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The purpose of this paper is to investigate possible forms of dis-
continuities of field derivatives, and their connexion with the problem
of radiation and geometrical optics. In sec, 1, we briefly recall the Cauchy
problem and the notion of characteristic surfaces for systems of partial
differential equations. Section 2 is devoted to the general theory of dis-
continuities of the second derivatives of field potentials. This theory is
then applied to the electromagnetic (sec. 3) and gravitational (see, 4)
tields, A close relation between the jump conditions in a linear theory
and the ‘“geometrical optics” is demonstrated in sec. 5. Covariant no-
tation is used throughout, being essentially the same as in [1]; w4(a”)
denotes a tensor field (potentials); Greek indices run from 0 to 3, block
Roman — from 1 t0 N; @ = Pus— Pp; repetition of indices implies
summation; the ordinary derivative is denoted by a comma (dy./32” =
:1/)/1,1')-

The covariant field equations are supposed to be derivable from
a variational principle: 6.fd4w1,ri—_gL(g,l,,,g,w,,_j,w,ww)=0, where g,, is
the metric tensor of the Riemannian space-time and g=det(g,). Then
the field equations are =

(1) V—9L4 =2y — g L{dyps— (3Y — g L[oya,),=0.
1. Since the second derivatives of the y’s enter L4 linearly, we can
write (1) in the form:
(2) IA=LABeoyy, .. =0,
where LABe—=— L(92L[dy,,dpp,+ L[y, ,dys,) and the dots stand for

terms not containing ¢4,.. Let @(x*)=0 be the equation of a hyper-
surface 8, on which the Cauchy data are to be prescribed. This means
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that we give on § (in a consistent manner, [8]) the values of 4 and ..
Introducing a new co-ordinate system @ =a"(x%), such that =g (x9),
we obtain from (2):

LA=LA4Bw g @ wgyy+ terms not involving ¥aee .

v The possibility of evaluating the derivatives 400 from (3) depends
on the rank R of the N-th order matrix A4% = LABes @, ,. Denoting by
M the maximum of this rank in a fixed point of space, M =maxR(A4B),
we have always M <N. i

If M=N and if 8 is such that R(A4F)=M on S, then the Cauchy
problem formulated on § has a unique solution in the neighbourhood
of §. Example: the scalar wave-equation V=9 ¢“va)u [V g o2y =0
and § such that ¢~¢,.p,7#0.

If M <N, the field equations (1) are underdetermined, and for no §
have a unique solution. Additional conditions must be added in order
to ensure mniqueness. Examples: Maxwell’s and Einstein’s equations.

A hypersurface S on which R(A48) <M < N is called characteristic,
The initial value problem cannot be correctly formulated on a characte-
ristic hypersurface. .

2. The existence of solutions with discontinuous derivatives is known
to be closely related to the hyperbolic character of field equations. A dis-
continuons solution represents a disturbance of the field propagating
with @ finite velocity and can be interpreted as radiation.

Our field equations (1) being of the second order, we assume that
the #'s and their first derivatives are continuous throughout and that
Y4 BTe continuous everywhere except on hypersurface S(g=0). De-
noting by Aya,. the jump of v, across 8, we have, from pirely geo-
metrical considerations [2],

(3 ) i Yo, HAD P w3

where 74 is a tensor field defined on S,
The field equations being valid everywhere, we obfain from (2):

LABe Ayp (o=0 on S,
or

(4) A4Byp—0 (A=1,..,N).
The jumps of ya, Can appear only on such 8§ for which
(5) det (A48)=0.

Thus 4, can be discontinuous 1° on any surface when (1) are under-
determined; 2° on a characteristic surface. Examples given below show
that only the latter jumps have a physical meaning.
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3. In the electromagnetic theory the »'s must be replaced by a vector-
potential 4,. The field equations are L=/ =g )4y —g=0, where
fop=Arpa. LAPe becomes Tofeo =} (gelegPlo -+ gelogfle) and the matrix A45:
(6) At = poph — g% 7.

We get for the rank of (6):

3—M <N=4 for q,p"#0 (&)
R(M)J L B
11 for @.p'=0. (b)
The Maxwell eqﬁations are underdetermined, and their characteristic
surfaces coincide with null surfaces [4]. Writing b, for n4 We have

AA =09, P
Tn case (a), equation (4) leads to

(7) (gt — g ) bp=0.

The general solution of (7) is b,=bg, (b = scalar function); then JAq .. ==
= b @@, Bub such jumps have no physical significance:

(8) . Afogy=A(Apay— Ayp)=0.
In case (b), we have g,¢*=0, and (4) leads to
9) bog =0,

The corresponding jumps in field strength derivatives are
(10) Afapy= b0 )¥ >

klntrodlucing electric B and magnetic H field strengths, we can
write (9), (10) in vector notation:
ﬂﬁ,?:(f',;’za Aﬁ,v:‘nwﬁ Xé; n-e= 0,
where qoﬁzv — grad @, ex=q,0(bx—Nibo)- The jumps AIf«J,,, and AH, can
be called ‘““weak’ ‘in contradistinetion to ¢gtrong” discontinuities of Ui
and H (i. e., of the first derivatives of the potential), Strong diseontin-
nities of the electromagnetic field were examined by Rubinowicz [3].

4. In TRinstein’s general relafivity, the potentials 4 of the gravi-
tational field are identified with the metric tensor ¢u;. Field equations
in vacuo are R,=0, where Rop= 0" Ry and R, denotes the Riemann
curvature tensor of the gpace-time.

The Canchy problem and jump conditions for the gravitational field
hawve been investigated by several anthors [4]—[7]; we give a detailed
and co-variant expression for the jumps of the curvature tensor.

According to Lichnerowicz [4], we assume that there exists a co-
ordinate system in which g, fusy aT€ continnons and g, are piece-
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wise continuous. Co-ordinate transformations a’->z” are assumed to be
of class (° Denoting the jump of g, across 8 by Agas.s, We note that
this is a tensor field on 8. Indeed, in virtue of Ag,;=0, Agp,—=0, A927[9p” =0,
etc., we have (A% =23x"/0x"):
Aguy oy = A((9usATAR) ,AY) s AV =AW AL AL A Agas 5.
It follows from (3) that
(11) © AQass= happ s (hog=hse 18 a tensor).

Latin indices 4,B,... must be identified with the 10 (symmetric)
pairs (afi),(yd),... The symbol L48» bhecomes

Liefideo — 1 ( gelvgelldgeld 1 gals gollygeld 4 galvgel[5gels |- gologel brgelé) .
The Oth order matrix A48= A@)td= [y o has the rank [5]:
R(A(aﬁ)(ya))Z{i:M<N: 10 ;g z:z:jg’ ((Z‘;
The Einstein equations are underdetermined (general covariance); to
them must be added 4 conditions fixing the co-ordinate system.
In case (a), equation (4) implies
(12) (0ap,p9” + 050,a" — 02050, o9° — 0" P08 lyw = 0.
The general solution of (12) can be easily found:
hog= hop g+ hsp, (R, — arbitrary vector field),
but the eorrespohding jumps of the curvature tensor vanish:
AR o516 § (89 us,py + AGpya0 — AGay,ps— AGgs,09) = 0.
‘Equa,t‘ion (4) leads, in case (b), to
(13) b+ R Patpa— 179 5= 0.

Among the 10 equations (13), only 4 are independent. Thus, in an
arbitrary co-ordinate system, h,; has 6 components algebraically inde-
pendent. The corresponding discontinnities of the Riemann tensor are:

(14) AR 5y5=} @ [Pp10,9.01

Let us summarise: the curvature tensor R.,, of empty space-time
can be discontinunous only on null surfaces (p,p*=0). The jump of Rus
is defined at each point by six numbers and has the form (14), The ana-
logy with electrodynamies allows us to consider pure gravitational fields
with discontinuous Riemann tensor as representing gravitational radia-
tion [7].
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5. Let us restrict ourselves to linear field theories. Solutions of the
form y,= n,e**®, where o is a great number, represent, in the electro-
magnetic case, light (optical) waves. Ixtending the notion of geometrical
optics to any linear field theory, we can obtain an “eikonal” equation
as follows. Introdueting . =74ev in (2), and disregarding terms not
containing «? we obtain:

— szAB‘""?B?’,g(P,a =0 -

i. e., an equation identical in form with (4). Thus (5) is again a neces-
sary and sufficient condition for the existence of a non-vanishing ampli-
tude #4. The condition

RB(A4B) <M

can be called, by analogy with electrodynamics, an eikonal equation,
These few remarks again reveal the connexion between propagation of
discontinuities and wave phenomena *).

The author is greatly indebted to Professor L. Infeld for his kind
interest in this paper.
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*) Note added in proof. From the condition R(A4%) <M defining the characte-
ristic surfaces, we can also obtain the velocity (or velocities) v of propagation of

the disturbances. For Maxwell’s theory this is trivial: 9“e,9,=0 implies v=c. But

if we take, e.g., a non-linear electrodynamics, then we get, apart v—¢, several dif-
ferent velocities, depending on the field strengths.




