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Integrable Optical Geometry
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Abstract. It is shown that a Lorentzian 4-manifold admitting a congruence of optical (null) geodesics without
shear and twist defines an optical geometry which is integrable (locally flat) in the sense of the theory of
G-structures. The existence of a symmetric linear connection compatible with the optical geometry is another
condition equivalent to the integrability of the optical G-structure.

1. Introduction and Heuristic Remarks

There is an ‘optical geometry’ in spacetime associated with purely radiative electro-
magnetic fields. An isomorphism of this geometry can be used to transform one such
purely radiative field into another [1]. It has been known for a long time that a purely
radiative solution of Maxwell’s equations defines a congruence of null (optical)
geodesics without shear [2]. This and related notions have led to effective methods of
solving Einstein’s equations for algebraically special metrics (cf., for example, [3] and
the numerous references listed there). Recently [4], but under the influence of old ideas
due to Bateman [1] and Cartan [5], optically geometry has been defined and studied
in terms of a G,-structure, where G,, the ‘optical group’, is a suitable Lie subgroup of
GL(4, R). This Letter presents the fundamental theorem of optical geometry which
characterizes integrable G,-structures. It is preceded by a few heuristic remarks and a
summary of the required notions of optical geometry. A comprehensive account of this
subject may be found in [6] and [7].

Consider the Minkowski space R* with coordinates (x, y, r, #) and the line element

dx? + dy? + 2dudr. (1)
If p and g: R —> R are smooth, then the 2-form
F=duna (p(u) dx + q(u) dy) ?2)

represents the electromagnetic field of a plane wave propagating in the direction
perpendicular to the (x, y) plane. If the orientation in R* is given by the volume form
dx A dy A dr A du, then the Hodge dual of F is

*F =du A (p(u)dy — q(u) dx) .
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This dual does not change if the line element (1) is replaced by
P?(dx? + dy?) + 2 du(dr + &) 3)

where P is a nowhere vanishing, smooth function on R* and ¢ is any smooth 1-form on
R*. Therefore, the 2-form (2) is a solution of Maxwell’s equations dF = 0 and d+F = 0
on any 4-manifold with line element (3). Many solutions of Einstein’s equations admit
local coordinates relative to which their metric tensor is of this form. For example, if
P =2r/(1 + x>+ »?) and 2¢ = (1 — 2m/r) du, then (3) is a local expression of the
Schwarzchild metric. In this case, Equation (2) represents outgoing, pure electro-
magnetic radiation with spherical wavefronts, propagating on the Schwarzchild
background. The electromagnetic field (2) is optical (null, purely radiative) in the sense
that there exists a nowhere vanishing vector field k such thatk _|F = Oandk _| *F = 0.

Optical geometry has been developed to put the above observations into a broader
perspective.

2. Optical Geometry

Let K and L denote, respectively, the line x; = x, = x, = 0 and the 3-plane x, = 0 in
R* with coordinates (x,, X, X3, x,). The quotient vector space L/K may be given a
complex structure defined by the isomorphism C < L/K such that

x + iy (x,,0,0)mod K.

The optical group G, is defined as the group of all linear automorphisms of R* which
preserve K, L, and the complex structure in L/K. It is a nine-dimensional closed Lie
subgroup of GL(4, R) admitting SO(2) as a maximal compact subgroup.

An optical geometry on a four-dimensional smooth manifold M is defined as a
G,-structure [8], i.e., a restriction P of the bundle of linear frames of M to the group
G,. To alleviate the language, we assume these bundles to be trivial. For any global
section e = (e, 5, €3, €,) of P— M, let & = (¢, &, &3, &) be the corresponding (dual)
section of the bundle of linear coframes, {e,, ¢,) = d,.,,wherep,v=1,...,4. Any such
section defines on M a metric tensor

v

g=8+¢3+ 268, 4)

of Lorentz signature. If ¢’ is another section of P — M, then the corresponding metric
tensor g’ is related to g as follows:

g =purg+2xé. %)

Here y is a nowhere vanishing function, ¢is a 1-form on M and « is the 1-form on M
such that, for any vector field u, one has

(k) = g(u5 k) (6)

where k = e;. Clearly, k = &,.
Let & denote the set of all metric tensors on M which can be obtained from sections
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of P - M according to Equation (4). Any two elements g and g’ of & are related to each
other by (5). It is now clear that an optical geometry on a 4-manifold M may be
equivalently defined by giving (a) a line-bundle ¥ = TM, i.e., a field of directions on
M; (b) a set & of Lorentzian metric tensors on M such that if k is a nowhere vanishing
section of & — M, ge &, and « is as in (6), then (k, k) = 0 and, for any g’ € &, there
is a function of yu and a 1-form ¢ on M such that (5) holds.

A ditteomorphism f of M is said to be an optical automorphism if it preserves P.
Equivalently, such an automorphism preserves # and & According to [9], the flow
generated by the section k: M — A consists of optical automorphisms if and only if the
geometry is that of optical geodesics without shear [2].

An optical geometry on M defines the 3-plane bundle £ = ker k. In other words, for
any section e of P — M, the bundle % is spanned by the vector fields e,, e,, and e;. The
bundle Z is integrable if and only if

kAde=0. @)

In this case, the integral curves of 4 are said to be free of twist. They are (optical)
geodesics with respect to the Levi-Civita connection associated with any ge &.

3. Integrable G,-Structures

Recall that a G-structure P on M is said to be locally flat [10] or integrable [11] if, for
any point of M, there is a system of local coordinates x around that point such that the
field of natural frames associated with x is a local section of the bundle P — M. For
example, an O(n)-structure on an n-manifold - i.e., a Riemannian geometry — is
integrable if and only if its curvature vanishes. A 1-structure - i.e., a field of frames —
is integrable if and only if the field of frames is holonomic.

Any principal bundle over a (paracompact) manifold admits a connection; in
particular, this applies to a G-structure on M. Such a connection will, in general, be
asymmetric. An integrable G-structure admits a symmetric linear connection, but the
converse need not be true, as is apparent from the example of Riemannian geometry.

An optical geometry is said to be integrable if it is integrable as a G,-structure. An
optical geometry on M is thus integrable if and only if around any point of M there is
a system of local coordinates (x, y, r, u) such that the vector field k = 0/0r spans 4" and
the metric tensor (1) belongs to &

THEOREM. The following properties of an optical geometry on M are equivalent to one
another:
(i) the optical geometry is integrable;

(i) M admits a symmetric linear connection compatible with its optical geometry;
(iii) the optical geometry on M is that of optical geodesics without shear and twist.

Proof. The implication (i)=>(ii) is straightforward: it is enough to take local
coordinates (x, y, r, u), k = d/dr, ge & given by (1), and a connection with vanishing
coefficients in this coordinate system. To prove (ii)=> (iii), consider a section k of
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A — M, ge & and let V be the covariant derivative corresponding to a symmetric
connection. This connection is compatible with the optical geometry defined by #" and
& if and only if there exist tensor fields /, m, n such that

Y.k, =Lk, ®)
and

Nt a0k tn,k, 9

where x = (x*) are local coordinates on M, k = k*0/0x*, k, = 0/0x* _| k = g, k”,
g = g,,dx" dx", etc. Since the connection is symmetric, Equation (8) implies (7). If both
sides of (9) are concentrated with k” and (8) is used, then one obtains

(Lkg),_tv = (xguv &5 ﬁ,ukv 7 :kap, (10)

with suitable « and . Equation (10) for the Lie derivative of g with respect to k is known
to characterize a geometry of optical geodesics without shear [9]. Finally, the proof of
(iii) = (i) is implicit in our early work [12] where we showed that the metric tensor of
a Lorentzian geometry admitting a congruence of optical geodesics without shear and
twist can be brought to the form (3). Together with k = d/0r, that metric defines the same
optical geometry as (1).

Among the metrics corresponding to the integrable optical geometry there are many
nontrivial solutions of Einstein’s field equations.
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