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Flows generated by smooth vector fields are considered from the point of view of conformal
geometry. A flow is defined to be conformally geodesic if it preserves the distribution of vector
spaces orthogonal to the lines of the flow. It is shear-free if, moreover, it preserves the conformal
structure on these vector spaces. Differential equations characterizing such flows are derived for
the general case of an #n-dimensional conformal space of arbitrary signature. In the special case of
null flows in spacetime, one obtains a refined version of the theorem connecting null solutions of
Maxwell’s equations with null flows that are geodesic and shear-free.
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I. INTRODUCTION

It has been known since the work of Hermann Weyl'
that there are two essential geometric ingredients in relativ-
istic theories of spacetime: a family of null cones, defined by
the rays of light, and the projective structure, related to free-
ly falling particles. The latter structure is usually described
by means of an infinitesimal connection, while the former
leads to conformal geometry. When suitable compatibility
relations between these structures are assumed, they can be
shown to arise from Riemannian geometry.” There is a part
of physics which depends only on the conformal structure:
not only Maxwell’s equations,® but essentially all equations
of massless particles,** including the Yang-Mills equa-
tions,® are conformally invariant. Moreover, in the domain
of phenomena where particles are produced and scattered
with energies much larger than their masses, one can use an
approximate description of their behavior, based on neglect-
ing their masses and assuming conformal invariance of the
fundamental laws. Conformal ideas also underlie the twistor
program of Penrose.

Since the propagation of light is closely related to con-
formal geometry, it is not surprising that the geodesic, or
nongeodesic, character of a null curve is invariant under
conformal changes of the metric. This is not true of timelike
and spacelike curves. Moreover, congruences of null geode-
sics are intimately linked to null solutions of Maxwell’s
equations. It is easy to see that a null electromagnetic field—
a field which at any point has the same algebraic form as a
plane wave-—has a stress—energy tensor of the form k °k °.
Since that tensor is always traceless, the vector field & is
always null; and since it is also conserved, the field X is tan-
gent to a congruence of geodesics. There is another, subtler
property of k£ which, together with the null geodesic proper-
ty, characterizes completely the vector fields associated with
null electromagnetic fields.” The additional property is relat-
ed to the absence of shear or distortion: One can visualize it
by thinking of the congruence generated by & as representing

* Permanent address: Instytut Fizyki Teoretycznej Uniwersytetu War-
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a beam of light. The study of shear-free congruences of null
geodesics (rays) played an important role in the investigation
of exact solutions to Einstein’s equations. Goldberg and
Sachs® showed that an empty spacetime admits such a con-
gruence of rays if, and only if, its curvature tensor is algebrai-
cally degenerate. This theorem was generalized in a confor-
mally invariant manner by Robinson and Schild.® Moreover,
a systematic search for solutions of Einstein’s equations ad-
mitting congruences of rays led to the discovery of simple
spherical gravitational waves'® and of the Kerr black hole!
as well as of other metrics.!?

This paper contains a generalization of the notion of a
congruence of rays to n-dimensional spaces of arbitrary sig-
nature. It turns out that, although in conformal geometry
there is no way of assigning the geodesic property to a single
nonnull curve, there is a well-defined notion of a conformal-
ly geodesic flow. All relevant notions—geodesity, expan-
sion, vorticity, and shear—are defined in terms which are
manifestly invariant under conformal transformations.

ll. NOTATION

To a large extent, this paper follows the terminology
and notation prevalent in differential geometry and math-
ematical physics.'>'* All manifolds and maps are of class
C =. If fM—N is a map of a manifold M into another mani-
fold N, then Tf:-TM—TN is the tangent, or derived, map of
the corresponding tangent bundles. If g is a covariant tensor
field on N, then f *g denotes its pullback to M. If kis a vector
field on M and « is a p-form on M, then kla is the (p — 1)-
form on M obtained by contracting a with k: that is, if x e M
and u,,...,u, € ' M, then
(2.1)
A vector field k on M generates a flow (@,) on M, i.e., a local
one-parameter group of local transformations of M. For any
(sufficiently small) t € R, @, is a diffeomorphism of an open

submanifold of M onto another such submanifold. If both ¢
and s are sufficiently small,

PP =P s

(kla)uy,....u,) = alk (x),uz,...,1,).

(2.2)
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provided that the domains of the maps occurring in this
equation are restricted to make both its sides meaningful.
Since @, is a {local) diffeomorphism, it can be used to pull
back any tensor field 4 on M, and the last equation implies
that

prlprd)=@t 4. (2.3)
Differentiating both sides with respect to s at s = 0, one ob-
tains

Lora=prsid, 2.4)
where
Fod=2 o2 (2.5)
dt (=0

is the Lie derivative of A with respect to k. It is known that
the Lie derivative of a p-form a can be evaluated from the
formula

Fa=klda +dkia), (2.6)

where d denotes the exterior derivative. The exterior product
of forms is denoted by the wedge symbol. Both & and the
interior product by &, k1, are antiderivations of the Cartan
algebra of differential forms on M; e.g.,

kKll@AB)=(kla)AB+(— 1)Pa A(kIB), (2.7)

for any p-form ¢ and form 5.

By a Riemannian space we understand a manifold M
with a metric tensor g which is nonsingular, but not neces-
sarily positive-definite. In terms of local coordinates (x“),

a = 1,...,n, the metric tensor may be written as g, dx* ® dx";
and a similar notation is used whenever it is convenient to
represent tensors by their components. For example, if k and
! are vector fields on M, then k = g{k )is a 1-form,

1l glk)=glk,!), and

k=k%/dx*, «=k,dx", where k, =g,,k°. (2.8)

The Levi-Civita connection V associated with g is metric and
has no torsion, so that one can write

di = K, dx? Ndx® = g, k ©,dx® Adx?, (2.9)

if it is accepted that (k °,,) denotes the components of k£ with
respect to the local coordinates (x°). One writes V . for covar-
iant differentiation along a vector field ¢

A conformal structure [ g] on M is an equivalence class
of Riemannian metrics on M. Two metrics, g and g, belong
to the same class if and only if there is a positive function 4 on
M such that g’ = hg. One also says that the metrics g and g’
are conformally related to each other. In conformal geome-
try, one is interested in the relations which derive from the
conformal structure: i.e., those which do not change under a
replacement of g by g’ = hg. Such relations, properties, and
structures are said to be conformally invariant. For example,
assume M to be n-dimensional, and put ¥ = det( g,, ). Then

gab = |7/| - l/ngab (210)

defines on M a conformally-invariant tensor density g of

weight 2/n. The signature of g is also a conformal invariant.
A conformal spacetime is a four-dimensional manifold with a
conformal structure and the same signature as that of Min-
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kowski space.

On an oriented Riemannian space, there is a standard
definition of the Hodge duals of differential forms. In this
paper, however, we use § to define duals relative to the con-
formal structure of M. Thus, if w is a p-form of weight g, then
*w is the (n — p)-form, of weightg — 1 + 2(n — p)/n, defined

by
oA gu, )N N Blu,) = *olu, . ,...u,lvol  (2.11)

when u, , ,,...,u, are arbitrary vectors, and vol denotes the
volume element on M. If M is even-dimensional, then the (n/
2)-forms a and *a have the same weight. If k is a vector field
and & = g(k ) the 1-form corresponding to it in a conformally
invariant way, then

kl*am = *jw Ak)

for any p-form w.

(2.12)

1l. CONFORMALLY GEODESIC FLOWS

Let k be a nowhere-vanishing vector field on M. It de-
fines a distribution K of one-dimensional subspaces of the
tangent spaces to M: For any x € M, the subspace X (x) con-
sists of all vectors parallel to & (x). The distribution K isinvar-
iant under the action of the flow (@, ) generated by k. A con-
formal structure [ g] on M, together with K, defines a
distribution K * of (n — 1)-dimensional subspaces: K '(x) is
the set of all vectors tangent to M at x and orthogonal to & (x)
relative to [ g]. At any point x € M, the sign €(x) of
glk (x), k {x))isaconformalinvariant. Weassumek tobesuch
that € is constant on M. The distributions K and K * define
vector bundles over M. If €0, then K (x) n K Y(x) = {0},
and

TM=K o K", (3.1)

whereas in the null case, € = 0, K C K*, and one can form
the exact sequence of vector bundles over M,

0-K—->K'-K'Y/K—0. (3.2)

The fibers of the quotient bundle X */K are (n — 2)-dimen-
sional, and correspond to the “screen spaces” considered in
early analyses of the geometry of null geodesic congru-
ences.'®"’

Definition 1: The flow (@,) generated by k is said to be
conformally geodesic if it preserves the distribution K L

Tp,0K* = K tog, . (3.3)

Sometimes, when there is no danger of confusion, we de-
scribe a flow as geodesic, although it is actually conformaliy
geodesic. For any g € [ g], one defines the 1-form
k =glk) =g, kbx = k,dx and obtains K *(x)
= ker «(x). Ifg’ = hg, thenx’ = g'(k ) = hx has the same ker-
nels as «.
Theorem 1: The following conditions are equivalent:
(i) K * is invariant under (@,);
i)k AL k=0 (3.4)
(iii) there exists a metric g € [ g] such that g(k, k ) is con-
stant on M and the congruence defined by (@, ) consists of
affinely parameterized Riemannian geodesics of g.
Remark: Condition (i) is invariant under a conformal
change: that is, under a replacement of « by " = A«. In gen-
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eral, it is not invariant under changes in the parameteriza-
tion of the congruence: that is, under the replacement of £ by
Jk, where fis a function on M. It is invariant under the latter
change, however, if the congruence is null.

Proof of Theorem I: Since K *(x} = ker «{x), invariance
of K under ¢, is equivalent tox A @ *x = 0, and, consequent-
ly, from (2.4), to (ii). Next choose g € [ g] so that
klk = glk, k) = const on M. From (2.6),

Lk =kldk
= kl(k,,dx" Ndx?) =k, k *dx®, (3.5)
so that (ii} is equivalent to
kk?®) k<=0. (3.6)
If the vector field k is nonnull, then (3.6) implies
k® k<=0, (3.7)

and the parameter ¢ of the flow (@,) is affine. If k is null, then
(3.7) can be imposed by a conformal change of the metric
tensor. This completes the proof of Theorem 1.

IV. THE PROPERTY OF BEING SHEAR-FREE

The vector bundle X *—M has a conformal structure
induced by [ g]. In other words, for any x € M, the vector
space K '(x) is endowed with an equivalence class of scalar
products, two scalar products being equivalent if and only if
one is a positive multiple of the other. The scalar products on
K ‘(x) need not be nonsingular, even though g has been as-
sumed to be such.

If the flow (@, ) preserves K *, then the vector spaces
Ty, (K ‘(x)) and K (@, (x)) coincide; and one can compare the
conformal structure on K *(@, (x)) with that on K *(x) by
“dragging” (Lie transporting) tangent vectors by means of
T, . These considerations suggest the following:

Definition 2: A conformally geodesic flow (¢, ) is said to
be shear-free if it preserves the conformal structure of K *. In
other words, (@, ) is shear-free if, for any € R and x e M,
there exists 2 € R, £ > 0, such that

u,veKix) (@ 8)u,v)=hglu,v).  (4.1)

This is equivalent to the existence of a function 4, and a 1-
form £, such that

implies

‘P?‘g=htg+§z®'f+"®§z~ (42)
By differentiation, this implies
ZLig=2ag+ @k +ke¢, (4.3}

where a is a function and £ is a 1-form on M. Introducing the
tensor G with components

Govea =kKia 8oy1cka ) (4.4)
one can replace (4.3) by the equivalent condition
£, G=24G, (4.5)

where A is another function on M. It is straightforward to
prove:

Theorem 2: The flow on (M,[ g]) generated by k is con-
formally geodesic and shear-free if, and only if, k A ¥, 5k =0
and condition {4.3) or {4.5) holds.

Let g be now chosen in the way described under condi-
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tion (iii} of Theorem 1. This implies

Lx,k=0 and A=a. (4.6)
By contracting both sides of Eq. (4.3) with & one obtains

(2a + k&) + (klk)s =0, (4.7)
whereas taking the trace leads to

divk =na+ ki, (4.8)

where the divergence of k is computed with respect to the
volume element defined by the Riemannian metric, .¥°, vol
= (div k) vol. It follows from (4.7) and (4.8) that

a=m"'divk, (4.9)

where misn — 1 or n — 2 according as the flow is nonnull or
null. In the first case, £ is proportional to , and (4.3) reduces
to .7, g = 2a( g — x ® k/kLx); in the second case, they need
not be proportional, and k1§ = — 2m ™" div k. In these for-
mulae, m is the number of dimensions of the relevant vector
spaces whose conformal structure is preserved by the flow:
for € £0, they are the orthogonal spaces K *(x); for € = 0, the
screen spaces K '(x)/K (x).

Remark: A flow of conformal automorphisms, charac-
terized by ., g = 2ag, is geodesic and shear-free, but the
converse is not true.

V. EXPANSION AND VORTICITY

Together with a, the scalar of expansion, one can con-
sider

b*=m"! gabgtdk(a;c]k[b;d 1 (5.1)
as a measure of the vorticity of the congruence associated
with the flow. Taking account of (4.6), one obtains

kiakyicka )+ Kiakeypp ka ) = 20k, 8siicka) (5.2)
from (4.5), and hence

gabngk(a;c)k(b;d) = ma2 ’ (5'3)

888"k ) K e \ K1 p ) = Mab* . (5.4)
The Ricci identity for the commutator of second covariant
derivatives gives

ka;bck ¢ -+_ ka;ck C;b = Rcubdk ck 4 . (5'5)
Using (5.3) and (5.4) to simplify the contractions of (5.5) with
g** and k [*), respectively, we obtain the real and imaginary
parts of

Lla+iby+@+ibP=m"'R_jkk“. (5.6)

This propagation equation for the complex scalar of expan-
sion and vorticity was first obtained by Sachs'® for the case
n =4, € = 0. Raychaudhuri'® had previously investigated
the case n = 4, € #0.

Vi. CONFORMAL INVARIANCE

It is possible to replace g by g, the conformally invariant
density of (2.10), in all results which do not refer explicitly to
a preferred metric. Writing

k=k,dx*=gk), (6.1)

I. Robinson and A. Trautman 1427

Downloaded 12 Nov 2006 to 193.0.118.39. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



for example, we may replace (3.4} by

RNZL, 2=0. (6.2)
This shows that the flow generated by & is conformally geo-
desic if, and only if, there is a scalar @ such that

Lk= —2mn"'ak . (6.3)
The coeflicient has been chosen to make this equation com-
patible with (4.9). From (4.5) and (4.6), writing

Gabcd = I’;[a gb][ckd ] (6.4)
we derive
£,.G=2n—mn~'aG (6.5)

as a necessary and sufficient condition for the flow generated
by k tobe geodesic and shear-free. The vorticity of the flow is
described by a 3-form density of weight 4/n,

2 = (1/3,,.dx" Ndx" Ndx* = k Ndx . (6.6)
For a geodesic flow,

klkb>=f,m~'g»g" "0, 02, , (6.7)
and, if e = 0,

Rokyb? =14 m~'g"g" 0, 2, . (6.8)
In the null case, {6.2) is equivalent to

kl2=0. (6.9)

Thus, a null flow is geodesic if and only if it is orthogonal to
its vorticity 3-form. In three dimensions, this is equivalent to
the vanishing of the vorticity. For n > 3, the condition (6.9)

for a null flow to be geodesic is equivalent to the existence of
an (n — 4)-form density @ of weight 1 — 4/n, such that

2=kl*o. (6.10)

In four dimensions, w = + 2b. For n >4, w is determined
modulo the exterior product of k£ with an arbitrary (n — 5)-
form density.

VIi. A SPECIAL CASE: NULL FLOWS IN CONFORMAL
SPACETIME

The conformal structure of an oriented four-dimen-
sional space of Lorentz signature induces a natural complex
structure on the screen spaces associated with a null vector
field k. Indeed, in this case S (x) = K '(x)/K (x) is an oriented
plane with a conformal structure. Let J be a rotation in that
plane through 90°. Clearly J> = — I, and J defines a com-
plex structure on S (x). The complexified space C ® S (x) may
be represented as a direct sum .S *(x) ® S ~(x), where

S*x)={ueCoSx)Ju= +iu}. (7.1)
Let K * (x) be the subspace of C ® K *(x) projecting onto
S *(x) by the canonical map C ® K *(x) —» C ® S (x). Clearly,
K x)nK " (x)=Ce®K(x}, (7.2)
K"x)+ K (x)=Ce®K*'x). (7.3)
EachofthespacesK *(x)and K ~(x)is amaximal, totally null
subspace of C® T, M. Indeed, if v € K *(x), say, then, since k
is null, the scalar square of v is equal to that of its image
u € 8 *(x) under the projection K *(x)—S *(x). Since J is an
isometry, the square of u is equal to that of Ju = ju. The
latter square is opposite to that of u; thus the square of u is
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zero. Therefore, the scalar product of any two vectors be-
longing to K *(x)is zero. K *(x)is maximal because it is two-
dimensional. We remark that one has the exact sequence of
complex vector bundles over M

0>K+*—-CeK'»S —0. (7.4)

The preceding definitions easily lead to:

Theorem 3: The flow generated by a null vector field £
on a spacetime is geodesic and shear-free if and only if it
preserves the complex vector bundle K *—M.

Now consider a nonvanishing null vector field k on M.
Its flow need not be geodesic. The subspaces
K *(x) C Ce K *(x) may be characterized by means of suit-
ably chosen complex 2-forms. Let E = | E,,dx“ Adx" #0be
a form subject to

*E=iE, klE=0, (7.5)
where the dual, in agreement with (2.11), is given by

*E,, =) 8o 81a€E,; . (7.6)
The complex conjugate form E satisfies

*sE= —iE, klIE=0. (7.7)

At each point x € M, the form E is defined by (7.5) up to a
complex factor. The kernel of the map
CeT ., M— Co T*M defined by

v UlE (7.8)
contains C ® K (x). It is two-dimensional; and since

glu, V)E =gu)\(vLE) 4 v*L{ul*E) (7.9)
identically, for any 2-form E and vectors « and v, it is totally
null. The kernel of (7.8) must therefore coincide with one of
the spaces K *(x)and K ~(x). If E correspondstoK *, then E

corresponds to K ~. The total nullity of K * finds expression
in the equation

E,g"E, =0. (7.10)
For any g € [ g], one may restrict E further by requiring that

EE?, =kk,; (7.11)
E is then determined up to a phase factor, and (as a special
case of the unscrambling identity'?)

4G=E®E+E®E. (7.12)
Writing D = .¥  E — AE, one sees that Eq. (4.5) is equiva-
lent to

DeE+EeD= —DeE—E®D, (7.13)

and, therefore, to D = iBE, for some real scalar B. Thus the
flow generated by k is geodesic and shear-free if and only if

S E=cE (7.14)

for some complex function e ( = A4 + iB)on M. This pro-
vides an alternative proof of Theorem 3. Since (4.3) is the
general {real} solution of

Eap(fk g)pqEqb = O ’ (715)

this too is necessary and sufficient. One can also derive it
from (7.14), by taking the Lie derivative of (7.10).

For any vector field £ the 2-form E,, V E #,dx" Adx"is
self-dual, orthogonal to &, and therefore proportional to E.
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Similarly, the self-dual and anti-self-dual parts of k A V « are
proportional to E and E, respectively. Thus there exist 1-
forms 8 and 6 such that'®
ELE?, =E,b'., (7.16)
kokae — kokye = Eg6. — Eqy 8, . (7.17)
Contracting the last equation with k, and using (3.5), we have
kAL k + (kLO)E + (k1O)E =0 (7.18)
From(7.5)and(2.7), kL6 AE} = (kL6 )E;from(2.12), writing
xo=0AE, (7.19)

we obtain *(o A k) = kL(@ A E ). It thus follows from
Theorem 1 that the flow generated by k is conformally geo-
desic if and only if there exists a scalar ¢ such that

(7.20)

Using (7.5), (7.10), and (7.11) to simplify the contractions of
E ™ with {7.16) and E " with {7.17), we obtain

O =CK.

—E, k?=k, 0, E,k°*, =k,0,. (7.21)
From the contraction of E % with the last equation,
E Ly 8By = 2k,0,, . (7.22)

Thus o = 01is equivalent to (7.15), a necessary and sufficient
condition for the flow to be geodesic and shear-free. From
(7.21) and the covariant derivative of (7.5), however, 8 = 6 ":
from the contraction of (7.16), therefore,

ioc =*+*EN+dE).
One deduces:

Theorem 4: Let & be a null vector field on a conformal
spacetime M. The following conditions are equivalent:

(i) the flow generated by & is conformally geodesic and
shear-free;

(ii) o = 0;

(iii) K *(x) is surface forming, i.e., it admits two-dimen-
sional integral manifolds;

(iv) £ E is proportional to E;

(v) there exists a nonvanishing complex function fon M

(7.23)
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such that d (fE) = 0;

(vi) there exists a real nonvanishing 2-form F on M
which satisfies Maxwell’s equations for empty space,
dF =0 =d+F, and the conditions k| F = 0 = kl*F.

Proof: The equivalence of (i), {ii), and (iv) has been estab-
lished. From the expression (7.23) for o, the equivalence of
(ii), (iii), and (v) follows by the theorem of Frobenius. One
demonstrates the equivalence of (v) and (vi) by writing

F=fE+ fE.
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