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1. INTRODUCTION

In view of the common background required for the
understanding of the lectures of both authors, and in
order to avoid unnecessary duplications, we have decided
to present jointly this brief introduction to the language
and properties of fiber bundles. By now the advantages of
the fiber-bundle formulation of gauge field theories have
led to a widespread acceptance of this language, and a
number of reviews of the subject have appeaied or are in
course of publication. These, together with a number of

standard textbooks are listed in the references to this

+ ; : ) : e
Lectures given at the XX. Internationale Universitdtswochen
flir Kernphysik, Schladming, Austria, February 17 - 26, 1981.
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introduction. Nevertheless, we felt that it would be con-
venient for the reader of these proceedings to have at his
disposal a summary of the basic facts. We also tried to
clarify a number of concepts and propose an acceptable
terminclogy wherever a standard has not been established

in the literature. This refers, in particular, to the terms
gauge transformation , pure gauge transformation, and the
related (infinite-dimensional) groups as well as to the
concepts of extension, prolongation, restriction, and re-
duction of bundles, which are used with slightly varying

meaning in different texts.

In the oral presentation most of the general back-
ground material was presented by Andrzej Trautman, and
the material related to reduction and symmetry of connection
was given in Meinhard Mayer's lectures. Little, if anything,
in this introduction is original. The actual text has been
written in California by the first author and slightly
revised by the second during his stay in France after

the Schladming meeting.

No detailed proofs are given here, but wherever
possible illustrations and examples are used to make the
concepts plausible to physicists. Many proofs are straight-
forward and can be carried out by introducting local co-
crdinates and bases. However, we recommend to the reader
who wants to become familiar with the spirit of modern,
coordinate-free, differential gecmetry to try to stay

away from bases and indices as much as possible.

2. EXAMPLES OF BUNDLES. .FUNDAMENTAL DEFINITIONS

We assume that the reader is familiar with such fun-
damental notions as differential manifold (including the
concept of charts, atlases, diffeomorphism, etc.) ang with
the calculus of exterior differential forms, as wel]l as
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with the fundamental concepts related to Lie groups and
Lie algebras. In this section we list a few examples,
illustrated by pictures, which will provide the intuitive
background for understanding the more formal definitions

and statements of the remainder of this lecture.

Oof course, the most important examples of bundle
structures appearing in contemporary physics are furnished
by abelian and nonabelian gauge theories, and by the (pseudo-)
Riemannian manifolds of general relativity. In the most
familiar abelian gauge theory - electrodynamics of a charged
field - the field ¥ defined on Minkowski space and with
values in some complex vector space (for simplicity, con-
sider a complex scalar, or a Dirac or Pauli spinor) is )
subjected to the "point-dependent phase transformation",
¥ (x) » exp {io(x)}y(x), and in order to reestablish in-
variance of the equations of motion, one replaces in them
(or in the Lagrangian) the ordinary space-time derivatives
au by the "covariant" derivative Vu = au + iAu (we set

e = ¢ = 1) where the new field AU subject to the "gauge

transformation of the second kind" iAu - i(AU + auu) = iAu+
+ g(:x:)_1 aug(x), where g (x) = exp(ia(x)) is a smooth function
on spacetime with values in the group U(1). We see here the

appearance of a function on spacetime with values in a Lie
group, or more generally, a copy of the group U(1) attached
to each point of spacetime - the trivial principal bundle

M x U(1). A simple analysis of magnetic monopoles shows that
this picture is not adequate, and that in some situations a
more intimate mixture of spacetime and the gauge group U (1)
becomes necessary, where a product representation is valid

only locally.

Similarly, if one considers a field which transforms
under a representation of a nonabelian compact Lie group G
(e.g., G = 8U(2), in the original work of Yang and Mills),
one is led to a structure in which a copy of G is attached

to each point of space-time, and locally, in a neighborhood
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U of a point, this can be represented as the product U x G.
The place of the electromagnetic vector potential is taken
by the Lie-algebra-valued (matrix-—valued) one-form A =

= EA:(X} eadx“, where (e_ ) is a basis of the Lie algebra

G of G (in the case of SU(2), B, = iga, a=1,2,3, o, are
the Pauli matrices), and as the field ¢ (x) is subjected to
the "local gauge transformation" ¢ (x) - g(x)¢(x) the
equations of motion are preserved if A is subjected to the
affine transformation A(x) - g(x)_1A{x)g(x) + g(x)-1dg(x)
provided ordinary differentials are replaced by "covariant
differentials" d¢ » D¢ = d¢ + [A,¢]. These differentials do
not commute and their "commutator" is related to the Yang-

Mills field strength two-form
F=da+ 3[AA]l . (2.1)

This two-form is subject to the "Bianchi identity" (just
as the electromagnetic field strength two-form satisfies

dr = 0)

DF dF + [A,F] = 0 . (2.2)

In distinction from the abelian case, F is not gauge-in-

dependent, but transforms as
F(x) > g(x) Fx)g(x) ,

and, if one wishes to write down the inhomogeneous Yang-
Mills equation, one may generalize the Maxwell equations
to

DPF (x) = = ®J(x) . (2:3)

as

Here * means the Hodge-duality operator which associates
to a p-form in n-space the dual (n-p)-form (provided the
manifold is oriented and has a Rieménnian metric). In
particular, in Minkowski space ¥ can be defined through its

action on the basis coordinate forms:
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#dx o~ = dX] ~ dXZ ~ dx3 (cycl.perm.),

x(ax! ~ ax?) = ax® ~ dx’ , etc.. (2.4)

Alternatively, ®F can be thought of as the two-form with
’ . 1 (o S

-~ = =£ b

components given by Fuv 5€uvpo F~ . *J denotes the
current three-form of the matter field which satisfies

the "covariant divergence" equation D¥J = O.

In order to see that the concept of "a group labeled

by a point in a manifold". i.e., a principal bundle, or a

vector space labeled by a point in a manifold, i.e., a

vector bundle, appear naturally in geometry, and that

matrix-valued forms, such as A and F, are usually associated
with such objects, we consider some more elementary geo-

metric examples.

In looking at these examples it is important to
remember that the concept of fiber bundle generalizes the
notion of direct (or cartesian) product of two spaces,
and that the concept of section generalizes the graph of
a function. Thus, the simplest example (and the one
easiest to picture) is the cartesian product of two sets
X (the domain space of the function f:X » ¥Y) and Y (the
range space). The cartesian product X x Y can be viewed
as formed by copies of Y (fibers) attached to each point
of X, called the base space. In the usual treatment of
cartesian products X and Y are treated on an equal footing.
In fiber-bundle theory the base space X plays the role of
a label space, whereas the typical fiber Y is quite distinct
(and may be of a different nature, e.g., a group G, a vector
space V, a homogeneous (coset) space G/H, such as a sphere,
etc.). A distinguished role is also played by the projection
T:XxY¥Y>X: (x,y) -~ x. Another distinction to be kept
in mind is the fact that in a cartesian product we auto-
matically identify points in different fibers "which lie

on the same horizontal®". In a fiber bundle there is no such
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automatic identification; it must be introduced as extra
structure, by defining a section (or a basis of sections,
in a vector bundle), i.e., picking a distinguished point
or basis in each fiber. As we shall see this cannot al-
ways be done (if it can, and the bundle is principal,
then it may be identified with a product, and is called
trivial). Some of these notions are illustrated in Fig.1.
The reader should keep in mind that most of our illustra-
tions are for products (i.e., trivial bundles, since the
nontrivial cases are difficult to draw; the reader might
think of the M&bius band or the Klein bottle as examples

of nontrivial bundles).

X x Y Y BUNDLE SPACE
fibers
(x,¥y)_ | __
i i S €1 1] sEcTION
H ’ |
] | )
A | projection
R
X BASE SPACE
Fig. 1
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An example which illustrates nontrivial bundles and

some of the general concepts to be defined later is the

tangent bundle of the sphere S and the associated frame
pundle of dyads on an oriented sphere (Fig. 2). Consider
the unit sphere 82 in R3 as the base space X of our bundle.
This sphere is a differentiable manifold, and an atlas of
charts consists, e.g., of two open sets obtained by re-
moving caps around the north and south poles, and the
mappings of the remaining portions of the sphere onto R
realized by stereographic projections from these two poles.
To each of the points on s? we attach the two-dimensional

tangent space spanned, e.g., by the two tangent vectors
€g 2¢
T {s°). The union of all these two-dimensional vector

We denote this tangent space at the point p by

sPaces, as the point p ranges over the sphere,is the

tangent bundle TSZ. It is a four-dimensional manifold,

since each point in it is labelled by the two coordinates
of p and the two coordinates of the tangent vector at p.
Moreover, since the "sphere cannot be combed", we cannot

represent this bundle as a cartesian product of 82 and

R2 globally (although in any chart of 52 this is possible),
and therefore we are dealing with a vector bundle on S

which is nontrivial, but locally trivial. Associated with

this vector bundle is a bundle - the frame bundle - the

fiber of which is isomorphic to a group. Indeed, consider

the bundle of oriented dyads (pairs of unit vectors tangent

to 52 at each point). In an embedding into R3 it is clear
that the total space of this bundle is isomorphic to SO(3),
since any dyad can be taken into any other dyad by an
orientation-preserving rotation of R3. Loéally, such a
rotation can be viewed as consisting of the two parameters
labelling the point p on the spheré and an angle  which
takes a "standard dyad" (e.g., the east-north dyad) into

the given dyad, i.e., locally, SO (3) decomposes into the
product of an open set U in 82 and a copy of the group

SO(2) - the typical fiber, the projection m being the smooth

map associating the point p to the frame at that point.
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The bundle SO (3) -+ 52 is an example of a principal bundle,

in which the typical fiber is a Lie group G (just as for a
gauge theory), which also acts on the bundle space on the
right (since we like to write frame transformations as
right multiplication by matrices, reserving the left multi-
plication for actions of the group on vector components),

and the tangent bundle is a vector bundle associated with

this principal bundle by the fundamental representation of

S0(2) by rotation matrices in two dimensions.

A generalization of this example to four dimensions

is the bundle of tetrads (Vierbeins) often used in general

relativity. Here the typical fiber is the Lorentz group
which takes the standard tetrad eg(x) at a given point
into an arbitrary tetrad eb(x). In distinction from the §
previous example, if the base space is homeomorphic to R,
such a bundle will be trivial, i.e., will admit a product

representation M x S0O({1,3). >

The principal bundles of dyads, tetrads, and, more

generally,frame bundles (which may be of higher differen-

tial order than one) are more special or "richer" than
the principal bundles occurring in gauge theories of the
Yang-Mills type. The elements of the former bundles are
"concrete": they can be defined and easily visualized in
terms of geometrical constructions referring only to the
base space. In other words, frame bundles are soldered to
the base. This important concept distinguishes the theory
of gravitation among all gauge theories; it is discussed

in some detail in the lectures by the second author.

To illustrate the concept of a nontrivial principal
bundle and of its local triviaiity, consider a last example
(Fig. 3), where the base-space is the circle S1 and the
fiber is the discrete group of all integers Z. We easily
cbtain two bundles: the trivial product SAi x Z (left) which

is just the union of a countable set of circles "stacked"
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Fig. 3

over 81, and the nontrivial helix (right) homeomorphic to
R with projection map 7 : R = S1 given by w(t) = exp(2mit).
It is obviocus that acts on the bundle space by "trans-
lation" (t,n) - t + n, where t € R, n € zZ. The attentive
reader will recognize in this example an essential in-
gredient of the Riemann surface of the logarithm. The non-
triviality of this bundle reflects the impossibility of
defining the logarithm as a smooth function on the pointed

complex plane C - {0}.

We are now ready to summarize the precise de-
finitions to be used in the sequel. Further examples will

be discussed in Section 5.

A gauge theory consists of various mathematical

structures associated with a principal bundle P(M,G) =

= (P,M,G,n), where M, the base space, is spacetime (Min-
kowski space, its imaginary-time version Rq, or the com-
pactification S4 of the latter, or one of the (pseudo) -

Riemannian manifolds of general relativity), G is the

structure group of the bundle (the gauge group, in the

physics literature), P is a smooth manifold which locally,
i.e., over a covering of M by open sets Ui’ has a product

structure: P|Ui ot Ui x G, and m is the projection map



442

m ¢ P + M, a smooth surjection of P onto M, such that the
inverse image w"1(x) = P, the fiber over x € M, is diffeo-
morphic to G. The bundle is called trivial if it is iso-
morphic to M X G (globally). The above mentioned isomorphisy
of the restriction of P to each open set U; to a product is
called a local trivialization. The group G acts on P to the

right in such a manner that the equivalence induced by this
action is the same as that induced by the projection 7, i.e.
all points in the same orbit of G project onto the same

peint in M,

A section (or cross section) of a principal bundle is
a (smooth) mapping s : M » P such that 7w(s(x)) = x., Global
sections may not exist in principal bundles;'in fact if
such a section exists, the bundle is trivial, and vice
versa. However, in view of the local triviality, leccal
sections, i.e., sections over properly chosen open sets
Ui always exist and can be used to descriBé the local
trivialization. Indeed, let us consider the diffeomorphism
between P[U and Ux G given by y + (m(y),¢(y)),y € P,
¢ (y) € G, such that for any g € G, ¢(yg) $ (y) -g. Then
the local section s is defined by Sy yedly) ™) for
y in ﬂ_1(x), obviously independent of the point y, because

It

(x)

one can be taken into another by the action of G. The local
section corresponds to an identification of the identity in
the group with the submanifold of ﬂ—1(U) corresponding to U,
It is sometimes convenient to describe the principal bundle
in terms of charts, and the change of coordinates from one

chart to another by means of transition functions (G-valued

cocycles), i.e., maps Iyy * Un V » G satisfying the cocycle
i 1 fa : = .

identity on U Vaw gUW(x)_ gUV(X) Yvw
local trivialization subjects the sections to a local gauge

(x) . A change of

transformation sé(x) = sU{x)-gU(x) where Iy is a G-valued

function on U, and the transition functions to gt

|
uv 9y JuvIv:

The principal bundle P(M,G) is the kinematic back-
ground of the gauge theory, since it specifies both the
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spacetime manifold M and the gauge group G. It will carry

;Zj_ some of the dynamics of the field theory, since the

- connections and curvatures (see Section 3) will be

>hisy jdentified as gauge potentials and gauge fields, and

. +he metric structure of the base space may be identified

PR with the gravitational field.

this However, in order to accommodate the various matter

i.e. fields describing particles, we have to associate to the
pundle P(M,G) various vector bundles (or bundles with
homogeneous spaces G/H) as fibers), in which the particle

¢ g fields can be considered as sections. Alternativély, we

AT may consider the particle fields as smooth maps from the
bundle space P into a vector space V on which G acts (on
the left) by means of a representation r, and which are
equivariant under this action. More precisely, let ¢:P-V
be such a map. Then equivariance means that for any g € G
and p € P 2

sm o(p-g) = (g o) - (2.5)
In other words, the field ¢ defined on the bundle space P
with values in the vector space V in fact depends only on

s the projection x = m(p), i.e., is a field defined on space-

Al time in the usual sense. When composed with, or pulled-back

in by, a section s, the field will be ¢, = s§¢ = ¢osys where

@ s ¢U is a V-valued function of x € U, and if the trivializa-

dle tion is changed by a local gauge transformation , sU(x) -+

ne -+ SU(x)gU(x) = sé(x), the field will be subjected to the

ued "gauge transformation of the second kind",¢ﬁ(x)=r(gU(x)-1¢U(x).

ycle The same method works if V is replaced by an arbitrary mani-

of fold F on which G acts on the left.

E

q Alternatively, one can first define a fiber bundle

I with typical fiber F (or V, in the case of vector bundles)

associated with P(M,G) by the representation (action) r of

G in the following manner: consider the cartesian product
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P x F. The group G acts naturally on the right on this
product in the following way. Let pe€ P, £f € F, g € G.

Then (p,f)-g = (p-g, r(g_1)f), The orbit space of this
action, i.e., the set of equivalence classes under the
equivalence (p,f) ~ (p-g,r(gm1)f) is denoted by P x GF
and is called the fiber bundle associated with P by the

action of G by r on the typical fiber F. It is denoted

by E(M,F,G) and has a natural projection e * E - M,
obtained by factoring the composition of the projection
of P x F on P with the bundle map P - M through the

| quotient map P x F » E. If F = V is a vector space we

obtain a vector bundle, and if F = G/H is a coset space

we obtain a bundle with homogeneous spaces G/H as fibers.

It is an easy exercise to show that a section of

EM,F,G) defines an equivariant function on P with values

g in F, and vice versa. Therefore, matter fields can also
be regarded as sections of the associated -(vector) bundle

E, which is convenient in some constructions.

Before going on to the definition of connections,
curvature and holonomy, we recall several general con-
structions involving fiber bundles which will be used

in the physical applications.

3. MORPHISMS OF BUNDLES. FIBERED PRODUCTS AND PULLBACKS.
EXTENSION AND RESTRICTICN OF THE STRUCTURE GROUP

We limit our definitions to the case of principal
bundles, although some are valid for more general bundles,
and all transpose easily to associated fiber bundles. We
list only the most important definitions, referring the

reader for more details to the literature.

Let P(M,G,m) and P'(M',G"',n') be two principal
bundles. A morphism m of P into P' is a pair m = (u,h),

where u : P » P! isg a Cm—map and h : G =+ G' is a Lie-
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group homomorphism such that u(p-g) = ul(p)-h(g) for all p
in P and g in G. It is clear that u takes fibers of P into
fibers of P' (remembering that a fiber in a principal
pundle is the orbit under the right group action), and
therefore induces a Cm—map v :+ M - M' such that the

diagram

S S

.nl

Be—1g

i
v

is commutative. This can be taken as the definition of a
morphism of bundles which are not necessarily principal.’

1f h is an isomorphism (we then identify G with G') and v

is a diffeomorphism then the map u is also a diffeomorphism,

and the morphism m is called a bundle isomorphism. In par-
ticular, an isomorphism of P onto itself is called a bundle

automorphism. The group of all bundle automorphisms of a

given principal bundle is an infinite-dimensicnal group,
denoted by Aut P. Usually, in gauge theories, we are in-
terested in bundle automorphisms which reduce to the

identity map on the base space, i.e., for which v = IdM.

We call such bundle automorphisms vertical or based. Auto-

morphisms which leave some absolute elements invariant

will be called gauge transformations. A gauge transfor-

mation which is vertical is called a pure gauge transfor-

mation (for a more detailed discussion of this distinction
which is important in general-relativistic contexts, af:

Section 6).

If we consider a local trivialization of the bundle
P over the open set U of M, defined by a section s; (the
reader may think of the local section sy, as a way of
identifying the group identity e,  over each point x of
the base M), then it is easy to see that the pure gauge

transformation u : P - P is implemented by a function
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9y ¢ U - G which is smooth, so that the section Sy is
taken into the section sé(x) = sU(x)gU(x) (i.e., it re-
duces to a gauge transformation in the sense employed by
physicists) . Thus, the group of pure gauge transformationg
90 may be viewed as the infinite-dimensional group of all

smooth G-valued functions on M (¢f. Section 6 )

Another concept which is useful and where the group
structure of the principal bundle does not intervene is
the concept of fibered product and pullback.

The fibered product of two bundles (here it does

not matter whether we are dealing with principal bundles,
vector bundles or other fiber bundles) (T1, M, P1)} (T2,

M, P2), over the same base manifold M, with total spaces

T, and projections Pi is defined as the bundle

(T

1 XM T2l M, P1 XM P2) £341)

which has as total space the submanifold of T1 X T2 con-
sisting of all pairs (t1, t2) such that p1(t1) = pz(tz)
(i.e., points in the fibers project onto the same point
of the base), and as projection, the restriction of the
product-projection to that subspace. The local triviality

of the fibered product is easily established. This concept
is also useful for maps.

An important special case of the fibered product
is obtained if one considers instead of one of the bundles
above a (smooth) mapping of a manifold M' into the base
manifold M of a bundle. On obtains by the same construction
the pullback or induced bundle over M with the same fiber.
More precisely, let XA = (E, M; p) be a bundle over M with
fiber F (a group G in the case of principal bundles, a

vector space in the case of vector bundles), and let

£f : M > M be a (smooth) map of M' into M. Then the tEiple
EX(A) = (M *n E, M', p') is a bundle, called the pullback

LTS R, S .

-

m

o mo bt = e

]

(Tal

P N R e = T T ——
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= ) by f (or the induced bundle, or reciprocal image
pundle) and denoted by £%(2) = M' x, A. Here p' is the
restriction of the projection onto the first factor of

« E to the fibered product M' x E. In particular, if

M
is a submanifold and f is the injection, the pullback

MI
Ml
is the same as the induced bundle on the submanifold.

The fiber of the pullback bundle is the same as

the fiber of the original bundle, but that the base

space has been replaced by M'. In particular, this will
pe one way of defining gauge theories over extensions of
the usual space-time manifold. A section s : M - E of the
pundle £ is taken into a section s' : M' » £#(g) of the
pullback bundle by means of the relation s'"(x') = (x',
s(f(x')), where %' is a point in M'. This also defines
amap £' : M' xy E > E such that £' o s' = s o £. The

map £' is the restriction of the second projection of

the product M' x E to the fibered product. 2

In physical and geometrical applications of fiber
bundles it is often necessary to change the structure
group of the bundle. Thus, if one deals with a gauge
theory with symmetry breaking the original Lagrangian
is defined on a principal bundle P with structure group
G, and the "vacuum" (or classical critical field) may
have the lower symmetry group H, a closed subgroup of G.
There arises the guestion of constructing a principal
bundle Q with structure group H, and the relation between
P and Q. Similarly, in general-relativistic contexts, one
considers the frame bundle with structure group GL(4,R),
whereas physics often imposes either restrictions of
GL(4,R) to one of its subgroups, such as 80(1,3), if the
metric is to be contemplated on the same footing as a
Higgs field, or extensions to larger groups, such as the
affine group GL(4,R) x R4 (semidirect product). In general,
one can consider four distinct operations related to

changes of the structure group. The terminology employed
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in the literature in this context is not uniform (and therea
are sometimes subtle differences in definiticns). Here we
adopt the terminology proposed by one of the authors (A‘Tu
1976) which is at variance with that used in some of the
literature and in some of the lectures by the other author
(although the distinction plays no important role in the

Yang-Mills context) .

Consider two principal bundles £ = (Q, M, H, p) and
n= (P, M, G, m) over the same base space M, and a morphigy
m = (£,v) of Q into P, where f is a smooth map of the

bundle space Q into the bundle space P, v is a diffeo-
morphism of M onto itself (not necessarily the identity),

and the corresponding homomorphism of the structure groups

is denoted, as before, by h : H + G.

If both £ and h are injective immersions (i.e., one=

to-one into, and such that the tangent map is injective
at each point of the respective manifold), then £ is
called a restriction of n relative to the morphism m =

= (£,v,h), or, simpler, Q is a restriction of P to the
subgroup H of G, and n is called an extension of £ re-
lative to the morphism m, or simpler, P is called an ex-

tension of Q to the structure group G.

If both £ and h are surjective submersions (i.e.,

their tangent maps are surjective at each point), then n
is called a reduction of £ relative to m, or simpler, P
is a reduction of Q to the structure group G, and £ is

called a prolongation of n relative tom, or Q is a

prolongation of P to the group H.

In particular, we shall assume in the sequel that
v o= IdM and that H is a closed Lie subgroup of G, such
that the coset space G/H is a differentiable manifold.
If £ : Q> £(Q) ¢ P is a diffeomorphism of Q onto a
closed submanifold of P, such that £(g-h) = f(g)+h for
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all h € H, g€ Q, f(g) € P, then we are in the restriction-

extension situation, which we discuss in more detail.
extens_ Ol

Note. The terminology here follows that of Trautman
(1976) and is closest to Bourbaki and Dieudonné, whereas
Kobayasi-Nomizu (as well as Mayer) call our restriction
reduction. In the Yang-Mills context there is usually no
risk of confusion, but in the discussion of G-structures

and spin structures some care is indicated.

There is no difficulty in obtaining an extension of
the bundle Q with structure group H to a larger group G.
Indeed, construct the associated bundle Q X G with fiber
G based on the left action of H on G. We now let G act on
the right on this space (consisting of H-orbits) by p.g =
= ((g,9")H) g = (g,9'-g)H with p¢ P, g € Q, g,g'e G
(recall that Q Xy 2
pairs (q9,9) ~ (g-h, h "-g), where we have not written out

G consists of equivalence classes of

the homomorphism of H into G which is understood), and the

action fibers this manifold over M, resulting in the bundle
P. The morphism £ : Q = P is given by f(g) = (g,e)H, where

e is the identity in G (and H). It is easy to see that the

projection of the associated bundle is the projection in P,
and that the local triviality of Q induces local triviality
of P

On the other hand, restriction of P to a subgroup H
of G is not always possible. This can be easily seen if
one notices that a necessary and sufficient condition for
a restriction to exist is that there should be a covering
of M by open sets such that the corresponding transition
functions take values in the subgroup H of G. Globally,

one obtains a more interesting condition:

The bundle P(M,G) has a restriction to the group H
iff the associated bundle E(M,G/H,G,P) = P x, G/H = P/H

admits a cross sectiono: M - E.
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It is easy to see that the orbit space of P under

E the action of the subgroup H of G, P/H, can be identified
with the associated bundle E. Denoting by y the canonical
projection of G onto G/H, we can set for p€ P,8(p) =

= p.-y(e), where e is the identity of G. The mapping §:P-E
is a projection for the new principal bundle (P, H, E, §)
over the larger base E = P X G/H which is canonically
identified with the orbit space P/H (this is illustrated

in Fig. 4, in the middle).

Let now ¢ : M -+ E denote a secticn of E and o¥* :
(p, H, E, 6) = (Q, H, M, p) the pullback (induced bundle)
of this map. It is obvious (cf. Fig. 4, right) that this
is now a principal bundle with structure group H over M,
and its extension to G is isomorphic to the original

bundle P. Two different sections cr,j and 02 of E will de-

fine isomorphic restrictions iff they are mapped into
each other by a pure gauge transformation (G-M-auto-
morphism) of P. Otherwise different sections of E deter-

mine different (nonisomorphic) restrictions .

(PULLBACK)
G/H
! llll T
]
S A o*
.2 .« |H _ "“"‘:':J'F —P 0 H
~ )rLLdJ’\\
r § s (SECTION)
P
M E = P/H M
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4. CONNECTIONS, CURVATURE, AND HOLONOMY

We have seen in Sec. 2 that gauge potentials and
fields are described by differential forms with values
in the Lie algebra of the gauge group and act on fields
through covariant differentiation. We have also made it
plausible that fields should be considered as equivariant
functions on a principal bundle with values in a vector
space V (or a homogeneous space G/H) on which the gauge
group G acts on the left. In this section we discuss the
concept of a connection and its curvature on a principal
pundle and show how these concepts are related to the
familiar Yang-Mills potential and its field-strength (con-
gsidered as matrix-valued one- and two-forms, respectively,
on spacetime) and to the Levi-Civita connection (repre-
sented by the familiar Christoffel symbols) and the Rie-
mann-Christoffel curvature tensor in the four-dimensional
pseudo-Riemannian manifolds describing spacetimeﬁin general

relativity.

The modern concept of a connection in a principal
fiber bundle, and the associated covariant differentiations
in associated bundles, has evolved during the first half
of this century through the work of many geometers. There
exist several equivalent definitions of a connection. We
restrict our attention to one which is most useful in the

context of gauge theories.

The fibered structure of a principal bundle, in which
each fiber is isomorphic to the Lie group G, the structure
group of the bundle, suggests that the tangent space TP(P)
to the bundle space P at the point -p contains a distin-

guished subspace of vertical vectors, Veer, vectors which

are tangent to the fiber Px over a point x of the base M.

As is well known, the tangent vectors to a Lie group G at

a peint g form a vector space Tg(G) which is linearly iso-
morphic to Te(G) = G, the Lie algebra of G. Thus, there
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exists an isomorphism between vertical vectors in T (P),
the tangent bundle of P, and elements of the Lie algebra

G, allowing us to identify these (sometimes it is convenient

£o introduce a field A% of vertical vectors corresponding
to an element A in G:; A¥ is called the fundamental vector
field, and the right action of G on P intertwines with

the adjoint action on G, i.e., R A% is the fundamental

vector field corresponding to Ad?§_1)A). Since locally

the bundle space P is isomorphic to the product between
a subset of M and the group G, the tangent space TP(P)
is iscmorphic to a direct sum of Verp(P) and a vector

space Horp(P) which must be isomorphic to T (M) . Un-

fortunately, since the bundle P has no intrzégic "ortho-
gonality" structure, there is no canonical way of identi-
fying the horizontal subspace, and defining a connection
in P means defining at each point p such a horizontal sub-
space Horp(P), smoothly over p, and equivariantly under
the action of G, i.e., R _Hor_ (P) = Hor___(P) for g € G.
Giving such a distributig; ofphorizonta§ Zubspaces allows
us to compare tangent vectors in different fibers, i.e.,

leads to a notion of parallel transport.

This definition of a connection in terms of hori-

zontal subspaces of T(P) is easy to explain, but hard to

compute with. Therefore it is more convenient to introduce @
a dual definition, in terms of differential forms on P, l
which pick out the vertical component of tangent vectors |
and vanish on horizontal vectors (we remind the reader

that this is the only way of defining a‘direct sum de-
composition in a vector space without metric). More
precisely, a connection on P is-defined (globally) by a
one-form w on P with values in the Lie-algebra G such

that for a vector X € Tp(P) we have

w(X) = A € G where A% (p) = Verpx . (4.1)

i.e., the value of the one-form on the vector X equals the
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ent of the Lie algebra which is isomorphic to the
?cal part of X (the part tangent to the fiber). The
?ontal subspace Horp(P) of Tp{P) is then the kernel
ne one-form w, i.e. m(Horp(P)) = 0. The invariance of
izontal space under the right actiocn of G implies

(P)

horY
. for any vector X & Tp

‘Ix) =Ad(9_1)M(X) p or R;Lu = Ad(g—1)m 5 (4.2)

s
"

emind the reader that Rg means the right action of g
 manifold, R . denotes the tangent (derivative) linear
Qf this actign on vector fields, whereas RS denotes
pullback of this action to differential forms.

w = g_1wg if both g and w are interpreted as

The existence of a connection establishes an iso-
hism between Horp(P) and TX(M) , where x = 7p, and thus
connection defines a lift to T(P) of any vector field

M, denoted by X* and called the horizontal lift of X.

larly, any curve in the base space M can be lifted

y a horizontal curve in P, i.e., a curve which has the

zontal 1ifts of the tangent vectors as tangents. This
fs one to establish a correspondence between points in
‘erent fibers along a curve, correspondence which is
parallel transport of fibers. Indeed, starting from
int p_ in the bundle, the horizontal lift of a curve
k.r O < t < 1, (assumed smooth, or piecewise smooth
ntinuous) in M defines a curve y* in P, with end
tp,. As p, varies over the fiber Py,, p; will vary
the fiber Py,
Omorphism vy : P, — Py between fibers, obviously

3 X0
ting with the right action of G on fibers.

and the horizental curves establish

'The reader familiar with the theory of Lie groups

lave noticed a certain similarity between the



454

connection form w and the left-invariant 1-form 9 on a
Lie group; in particular, the left-invariant form 0 on G
transforms according to (4.2) under the right action of
G on itself. Moreover, the form 6 satisfies the Maurer-
Cartan structure equation

1

do + 5 [6,61 = 0. (4.3)

The left-hand side of this equation measures the deviation
obtained by parallel transport around an infinitesimal
parallelogram (spanned, e.g., by two vectors X, Y tangent
to G), i.e., it shows that a Lie group is flat with
respect to this parallel transport. Since the bundle
consists of fibers isomorphic to G, it makes sense to
calculate an expression of the form (4.3) for the
connection form, expression which will measure by how
much a connection "differs from being a Maurer-Cartan
form". This leads to the definition of the curvature

two-form on P:

[w,w] = Duw . (4.4)

N

Here D denotes covariant exterior differentiation

of vector-valued forms defined by

Da = hor do (4.5)
where, for any k-form B on P, one has

hor B (u1,...,uk) = R (hor u1,...,hor uk)

for any vectors Ujreeaslt € TPP' In particular, since @

k
is a horizontal form, the Bianchi identity

DR = dQ2 + [w,2] =0 (4.6)
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follows easily. Both the structure equation (4.4) and the
pianchi identity can be verified by evaluating the right-
and left-hand sides on horizontal and vertical vectors.
ynder the right action of G the two-form Q transforms

according to the adjoint representation of G on G:

REG = adg Ha . (4.7)

Although there is a superficial similarity between
these concepts and the Yang-Mills fields introduced in
gection 2, the most striking difference is the fact that
the latter are defined on spacetime, i.e., on the base
space of the bundle. A connection one-form w and its
curvature two-form (i can be pulled down to the base
space M of the principal bundle P locally, i.e., over
an open set U in M, where a section UU defines a local
trivialization of the bundle. More precisely, let {Ui}
be an open covering of M and let ¢; : w_1(Ui) > U, x G
be the local trivializations, wij = ¢; 51, and Gi(x) =
= ¢;1(x,e) the corresponding local sections. Let 6 denote
the left-invariant (Maurer-Cartan) one—form on G. Then
the transition functions wij (which are G-valued on the
intersection Ui n Uj) define a G-valued one-form eij on

U, n Uj by pullback:

eij = wije i ‘ (4.8)
In each open set Ui the section o, pulls back the connection
form w to U, thus defining a family of G-valued one-forms

on M
A = ofw (4.9)

which are subject to the following "overlap conditions"

in Ui N Uj:
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A, = Ad(wzg)Ai + By - (4.10)

In particular, wij may be thought of as the
transition function describing the transition from one
local trivialization to another a; = o.+Y,.; then the

J 13
forms Bij are obviously given by the expression Gi =

- B
= wi; dwij' and leaving out the indices i, j, if we
operate in a fixed open set, we obtain the law of gauge

transformation:

A+ A" = Ad(w_1)A + 9 'ay (4.11)

which agrees with the form given in Sec. 2 for the fang-

Mills potential.

Similarly, the curvature two-form { pulls back to
a family of G-valued two-forms defined on the open

covering {Ui} of M:
F, = g% , (4.12)

which under a change of trivialization (or in the overlap
of two open sets) transforms under the adjoint action of

the transition function:

F, = Ad(wI;)Fi . (4.13)

It is easy to verify that the structure equation (4.4)
and the Bianchi identity (4.6) "pull down" to the local

forms Fi' Ai in the form:

- 1
Fi = dAi + 3

(A;.2,1 (4.14)
DF, = dF, + [A,,F;]1 = 0, (4.15)

coinciding, respectively, with the definition of the (local)
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yang-Mills field strength and the "homogeneous" Yang-
Mills eguation (2.1), (2.2).

It should be noted, that if fhe principal bundle P
admits a global section, i.e., is trivializable (which is
the case, e.g., if the base space is all of Minkowski
space, Or any space homeomorphic to an Rn)'then the open
cover consists of one set, and the forms A, F are globally
defined. Conversely, it can be shown that if P is non-
trivial, then A and F cannot be globally defined; the
reader should keep in mind the example of the Dirac
monopole, where A cannot be globally defined, bu£ a
connection form can be defined in terms of two pull-
backs, to two overlapping sets on 52, with a gauge trans-—
formation on the overlap, or the situation encountered in

the Bohm-Aharonov effect.

Finally, it should be noted that parallel transport
and covariant differentiation are defined in an obvious

manner in any associated vector bundle.

The curvature two-form measures the "nonintegrability"

of the connection (or parallel transport) locally, i.e.,
for transport around an infinitesimal parallelogram in the
base space. Parallel transport around an arbitrary loop in

the base space leads to the concept of holonomy group of a

connection in P.

We consider continuous cﬁrves in M which are piece-
wise differentiable, and call closed curves starting and
ending at a point x loops. The loops based at a point x
form a group under the obvious composition, with the zero
loop playing the role of identitj, and the loop with
opposite orientation playing the role of inverse. We de-
note the group of loops based on the point x in M by Lx'
and the sﬁbgroup of contractible loops by Lg (we assume
that M is a connected manifold). Parallel transport of

fibers associated with a connection w in the principal
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bundle P(M,G) leads to a representation of the group Lx by

automorphisms of the fiber Px' called the holonomy group of

P with reference point x, and denoted by H(x). If we
restrict the loops to contractible loops, we obtain a
subgroup of H(x), denoted by Ho(x) and called the re-
stricted holonomy group at x. Both these groups can be
realized as subgroups of the structure group G of P,
since the automor phism of the fiber PX associated to
parallel transport around a loop y can also be realized
by the right action of a group element g, with the ob-
vious composition property for successive transport around
twe loops, the inverse, or the trivial loop, provided one
chooses a fixed point p in the fiber above x, where. the
parallel transport starts. Thus the choice of p and the
group of loops Lx (or contractible loops Li) determines

a subgroup H{(p) (or Ho(p))‘of G, called holonomy group

(or restricted holonomy group) at p € P. Another way of
defining H(p) is as that subgroup of elements h € G such
that p and p+h can be joined by a horizontal curve. It
can be shown that the holonomy groups H(p) and Ho(p) are
actually Lie subgroups of G, that H(p)/HO(p) is discrete
(countable), and that the holonomy groups based at

different points x or p are conjugate of each other.

Let P(M,G) be a principal bundle (with M, as always,
connected, paracompact) with a connection w, and P, an
arbitrary point of P. Then the set of points in P which
can be joined to < by horizontal curves coincides with
the restriction of P(M,G) to the subgrqup H(po) of G;
this set is denoted by P(po} and is called the holonomy
bundle at Py- Moreover, the coqnection G is reducible to
a connection in P(po), i.e., the Lie algebra G of G admits
a decomposition into a direct sum G = H + M, where H is
the Lie algebra of H(po), and the H-component of ( re-
stricted to P(po) is a connection form on P(po). In other

words, the horizontal subspace of Tq(P) is tangent to
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P(po) for every g £ P(po). It is clear that the points in
p lie either in the same holonomy bundle, or else their
nolonomy bundles are disjoint, i.e., the bundle space P
ijs decomposed into a disjoint union of its holonomy
pundles, and these are taken into each other by those
elements of G which are not in H(po). For this reason

we may always consider that a gauge group which survives
a symmetry breaking is a holonomy group of the bundle (or

py abuse of language, a holonomy group of the vacuum).

It is clear that,since the curvature { of the
connection measures the "infinitesimal holonomy",
there must be a relation between curvature and holonomy.
There are various theorems establishing such relations,-
the most important one being the theorem of Ambrose and
Singer. This theorem states that in a principal bundle
P(M,G) over a connected manifold M, with connection w
and curvature Q, the Lie algebra of the holonomy group
H(p) with reference point p is the subspace of G spanned
by all elements of the form QV{X,Y) where v is a point in
the holonomy bundle P(p) and X,Y are arbitrary horizontal

vectors at wv.

Let E(M,V,P,G) be a vector bundle associated with
Pand s : M » E a section of E, which can be represented
by an equivariant function £ : P - V. Then parallel
transport of sections can be defined by the parallel
transport in P. In particular, each element of the
holonomy group at p is represented by a linear trans-
formation on V, and in terms of the vector-valued
function f one can represent this action by a matrix
defined on the horizontal lifts of loops in M, acting
on the function f, or alternatively, introducing local
bases of sections, as product-integrals of matrices around

loops (or path-ordered exponentials).
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5. MORE EXAMPLES. UNIVERSAL BUNDLES AND
UNIVERSAL CONNECTIONS

Before proceeding to a discussion of symmetries of
connections we give in this section several examples of
principal bundles which seem to be less familiar to the
physics community. Some of these examples (Stiefel mani-
folds fibered over Grassmann manifolds) have a "universal"
character, meaning that any bundle with an orthogonal or
unitary structure group can be obtained from such a bundle
as a pullback of a mapping of the base space into the
appropriate manifold (more precisely, a homotopy class of
such mappings, since homotopically equivalent maps -lead
to isomorphic bundles). We also mention briefly the
existence of "universal connections", a construction
which will certainly find many physical applications in

the near future.

One of the simplest examples of principal bundles
can be obtained if one considers a Lie group G with two

nested closed subgroups H, K,

(5.1)

where K is an invariant (normal) subgroup of H, and such
that G/K and G/H are differentiable manifolds. Then it is
easy to see that the projection

m : G/K » G/H (5.2)
yields a principal bundle over G/H with structure group
H/K. The projection is the mapping which associates to
each left coset of K in G the left coset of H in G which
contains it (if K is not a normal subgroup, (5.2) dis still

a bundle, with fibers the homogenecus space H/K).

In this case, if G is semisimple and the pair G, H
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is reductive, i.e., 6 = H + M (direct sum) and [H,M] = M,
then the canonical left-invariant form 8 on G has a H-
component which projects to an H/K connection on G/K
(this result is a special case of a theorem by Narasimhan
and Ramanan, which was used in a theorem by Harnad on in-
yariant gauge fields, cf. also Nowakowski and Trautman,

1978) .

This construction becomes more transparent if we
sgecialize the groups G, H, K, to be orthogonal, unitary
or symplectic groups, which act, respectively, on R?, Cn,
or Hn (H denotes the guaternions). For simplicity, we
discuss only the real case, but a simple change of notation
(replacing R by C or H, 80(n) by U(n), or Sp(n)) yields '
the results in the complex or quaternionic cases. It
should be noted that we could have started from the general
linear groups, but there are theorems stating that the
pundles defined by the maximal compact subgroups suffice,
i.e., the restriction of GL(n,R) to O(n) (or SL(n) to

s0(n)) is always possible.

The real Stiefel manifold Sn k(R) (we omit the R
’

in the sequel) is defined as the manifold of all ortho-
normal k-frames (0 £ k £ n) in Rn, i.e., the set of all
linear isometric mappings of Rk into Rn, defined by the
set of n % k matrices with orthonormal rows. To see that
this is a manifold, embed the matrices in Rnk and verify
that the gradients of the orthonormality conditions are
nonzero and mutually orthogonal, thus defining a compact
manifold without boundary of dimension nk -'k(k + 1)/2.
S is clearly identical to the manifold O(n), and Sn,O

n,n

is a point, whereas S is Sn—1 and S is the submani-
n,1 T2

fold of Tsn_‘l consisting of unit tangent vectors. It is

somewhat harder to show that SC(n) is diffeomorphic to

Shon-1 (the diffeomorphism adds to the n x (n-1) matrix
7

in Sn sl a column which makes it into an SO(n)-matrix,
’

i.e., completes the orthonormal n-1-frame to an n-frame) .
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The subgroup of O(n) which stabilizes the orthonormal k-
frame is isomorphic to O0(n-k), hence Sn,k can be inter-
preted as the coset space Sn,k': O(n)/0(n~k). We could

have started from oriented orthonormal frames, and then
we would have obtained Sn,k = 50(n)/S0(n-k). (The reader

should be warned that the complex Stiefel manifold

Sn,k(c) = U(n)/U(n-k) is a real 2nk - k2 dimensional
compact manifold without boundary which is not a complex
manifold in the technical sense; the quaternionic Stiefe]
manifold Sn,k(H) = Sp(n)/Sp(n-k) has real dimension 4nk-
(2k2—k) and is also compact without boundary).

The real Grassmann manifold G (R) (O s k 2 n) is

n,k .
the set of all k-planes (k-dimensional subspaces) through

the origin.of R". By considering an orthonormal frame in
such a subspace, and its complementary (n-k)-frame one can
see that the Grassmann manifold admits charts which map
BB oe vead b x (n-k)

is a homogeneous

its open sets into the space R
matrices. In fact, it is clear that Gn,k
space: each k-plane can be considered as a coset in the
group O(n) with respect to the subgroup 0(k) x O(n—k),

G R) = O(n)/(0(k) x O(n=k)) .

n,k(
If we replace k-planes by oriented k-planes in the above

definition, we obtain the oriented Grassmann manifolds
+

G, (R) = 80(n)/(S0(k) x SO(n-k))= O(n)/(0(k) x SO(n-k)).

r 5

Impoig?nt special cases are: Gn,o = Gn'n = point; Gn,T(R)=
= RP » the n-1 dimensional real projective space through

the origin (which is conveniently parametrized by means

oy

of the homogeneous c::»ordlnates.(x.[/xj,...,:>cj_1/x:.i,:»<j_lr,l j

..xn/xj)).

The generalizations to the complex and quaternionic

cases are obvious:

x (H) = 8p(n)/(Sp(k)=Sp(n-k)).
(5.3)

Gy 1 (€) = U(n)/ (U (k) xU (n-k)) ,G

n,
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The construction given at the beginning of this
cection now can be applied to nested groups O(n) 2 O(k) x
« 0(n-k) 2 O(k) or their unitary or symplectic counter-
parts. This leads to a particularly simple principal

pundle with structure group 0(k) (respectively, U(k),
sp(k)):

e . T 3 (5.4)

where the projection associates to each k-dimensional
frame the k-plane spanned by it. Rewriting this in the

form

0(n) /0(n-k) —— 0(n)/(0(k) x O(n-k)) (5.5)

it is clear that the fiber of this bundle 1is 0(k), and
that O(k) acts on the homogeneous space on the right by
acting on O(n) (remember that Sn,k consists of left
cosets, and that ©(k) is isomorphic to the factor group
0(k) % O(n-k)/0O(n-k)). The principal bundle g is in a
certain sense universal, in that for a given O(k) and
large enough n any O{k)-principal bundle over a compact
manifold can be obtained as a pullback of a mapping of
that manifold into Gn,k (up to homotopy, which leads to
an isomorphic bundle). The same construction holds in

the complex and guaternionic cases.

The bundle (5.4) also has a canonical connection -

called a universal connection .(The existence of universal

connections was proved by Narasimhan and Ramanan, and a
recent improvement was found by Roger Schlafly; since they
involve embeddings in spaces of high dimension, they may
be of use in the discussion of the large N limit of SU(N)
gauge theories, and may have other physical applications.)
Starting from the n x n matrix defined by an orthonormal
frame in Rn, an element of O(n) which we denote by X, we

have the left-invariant Maurer-Cartan form on O(n):
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§ = %ol =y (5.6)

If we restrict the skew-symmetric matrix 6 to the k x k-

matrix corresponding to the k-frames of the Stiefel mani-

fold Sn,k' we obtain a connection on the bundle (5.4).
Whereas the connection 6 is flat, on account of the Maurer-
Cartan structure equation (4.3), its restriction w to the
m first k rows and columns will have a nonvanishing cur-

| vature, as can be seen explicitly by rewriting (4.3) and

1 t

(5.6) in a basis adapted to Sn K (replacing X by X).
r

E The Narasimhan-Ramanan theorem considers an arbitrary
‘ compact Lie group G embedded in O(k). Then the canqnical
connection on Sn , can be pulled back into a connection

r

i on the principal bundle with structure group G:

O(n)/0(n=k) » O(n)/(G x O(n-k)) . (5. %)

‘! This yields a canonical connection on this canonical G-

‘ bundle. Now for an arbitrary manifold M of dimension

.‘ dim M < m, and for n 2 %((k+m)2 + 7(k+m) + 10) any
principal G-bundle with connection over M may be ob-

; tained as the pullback of the canonical G-bundle (5.7)

‘ and its canonical connection by some smooth map £ : M »

> 0(n) /(G x O(n=k)). Schlafly has extended this theorem

to the case when the base space is a compact Riemannian

manifold with an isometric action of a compact Lie group

H, which also acts on the principal bundle space P and

preserves the connection (see next section for the meaning
of the last statement). He has shown that in this situation
there always exists a representation r : H - 0(n) and an
H-map £:M + 0(n)/G x O(n-k), such that the bundle is iso-
morphic to the bundle induced by the pair of maps f, r.

We now turn to the promised discussion of symmetries

an invariance properties of connections on principal bundles.
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6. INVARIANCE AND SYMMETRIES OF CONNECTIONS

In spite of the fact that conditions for the in-
variance of a connection have been discussed in the
mathematical literature over twenty years ago, and Wang's
theorem can be found in textbooks, physicists rediscovered
them only in 1978-79. This section contains a brief survey
of this topic, which has been discussed from a more
physical point of view by Jackiw in last year's Schlad-

ming lectures.

The problem is guite simple when viewed globally,
on the principal bundle; complications arise conly when
one tries to express the invariance conditions for the

connection forms on local trivializations of P.

Before discussing connections we summarize the de-
finitions of gauge transformations to be used. An iso-
morphism of a principal bundle onto itself is called an
automorphism of the bundle. Such an automorphism consists
of a pair of diffeomorphisms (u,v) of P and M such that
tou = vor (Eg.(3.1)), and u(p.g) = u(p)-g for all p e P,
g € G. An automorphism is called vertical if v = Ide If
we denote the group of all autcmorphisms (an infinite-
dimensional group) by Aut P, the subgroup of all vertical
automorphisms AutMP is a normal subgroup, the quotient
being the group of all diffeomorphisms of M onto itself,
i.e., we have the exact seguence of homomorphisms:

I + Aut, P + Aut P —3— Diff M - I , . (6.1)

M

where i is the canonical injection.-and v = j(u). If

u e AutMP‘its action is in the fiber and therefore can
be implemented by an element U(p) of G such that for any
p in P and g in G '

uip) = p-U(p), Ulp-g) = g_1U(p)g . (6.2)
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Thus, there is a natural isomorphism of AutMP onto the

multiplicative group of (smooth) maps U : P + G, subject

to the equivariance condition (6.2), or equivalently, to

sections of the associated bundle P x G with fibers G,

AdG
but the right action replaced by the adjoint action.

The group Aut P (as well as AutMP) acts on (local)
sections of P in the following manner: if s : V -+ P (V
an open subset of M), then its transform is s' = uosg v'i_
If u =« Aut, P, the subset V of M is left invariant and the
section is subject to what a physicist would call a gauge

transformation:

s'(x) = s(x)'U(s(x)), xe Ve M . ; " (6.3)

If one deals only with Yang-Mills fields over a flat
spacetime (or a Euclidean, compact version thereof) one is
thus entitled to identify AutyP with the group of gauge
transformations (this is the definition adopted by Atiyah,
Singer, and many other mathematicians). However, in
theories involving gravity, or other structures on space-
time, it is convenient to introduce a further differentia-

Eiohs

Definition. The gauge group of a theory in which the
bundle has socme absoclute elements, such as the metric tensor

of special relativity, or some other structure element of P
or M, is the subgroup g of Aut P such that the diffeomorphisn
v and the projection preserve the absolute elements of M.

The group of pure gauge transformations consists of the

vertical automorphisms ing ; this group will be denoted by
Go = gfsAutMP, it is a normal ‘subgroup of G, and the
quotient g/go in the exact sequence

I—)—go -_l+g —-1+€/g0+:[ (6.4)
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is the subgroup of Diff M leaving the absolute elements
invariant (e.g., if M is Minkowski space,g /50 is the
Poincaré group; this corresponds to the necessity of
sometimes combining a gauge transformation with a change

of Lorentz frame in some calculations) .

Invariance of connections under automorphisms of
the bundle P is simply expressed as the fact that the
pullback of the connection form w on P by the mapping
4 € Aut P, ®' = u*w is again a connection form on P. Tt
4 is a vertical automorphism (in particular, a pure gauge
transformation), then

Tip))w + 0”1 (©)au (p) (6.5)

w' = Ad (U~
where U(p) is the map defined in Eq. (6.2) . We see that

the form w is subject to the usual gauge transformation

of a gauge potential (albeit, on P rather thaﬁ on M).

The curvature form ' of the pullback u®w is given by

the adjoint action of U(p) on the original curvature form:

o' = adU T (ENe . (6.6)

The equations (6.5), (6.6) can easily be pulled down to
the forms A, F on the base space given by a locally
trivializing section s. Here cne can either pull w back

to M by the transformed section, or pull w' back by the
original section, obtaining the usual gauge transformation
formulas for A and F:

A = ads ha + s as, F'o=ad(s OF, (6.7)

where S = U 0 s.

Amohg the automorphisms of the principal bundle P
with a connection w and the associated bundles carrying

the particle fields, symmetries are distinguished by the
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fact that they preserve the connection w and the absolute
elements of the theory (e.g., they preserve the action, or
they modify the Lagrangian density by a divergence). In

particular, a symmetry of a gauge theory is a gauge transg-
formation (in the wider sense defined above) which leaves
the connection form w invariant (in addition to the other

absclute elements):

ufw = w; u¥ = 0 ; (6.8)

since a nonabelian gauge theory is not completely deter-
mined by the curvature, it is not sufficient to require

invariance only of the curvature form.

When this condition is pulled back by a local
trivialization to the base space, it will usually be
formulated as the requirement that the one-form A be un-
changed up to a pure gauge transformation, or in other
words, a gauge field is invariant under a symmetry, if
the symmetry transformation can be eompensated by a gauge
transformation of the locally trivializing section (this
is the formulation given by Bergmann and Flaherty, Traut-

man, Jackiw, and other authors).

To write the invariance condition (6.8) for the
physical fields A, F, we consider first a one-parameter
group u, : R » Aut P of automorphisms of P. Let Y denote
the corresponding vector field on P, and X the projection

of Y onto M:

X = LT 4 . (6.9)

The vector field X generates a one-parameter group W =
= j(ut) of transformations on M. Let w be a ut—invariant

connection on P,

W= w, uiﬁ =8 (6.10)
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For an arbitrary point pO in P the groups Ugr Vy define

curves in P, M, respectively:
2. = u, (pg) X, = Vt(ﬁpo) = m(p) - (6.11)

The connection defines a horizontal 1lift of Xy which we
denote by ht‘ Then it is obvious that p, = htgt for a
suitable element Iy of G, and 9e is a one-parameter Lie
subgroup of G, generated by the Lie algebra element

T = mpO(Y). The invariance of the connection and its
curvature on P can be expressed infinitesimally as the
vanishing of their Lie derivatives with respect to ¥:

L,w = 0 , LYQ =0 . (6.12)

(Recall that for forms the Lie derivative is defined by
L = d oY 1+ YJdo d, where denotes the interior
product of Y with the differential form following the

sign.)

The expressicns (6.12) for the invariance of

connections are identical to the usual conditions for

the invariance of fields encountered in physics, but
hidden behind the simple form is the gauge freedom in-
herent in the theory, particularly if one works in terms
of the pullbacks A, F, to the base space. If we denote
the value of the one-form Wy (at the point p in P) on

the vector field Y at p by Z = wp(Y), we obtain an equi-
variant map of P into the Lie algebra Z : P > G, Z © Rg =

= Ad(g_1) o0 Z. Its covariant exterior differential

DZ = dZ + [w,2] ' (6.13)

is a horizontal one-form (with values in G) of type Ad,
and the definition of the Lie derivative and Eqg. (6.14)

yield the detailed form of the invariance condition:
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Lyw = ¥YJ@ + DZ = O, LYQ=D(YJ§3) + [£,Z2] = O (6.14)
(Trautman, 1979). If we use a local section s to pull back
the connection and curvature to the gauge potential A, and
the field strength F on M, the vector field Y is to be re-
placed by the generator X of the transformations in M, ang
the Lie-algebra-valued function on P, %, defines a function
onM,® =12 0o s : M~ G. Then the invariance conditions for
A and F under the symmetry induced on M by the vector fielg
X (such a vector field always has a horizontal 1ift under
the given connection; adding an arbitrary vertical vector
field of the type of Z to it, will give a field on P) can

be written in the form

X 4 F + D& = O . (6.15)
where D¢ = d¢ + [A,¢], and

D(X J4F) + [F,0] = 0 . (6.16)

In terms of the potential one-form A the invariance con-
dition can be rewritten as LXA = DW(X), where W(X) differs
from ¢ by the zero-form =X ] A. The right-hand side of the
last equation has the infinitesimal form of a gauge trans-
formation, and under a change of chart (gauge transfor-
mation) with transition functions gij the function W is
subject to the transformation

=7

_ =1
Wj = Ad(gij) Wi + gij X J dgij . (67.17)

TE X1 and X2 denote two vector fields on M inducing
symmetries of the connection A, then consistency requires
that

2F(X1,X2)- = CI)([XT’XZ]) - [@(X.])rq)(xz)] ’ (6.18)

where the left-hand side denotes the value of the two-form
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F on the two vector fields x1, X2, and the right-hand side
expresses the dependence of the G-valued O-form on the
vector field Xi (and implicitly, on the trivializing
section s). The infinitesimal forms of the invariance
conditions have been independently discovered by Forgacs
and Manton, Harnad, Shnider and Vinet, and Jackiw (cf.

the bibliography to Mayer's contribution for references),
and the usefulness of Egs. (6.15), (6.18) (with a difference
in sign) has been discussed in Jackiw's 1980 Schladming

lectures.

To end this section we give, for the convenience
of the reader,a brief statement of Wang's theorems on
invariant connections, in a notation which is close to
the one used by Kobayashi and Nomizu, where the detailed

proofs can be found.

Consider, as before, a principal bundle R(M,G), with
a connection w which is invariant with respect to a group
of automorphisms K of P(M,G), assumed to be a connected
Lie group with fiber-transitive action, i.e., for any two
fibers there is an element of K which maps one into the
other, hence K acts transitively on the base space M. We
denote by u, a reference point in P, chosen once and for
all, and by X its projection in M, x = ﬂ(uo). Further-
more we denote by J the isotropy subgroup of K at X i.e..,
the subgroup of all transfcrmations in K which leave X A=
variant (it is clear that M can then be viewed as the homo-
geneous space X/J). We denote the Lie algebras of the
groups G, X, J by &, Ko J o respectively and, when Clig =2
exists, the subspace of k complementary to j by m: k =
=Ij4 m (direct sum). Then we define a linear mapping
A: k>g by AX) = wuo(x), where X € k and k is the

vector field on P induced by X, which has the properties

(i) A(X) = X, (X) for X €/ ; here ), is the homomorphism
Ay * j > g defined as the differential of the homomorphism
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A : J + G, which assigns an element g € G taking the point
ug into the same point as the left action of j € J : juo =
=g ® g A(3);

(ii) for j € J and X € k, A(Ad(]) (X)) = Ad(XA(F)) (A (X)),
where Ad(]j) is the adjoint action of J on k and Ad(A(j))
is that of G on g. The geometric meaning of these homo-
morphisms should be clear from our discussion of the
lifting of the horizontal projection of any one-parameter
group of automorphisms given by Eq.(6.11) and the dis-
cussion following it. llote that Uy denotes our previous
Py (and not the value of the automorphism at t = 0 ), and

the vertical action A(j) is the same as the previous 9g-

It is easy to verify, by using the definition of
curvature (the structure equation), that the curvature
form §8 satisfies the condition (from which Eg. (6.18)
follows by pullback to M): -

29, X,¥) = [AX),A(Y)] - A([X,Y]), for X, Y € k . (6.19)
[e]

What Wang's theorem asserts is the existence of a bijection
between the set of K-invariant connections in P and the
set of linear mappings A : k - g satisfying the conditions

listed above, bijection which is given by

A(X) = w, (X), for X € k o (6.20)
o]

The proof is straightforward and can be .found, e.g., in
Kobayashi and Nomizu (p.107, with the same notations as

here) .

It also follows immediately that a K-invariant
connection is flat (i.e., has vanishing curvature) iff
A+ k » g is a Lie algebra homomorphism (since then the
right-hand side of Eq. (23) vanishes, and hence so does
the left-hand side).

0
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Moreover, if in addition the Lie subalgebra J admits

a complementary subspace m in k such that Ad(J) (m) = (m),

then there is a bijection between the set of K-invariant
connections in P and the set of linear mappings Am :m > g
such that for X € m, j € J we have Am(Ad(j)(X}) = Ad(A(]))
(Am{x}), with the bijection given in terms of the A defined
above by A(X) = A(X) if X €j , and A(X) = A_(X) if X € m.

The curvature form of the K-invariant connection defined

by the linear mapping Am satisfies the following condition:

20 (X,¥) = [A_(X),A (V)] - A ([X,¥ 1) - AX,¥].),
u, m m m m J

X, Y € m,

where the subscripts on the brackets denote components in
the correspending subspaces of the algebra k where the
bracket is originally defined. If Am = 0 then the corres-

ponding invariant connection is called the canonical in-

variant connection with respect to the decomposition

k = j } m. Physically, this corresponds to chocsing the
gauge functions Z and the connection A in egs.(6.13) =
(6.18) so that the components of & in the subspace m,

corresponding to the given decomposition, should vanish.

It is to be noted that the existence of a
complementary subspace m invariant under the adjoint
action of J is equivalent to the reductivity of the
homogeneous space X/J = M, a rather restrictive condition

on the base space M.

Finally, it should be noted that the Lie algebra of
the heloncmy group of a K-invariant connection at u, is

defined by a sum of iterated brackets of A(k) with the

subspace m of g spanned by the right-hand side of eq.
(6.19) (for details we refer the reader again to Kobayashi-

Nomizu, p.110-111).
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