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Deformations of the Hodge map
and optical geometry
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Abstract. A simple formula is derived for the infinitesimal change of the Hodge
dual of a k-form, induced by a deformation of the scalar product in the underlying
vector space. By considering deformations due to a flow generated by a vector
field on a differential manifold, one obtains an expression for the commutator of
the Hodge dual with the Lie derivation with respect to the vector field, acting on
differential forms. This formula is useful in proving theorems on optical solutions
of Maxwell’s and Yang-Mills equations. The optical geometry underlying such solu-
tions is defined as a restriction of the bundle of linear frames of a 4-dimensional
manifold to a 9-dimensional optical group. This geometry provides a natural frame-
work for the study of shearfree, optical and geodesic congruences and of the
associated fields.

1. INTRODUCTION

In theoretical physics one often considers mathematical models of the follow-
ing type. There is given an n-dimensional smooth manifold M, a Lie group G,a
principal G-bundle P -~ M and a representation of G in a finite-dimensional, real or
complex vector space V. Physical histories (classical fields, wave-functions, etc.)
are described by V-valued k-forms on P, equivariant under the action of G. For
example, a connection on P is described by a 8-valued 1-form w which corresponds
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to the adjoint representation of G in its Lie algebra g and, moreover, is a left
inverse for the map g — 7P defined by the action of G in P. Of special interest
are horizontal k-forms: the curvature 2-form

1
Q:dw+?[w,w]

is horizontal and, if ¢ is a horizontal k-form, then its covariant exterior derivative
D¢ is a horizontal (k + 1)-form. If M is oriented and has a (Riemannian or Lo-
rentzian) metric tensor g, then the Hodge dual map * can be applied to horizontal
forms on P: if ¢ is a horizontal V-valued k-form on P, then = ¢ is a similar (n — k)-
-form. Many fundamental equations of physics have the following structure

(D Dx¢p=xj,

where ¢ and j are horizontal, V-valued k- and (k — 1)-forms, respectively. For
example, if G = U(1), ¢ is the curvature 2-form and j is the IR-valued 1-form
of electric current, then (1) is simply the Maxwell equation. For a non-Abelian
group G and ¢ = 2 equation (1) coincides with that introduced by Yang and
Mills. If P is the bundle of linear frames of M endowed with a linear connection
and 6 = (6*) denotes the soldering form, then the choice ¢ = (6“A0"), u,v =
=1,...,n, leads to the Cartan equation of a relativistic theory of gravitation
with spin j and torsion DO [1 — 3].

In view of the occurrence of the Hodge map in the fundamental equation
(1) it is interesting to consider the dependence of * on g and, in particular,
its behaviour under deformations of the metric. This results in a formula for the
commutator of * with Lie derivation relative to a vector field. The formula has
already been used to prove a theorem on the existence of optical (isotropic)
Yang-Mills configurations associated with shear-free congruences of null geodesics
[4]. The paper is concluded with a section on the «optical geometry» underlying
the local structure of such congruences [5 - 7].

2. THE HODGE MAP AND ITS DEFORMATIONS

Let V be an n-dimensional real vector space with a preferred orientation.
The group GL(n, R) acts transitively in the manifold F(V) of all linear frames
in V, similarly, GL*(n, R) acts transitively in the open submanifold F* (V) C
C F(V) of frames with the preferred orientation. A scalar product in V is defined
as a symmetric bilinear map g : ¥ x ¥ - IR which is nonsingular: if g(u,v) =0
for all u €V, then v=0. Let S(V) C V*® V* be the set (in fact, manifold) of
all scalar products in V. If e = (e“), u=1,...,n,is a frame and g €S(V) then
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the formula

)

defines the functions g :S(V) - IR and

Cuv

g, le)=gle,e,
g, lea)=g, (e)ala,

where a = (a?) € GL(n, R). If y(e) = det (gw(e)), then
v(ea) = y(e) (det a)?

and the sign of v (e) is an invariant.
The Grassmann algebra of forms over V in denoted by

AV*= & Akp*,
k=0

where A9V* = R and A'V* = IV* is the dual of V. For any frame (e,) EF(V)
its dual (e*) € F(V*) is determined by

i v\ __ v
(e, e”y =8},

where angular brackets denote the evaluation map V' x V* - IR.
Let (e,) € F* (V) and (e*) be its dual. The volume form

vol (g) =|7(e)| Y2 el ANe?A. .. Ae"

depends on g € S(V), but not on the frame, provided it is of preferred orientation.
A convenient abuse of notation consists in using the same letter

2) g:V->r*
for the linear map defined by
(u, g(v)) = g(u, v)

as for the scalar product g € S(V) itself.
For any k-form « its Hodge dual o(g)a is defined as the (n — k)-form given
by its value on the vectors u; , , ..., 4, € V as follows:

3) vol (g) - o(go(uy ,qo ... u,) = oz/\g(uk“)/\ 5 INELE,)-

When g is fixed once for all, then one usually writes * « instead of o(g)a. The
latter, more elaborate notation is used here in order to study the dependence
of the Hodge map on g. Clearly, 0(g) can be extended to a linear map

o(g) : AV* > AV*



88 A. TRAUTMAN

and it is known that
4) 0(g)2a=(— DF"*D gon y(e)a for a e AFV*.

Let ¢ i—»gt(tEIR) be a smooth curve in S(V). (In fact, only the first jet of
tg att= 0 will be used). If g~ ! denotes the inverse of (2), then the compos-

ed map g, ° g~ !is an automorphism of V'*,
d
(%) h=—gog}
dz 1=0
is an endomorphism of V' *, and
d 1
(6) — vol (g,) =— Trh-vol (go).
dr i—t

The derivation of the Grassmann algebra AV * induced by 4 is denoted i(4).
This is a linear map such that, if « € V'*, then i(h)a = h (o), and

@) ih)(@AY) =GN ANY + o Ni(h)Y
for any ¢, Yy € AV*. It follows from the definition of the volume form that
(8) i(h) vol (g) = (Tr k) vol (g).

Let g, be now substituted for g in (3) and both sides of the resulting equation
differentiated with respect to ¢ at 0. This yields

d
— vol (g,) O B0l gu - - s U) ¥
dz t=0
d
+ vol (g,) -(—i—; o(glou | 4, - ;W)=

= aNih) (gglug, DN - - Aggw,).

Taking into account equations (6 - 8) and denoting 0(g,) by =*, the last formula
can be written as

d 1
) — gl e =—=xi(h)a+ — (Trh) = a.
dr it 2
Moreover, it follows by differentiation of (4), with g, substituted for g, that
the linear map defined by (9) anticommutes with . This is equivalent to

(10) xi(h)a+i(h)*a=(Trh) x «
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so that (9) can be rewritten as

d
(1D d—a(g,)oz =@{(h)—1/2Trh) * o
t

t=0

To a conformal deformation of g,€S(V), g, =g, expt, there corresponds
h =id.
Since i(id) restricted to A¥ V' * is k times the identity and Tr (id) = n,

1
a:(k——n)*a
2

d
— 0(gyexpt)
dt

t=0

and one recovers the well-known result: in an even-dimensional space, the Hodge
dual of forms of middle degree is invariant under conformal changes of the
scalar product.

3. DEFORMATIONS GENERATED BY FLOWS

Let M be an n-dimensional oriented paracompact differential manifold. The
manifold and all relevant maps are assumed to be smooth. The bundles of linear
frames and of scalar products are denoted by F(M) and S(M), respectively. If
T, M is the tangent space to M at x, then

son = U s m,
xXEM
with a suitable topology and differential structure. A section g of the bundle
S(M) - M is a metric tensor on M. If x €M and g is a metric tensor on M, then
g, ES(T.M)

is its value at x. Only a little mental effort is required to avoid confusion between
g, and g, occurring in the preceding section. Let

fM-M
be a diffeomorphism and
LJ: L M= Tf(x)M

denote the derived map. The pull-back of g by fis the metric tensor f*g such
that,ifu,v € TxM, then

(12) (F*8),(u,v) = g4, (T, f(w), T, f (V).
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The bundle of k-forms on M is
Ao = U ANT*m)
XEM

with a suitable topology and differential structure; the bundle A (M) of Gras-
smann algebras is similarly defined. Its sections constitute the Cartan algebra of
differential forms. If « is a section of A(M)— M, then o, € A(T}FM) is its value
at x. If @ and B are two such sections, then o A 8 is another section defined by

(@A B), =0, AB,.

The Hodge map of differential forms is also defined in this «pointwise» man-
ner: if o is a section of A¥(M) on a manifold with a metric tensor g, then 0(g)x
is a section of A"~*(M) - M given by

(0(g)a), =o(g,)a,.

The pull-back f*« of a differential form « is defined similarly as in (12) and
the «naturality» of the Hodge map is expressed by

(13) F¥(0(g)a) = 0(f*e) f ¥

for any diffeomorphism f.

Let (f,),c g denote the flow generated by a vector field X on M. The map
t H(f;*g)x is a curve in S(Y;M), i.e. a deformation of 8, in the sense of §2.
The Lie derivative of g with respect to X,

d
Le=—1
Tt

defines an endomorphism % of the bundle T*M — M such that
= -1
h,=(Zx8),°8 >

where the notation is consistent with that in (5). If ft is substituted for fin (13)
and the resulting equation differentiated with respect to ¢ at 0, one obtains

d

Fo@) = — o(frgal  +ole) Za

t=0
so that:

d
[Zy,0(8)]a= o o(f*g)x

t=0
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Using (11) and reverting to the traditional notation, 0(g)a = % «, one can write
1
(14) [Py, *]a= i(h)—;Trh)*a

where i(#) is now the derivation of the Cartan algebra defined «point-wise» in
terms ofi(hx).

4. OPTICAL GEOMETRY

Consider a plane electromagnetic wave described by a 2-form on an oriented
Lorentz 4-manifold M. Let F and g be, respectively, the values of the 2-form
and of the metric tensor at x € M. They are tensors over V' =7, M and there
exists an optical («nully», «isotropic») vector k € V and a 1-form « such that

F=xAoa, where x=g(k) and <(k,a)=0.
The dual of Fis
s« F=xA\p

where B € V* is orthogonal to both o and %, and of length equal to that of .
The 1-form x is defined up to a non-zero multiplier; the 1-forms « and B are
defined modulo » and up to a common factor. The direction K of k, as well as
L = ker x, are well defined by F.

On the basis of such heuristic considerations, I define an optical structure
in a 4-dimensional real vector space V to consist of

(A) a pair of vector subspaces («a flag»), K and L, of dimension 1 and 3,
respectively, and such that

KcLeV,

(B) an orientation and a conformal scalar product in the 2-dimensional vector
space L/K.

Clearly, condition (B) is equivalent to giving (B') a complex structure in L/K,
i.e. a linear map

J:L/K—~L/K suchthat J2?=—id.

If (V,K,L,J) and (V',K',L',J') are two optical structures, then f:V - V'
is an optical isomorphism if it is an isomorphism of vector spaces such that

fK)=K', f)=L and J' of=feJ
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where
f:L/K-L'|K' isgivenby f(1 mod K) =f(1)mod X', 1 €L.
The standard optical structure on Vo = IR*is given by
K, ={xeR*:x1=x2=x4=0}, L0={x€lR4 x4=0}, x=(x"),
and
Jol(x1,x2,0,0)] = [(—x2, x1,0,0)]
where square brackets denote an equivalence class mod K. The optical group
G,CGL(4, R)

is the group of all optical automorphisms of the standard structure; it is a 9-di-
mensional Lie group consisting of all matrices of the form

pcos¢p psing 0 p
—psing pcos¢gp O
(15)

a b o r

0 0 0 7
where 0 < ¢ <2m, p,0,7+#0 and a, b, p, q, r € R. An optical frame is an optical
isomorphism e of the standard structure onto (V, K, L,J). If e is optical and
a €G, then ea is optical and all optical frames can be so obtained from one
of them. Let eu(u =1,2,3,4) be the image by e of the uth unit coordinate
vector in IR*, then e, € K, the vectors e, e, and e, span L and J(e1 mod K) =
= e, mod K. One usually identifies e with (e“).

Let Op F(V) C F(V) be the set of all optical frames of (V, K, L, J) and consi-
der the map
g:0OpF(V)->8(V)

defined by

3_elgel—e2ge?,

gle) = e3vet+etoe
where (e") is the frame dual to e = (eu) so that

L =kere*.
If a € G is given by (15), then

glea) =p 2ge) + E@e* +e*®t forsome §eV*.

It is now clear that condition (B) in the definition of the optical structure can
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be replaced by the following:

(B") an orientation in L/K and a subset E of S(V) such that, if 0#k €K,
then for each g€ E one has L = kerx, where » = g(k); if g and g’ €E then
there is a number p # 0 and a 1-form £ such that

(16) g =plg+teox+txst

Let F be a 2-form in an oriented vector space V with optical structure and
let x = g(k) be as in (B"”). The conditions

(17 kJ1JF=0 and »AF=0

depend only on the optical structure of ¥ and not on the particular choice of
k and g. A 2-form F satisfying (17) is said to be optical. It is known (see, for
example, [7] and the references listed there) that, if F is optical and g € E, then
the Hodge dual o (g)F is also optical. Moreover, there holds

PROPOSITION 1. If F is optical and g, g' € E, then
o(g)VF=0(9F

i.e. the Hodge dual of optical 2-forms is invariant under the deformations of the
scalar product given by (16).

Let M be an oriented, 4-dimensional differential manifold. An optical geome-
try on M is defined in several equivalent ways:

(a) as a smooth distribution of optical structures in the tangent spaces to M;

(b) as a G,structure on M;

(¢) as a 1-dimensional distribution on M (vector subbundle) A C TM together
with a class & of metric tensors on M, of Lorentz signature, and such that:

ifk, € X CT Mandge &, theng (k k) =0, xEM;

if g and g' € &, then g, and g)'( are related to each other as in (16), where
x=g (k).

Let g be a Lorentz metric tensor and k a vector field on M which is optical
with respect to g and nowhere zero on M. The pair (g, k) defines an optical
geometry on M. Another such pair (g', k') defines the same optical geometry
if and only if, for any x €M, the vectors k, and k)'( are parallel and the scalar
products g and g;[ are related to each other as in (16).

The general theory of G-structures [8] provides us with ready definitions of
optical isomorphisms, automorphisms and with the notion of integrability of a
G ,-structure.
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The following propositions follows from [7]:

PROPOSITION 2. The G ,-structure on M defined by the pair (g, k) is integrable
if and only if the distribution ¥ = ker g(k) C TM is integrable and the optical
congruence generated by k consists of shear-free geodesics.

PROPOSITION 3. The flow generated by a vector field k on M consists of auto-
morphisms of the optical geometry defined by (g, k) if and only if the lines of
the flow form a congruence of shear-free, optical geodesics.

With any optical geometry on M there is associated a complex line bundle
& | A — M such that the fibre (Y/)i’)x = & | A has complex structure defined
by Jx.

The Lie algebra of G, is of infinite type and, therefore, the group of automor-
phisms of an optical geometry need not be a Lie transformation group [8].
Optical automorphisms may be used to obtain new solutions of Maxwell’s equa-
tions form old ones. A full account of optical geometry and its relation to alge-
braically special solutions of Einstein’s equations will be presented elsewhere
[9, 10].
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