flag structure on an n-manifold M is geodesic if, and only if, any ssmple
(mn—2)-form F on M satisfies the differential equation (7).

Remark 1. The form F satisfies (7) if, and only if, £, F is simple. In conformal
spacetime, of course, a simple 2-form is a linear combination of I and 1ts Hodge

dual.
Remark 2. In general, the form dF is not simple because
kadF = F

need not be zero. It is possible, however, to choose, at least locally, n—2 vector
fields m, (a = 1, ..., n—2) such that

m, = 0
and, at each point of M, the sequence (m,, ..., m,_,, k) is linearly independent. The
corresponding (n— 2)-forms,

F,=m_ 19

have simple exterior derivatives and span the space of all simple (n—2)-forms.
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5. AN EXAMPLE

Consider M” = 8, x C'"*! as a real, (214 3)-manifold, choose a standard coordinate
¢ on S, and denote by z, the complex conjugate of 2%, the ath complex coordinate

on C'*!' where a =0, 1, .... I. The vector field
k=0/0¢p+1(z,0/0z, —2*0/02%) (8)
and the 1-form kK = 2%z, dop+1i(z*dz, — 2 dz*) (9)
define on M’ a geodesic flag structure. A metric adapted to this structure is
g = dz“ dz, —z*z, d¢?. (10)
The vector field k is tangent to the submanifold M = S, x S,,,, of M’, given by
2z, = 1. (11)

X

The restrictions of k£ and « to M, which will be denoted by the same letters, define
on M a geodesic flag structure. Let = x A v, where v = dx A ... Adk (I factors);
then any simple 2/-form on M may be written as

F=muiny,
where the vector field m = m*0/0z*+m_0/0Z,

1s a sectionof & >M,i.e. max = 0. FordF to be simple, the components of m must
be restrictions to M of functions on M’ depending on

2*e'? and 2z e ¢
only.
The restriction of (9) to S,;,,, given by ¢ = const. and (11), defines a connection

form on the Hopf bundle U(1)->8,;,, > CP,

corresponding to a solution of Maxwell’s equations (Trautman 1977). This
restriction defines also a non-integrable and analytic distribution of co-dimension
one on S,,,,. According to Haefliger (1958), a compact manifold with a finite
fundamental group has no real-analytic foliation of co-dimension one. It may,
however, have a smooth — but non-analytic — foliation of co-dimension one: Reeb
(1952) constructed such a foliation on S,.

For [ =1, the 4-manifold M = S, x 8, can be identified with the compactified
Minkowski space, and the lines generated by (8) form a Robinson congruence
(Penrose 1967, 1985). This may be seen by identifying M with the manifold of the
unitary group U(2) and considering an embedding of the Minkowski space R? into
U(2) given as follows (Uhlmann 1963). Let a point in Minkowski space be
represented by the Hermitian matrix

—rer

X=(” w) where u.veR and weC.

w U

It 7 denotes the unit 2 x 2 matrix, then the matrix

Y = f(X) (12)
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given by fIX)={U+i1X)([—1X)™! (13)
is unitary. The map fR*—>U(2)

is an analytic diffeomorphism of R* on the image.
The complement of the image of fin U(2),

[4eU2):det [+ A) = 0},

is the ‘light-cone at infinity * (Penrose 1962}).
If (p, 2% 21) are local coordinates on S, X S, such that

2z, 2z, = 1,
. AR

then Y = e“'ﬁ’( . _1)
—z1 2z,

belongs to U(2), and any unitary 2 x 2 matrix can be so represented. The matrix

fdo+ p A
_1 —_—
roal 1( A d‘,?f"—ﬂ)

of Maurer—Cartan forms on U(2) is anti-Hermitian,
p=1i(z"dz,+21dz)), A =z21dz’—2"dz',
and det (Y71dY) = AA+ > —d¢?
= dz’dz, + dz' dz, —d¢? (14)

coincides with the metric (10) restricted to S; X N,.
From (12) and (13) follows that

Y idY =L(I+Y H)dX(I+Y)) (15)
and since detdX = dudv—dwdw (16)

it is clear that f:R* > U(2) 1s a conformal map relative to the metries (14) and (16).
The torm (9) 18 now k= dd+u

|

and its pull-back to Minkowski space, f*x, may be evaluated from (15).

af*k = dv—{dw—{dw+ {{ du

= do + i{({d—Ed). (17)
where {=w/(u+1), o=v—uww/(u*+1). (18)
and a = H(1 —uv+ww)*+ (u+2v)*}/(u*+1).

The Minkowskr line-element (16) takes the form
af *k du— (u?+ 1)d¢ d¢.

The vector field corresponding to the 1-form f*x was first discovered in the
coordinates u, o, £, {. According to the Haefliger theorem, any null congruence
which extends to an analytic congruence on the compactified Minkowski space 1s
twisting. since the associated two-dimensional distribution on S, 1s non-integrable.
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