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GEOMETRICAL ASPECTS OF GAUGE CONFIGU‘RATIONS+

by

A. TRAUTMAN

Inst. of Theoretical Physics, Warsaw Univ.
HoZa 69, 00-681 Warsaw, Poland

SUMMARY

These notes contain an informal description of the
geometrical foundations of gauge theories. The "theory of
gravitation is compared to theories of the Yang-Mills
type. Space-time symmetries of gauge configurations are
defined in terms of automorphisms of principal bundles.
Symmetry breaking is related to restricting the structure
group of the bundle. The Liénard-Wiechert solution of the
Yang-Mills equations is discussed in some detail. An
approximate solution of the Yang-Mills equations is shown
to allow for the phenomencn of radiation of the colour

charge by a classical gluon field.

+
Lectures given at the XX. Internationale Universitdtswochen
fiir Kernphysik, Schladming, Austria, February 17-26, 1981.
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INTRODUCTION

The validity and usefulness of a geometrical view of
gauge configurations have been accepted by the physics
community [1] and a fair number of surveys written on the
description of Yang-Mills theories in terms of infinitesim:

connections on principal bundles over spacetime [2-10].

The present notes are based on the series of four
lectures given by the author in February, 1981, in
Schladming. They contain also a few changes and additions
made after a similar series of lectures was delivered in
March at the Collége de France. A part of the introductory
material is omitted from these notes as it is inclﬁded in
a joint paper by M.E. Mayer and A. Trautman, appearing in

this volume.

In my lectures I have tried to emphasize those aspect
of the geometry of gauge configurations which I consider to
be fundamental and important, but which have not received,
so far, as much attention as they deserve. In particular,

a considerable amount of time is devoted here to subtletie
of symmetry breaking and of spacetime symmetries of gauge
configurations. In the theory of gravitation, I like to
stress the role of soldering and the rather different natur
of translations. In the last lecture, I give a rather de-
tailed analysis of the Liénard-Wiechert solution for the
non-Abelian case, intended to show that geometrical methods
provide convenient tools for the solution of concrete
problems. In the last part of the notes, I discuss also the
analogy between gravity and theories of the Yang-Mills type
regarding the possibility of secular changes of their sourc
At the classical level, one can consider the (hypothetical)
phenomenon of radiation of the non-Abelian charge, such as
colour, as an analogue to the phenomenon of change of the

total energy and momentum due to gravitational waves.
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I feel that the most important outcome of the bundle-
theoretic approach to gauge fields may be a unification of
fundamental interactions and an explanation of their
hierarchy and symmetry breaking. This idea, which may be
traced back to Weyl, Einstein, Kaluza, Klein, Pauli, Barg-
mann, Bergmann,and many other authors, was clearly for-
mulated by B.S. DeWitt [11]. The Kaluza-Klein construction
for a Yang-Mills field was later considered by several
authors [6,12-151. It was briefly described in my lectures,

put is not included in the written text.

The notes should be read in conjunction with the
nBrief introduction to the geometry of gauge fields" and

other reviews listed in the Bibliography.

PURE GAUGE CONFIGURATIONS
A pure gauge configuration is given by a connection
form w on a principal bundle 7 : P = M with structure group
G. The base space (spacetime) M is usually assumed to be
oriented and endowed with a Riemannian (pseudo—Riémannian)
metric dsz. If M is 2n-dimensicnal, then the Hodge dual *q
of an n-form o on M is invariant under the conformal trans-

formations of the metric d52 > g dsz. The curvature

= dw + %

[U)r U-)]

is a form defined on P, but since it is horizontal, its
dual #0 may be computed by reference to the metric and
orientation on M. Since § is a 2-form, its dual is con-
formally invariant iff M is 4-dimensional and, in this

case, the sourceless Yang-Mills eguations
D% Q=0

. . 2
are also invariant under conformal changes of ds™.
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In physics, one works most often with local section

of m. If U is an open subset of M and

is such a local section, then
*
A=8suw and F =352

are the potential and the field strength of the gauge con-
figuration given by w, relative to s. If s' is another

section over the same domain as s, then there exists a

map
g = UG
such that
s'(x) = s(x)g(x) for any x € U .
Putting
A' = s'*w and F' = s'7'q

one obtains the classical transformation formulae

A' = g_1Ag + g—1dg and F' = g—TFg
where dg is understood as follows: embed G in a group of
matrices and compute the derivatives of g entry by entry,
i.e. if g = (g;) then dg = (dg;).

INTERACTIONS AND ADDITIONAL STRUCTURE

Clearly, pure gauge fields do not suffice to
describe all physics. Moreover, even in such a "pure"
case as gravity in empty spacetime, one needs the metric
tensor in addition to the linear connection which = in
this case - may be identified with the gauge degrees of
freedom.
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In general, one considers a representation p of G
in a (finite-dimensional, real or complex) vector space V,

i.e. a homomorphism of Lie groups,

p : G » GL(V)

This defines a vector bundle p(P) - M, associated with P

py p. One can also form the tensor-fibre product

k

pk(P) = p(P) @y A T*M, k=1,2,...,dim M.

1t is known (cf., for example [16], p.76) that sections
of pk{P) + M are in a bijective and natural correspondence
with horizontal k-forms of type p on P. For any such k-form

¢ one defines its covariant exterior derivative by

D¢ = hor d¢ = d¢ + p'(w) A ¢ (n

where
p' ¢+ G > L(V)

is the homomorphism of the Lie algebra G of G into L(V),

derived from p,

pl(A)v = g—t plexp t A)V|t=o' veV, REG

Clearly, D¢ corresponds to a section of pk+1(P) -+ M and

D% = p' () Ao . (2)

If s : U > P is a local section, then s ¢ 1s a local

section of V 8@ Ak T*M + M, i.e.,.a V-valued k-form on U.

Quantities of this type occur in both differential
geometry and the description of gauge fields interacting
with other kinds of matter.

Example 1. Let G = U(1) so that P + M is an electromagnetic
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bundle. If p_ : (1) = U(1) € GL(1,C) is the representatig

given by

p (z) =2 , zeu(n) ,

n
then sections of pn(P) may be identified with wavefunction;
of scalar particles of charge equal to n times the ele-

mentary charge. If ¢ : P > C is the equivariant map corres-

ponding to such a section,

¢(pz) = 2z = ¢(p),
then
Do = d¢ + n w ¢

corresponds to the "minimal coupling prescription".

Example 2. If G = SU(N) and p = Ad is the adjoint represen-
tation of G in its Lie algebra G, then ¢ : P+ G is a
standard Higgs field.

Example 3. Let IM be the frame bundle of an n-dimensional
manifeld. Its structure group is GL(n,R). If p is a tensor

Iepresentation of GL(n,R) in a vector space V, then a zero-

form of type p, ¢ : P >V, correspends to a tensor field of

type p on M. In particular, if v = R® ang p = id then ¢
corresponds to a vector field. If V = L(Rn) and p = Ad,
then ¢ corresponds to a tensor field of valence (1,1). A

metric tensor corresponds to the natural representation of

GL (n,R) in L (R (R}, i.e. in the vector space of symmetric

n x n matrlces, = e S

Examgle_iL Let P » M be a GL(n,R)-bundle over an n-di=
mensional manifold M. The bundle P is isomorphic (in the
category of principal fibre bundles over M) to LM iff it
admits a soldering form, i.e. a horizontal 1-form ¢ : Tp + R’

of type id [17].

Example 5. If M is n-dimensional, oriented and has a metric
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tensor, then the Hodge dual * can be defined on horizontal
forms on LM. In particular, to any integer k, O < k < n,
there corresponds the horizontal Ak Rn—valued (n-k) -form

with components

where 0 = (g”“ev) is the soldering form. In particular,

n =% 1 is the volume n-form.

Example 6. The torsion form

@ =D =do + w A D

corresponding to a linear connection y on IM is a hori-
zontal 2-form of type id. From (2) there follows the

Bianchi identity for torsion 5

DO = Q A 8 .
Example 7. The curvature of a connection w on any bundle
P is a horizontal 2-form of type Ad.

A scalar product h on V is invariant under the action

of G on V defined by p if, for any a € G and u,v € V,
h(p(a)u, p(a)v) = h(u,v)
By differentiation, this implies
h(p'(A)u,v) + h(u,p'(A)v) =0, REG .
In particular, the Killing-Cartan form on G,

k(A,B) = Tr Ad'(A) o Ad'(B) , YL (3)

?

is invariant under the adjoint action of G in G, and, since
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Ad' (a)B = [A,B] | (4)
the property of invariance implies
k([a,B],C) + k(B,[A,C]) =0 ' {(5)

for any A,B,C € G.

Let (ei) and (ea) be linear frames (bases) in G and
V, respectively. The components of k and h in these frames

are, respectively ,

kij = k(el,e )  and hab = h(ea,eb)
1f
_ k
[ei'ej] = Cij e

then, from (3) and (4) there follows the formula

It is known that (kij) is non-singular iff G is semi-
simple and, if, moreover, G is compact, then the quadratic
form k(A,A) is negative-definite. The connection and cur-
vature forms may be represented by their components rela-
tive to (ei),

Similarly, ¢ : P » V is written as

and

so that eq. (1) becomes
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D2 = dp® + p;i i A
where
(5) p'(ei) e, = pii e, -
1f U is any function of the invariant
_and . 2 _ hab ¢a ¢b
‘rames

and n is a volume element on M, then the form on P given by

i ] 2. *
e owat A0d + h_ ok De? A D6° + U(e%) T (6)
1] ab .

is horizontal and invariant under the action of G. There-
fore, it defines a form on M, denoted by L, and used to

formulate the principle of least action

§fyL = 0O

This is the starting point of classical gauge theories of

the Yang-Mills type. The field ¢ is referred to as a

lratic (generalized) Higgs field and the property of (6) which
cur- consists in the appearance of the derivatives of ¢ only

‘ela- through the form D¢ is a reflection of the principle of

minimal coupling between the gauge configuration and the

matter fields interacting with it. Incidentally, the
w o . scalar product k occurring in (6) need not be given by
the Killing-Cartan form (3): it may be any scalar product

on G invariant under the adjoint action of G.
BREAKING OF SYMMETRY
The mechanism of spontaneous symmetry breaking has

a simple interpretation in terms of restrictions of

principal bundles [9,18]. It is discussed in considerable
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detail in the lectures by Meinhard E. Mayer appearing in
this volume. In this short section I wish only to stress
the analogy between the role of the metric tensor in
general relativity theory and the breaking of symmetry
by a normalized Higgs field. As an illustration, the
restriction of the S0O(3)-bundle over SZ’ induced by the
't Hooft-Polyakov solution, is discussed in considerable
detail.

Consider a G-bundle m : P + M and a representation

p of G in a vector space V. Let

¢ : P+W V

be a field of type p with values in an orbit W of-G. in
other words, G acts transitively on the manifold W of
values of ¢. Therefore, given a fixed point ¥ € W, in
each fibre ﬂ_1(x) of P there is at least one point g such
that ¢(g) = W,- The set of all such points,

Q={geP:¢l@ =wl,
is a submanifold of P, and the restriction of 7 to Q de-
fines a fibre bundle Q + M. It is a principal bundle: its
structure group H is the isotropy (stability) or little
group of W
H={aeg G : p(a)w0 = wo}
The embedding Q - P, H > G defines a restriction of P to H

in the sense described in the "Brief Introduction".

Conversely, if such a restriction is given, one can
define ¢ : P + G/H by putting ¢ (ga) = a_qH for g € Q and
a2 € G. Under rather general assumptions the "non-linear
realization" of G in W = G/H can be extended to a linear

. < A +
representation of G in a vector space V containing W.

. i i \ ;

I am indebted to Profs.L.Michel and A.Sparzani for having
drawn my attention to the last problem and explained its
subtleties.
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s Example 8. Let H be a closed subgroup of GL(n,R). A re-
gtriction of the bundle IM of linear frames of an n-di-
¥ mensional manifold M defines an H-structure on M. In
particular, a Riemannian geometry on M is an O(n)-
he structure. In other words, the introduction of a metric
DAE tensor of Lorentz signature on spacetime is equivalent
to breaking the symmetry from GL(4,R) down to the Lorentz
ion qroup.
Example 9. Consider the static, spherically symmetric
solution of the Yang-Mills eguations with G = S0(3) and
a source corresponding to a standard Higgs field. The
In 1+ Hooft-Polyakov Ansatz assumes a regular potential A;-
therefore, the corresponding bundle is trivial. Removing
i the time axis from R4, one can represent
such
M= {(t,x,y,2) € rY . x2 + y2 + 22 > 0}
as the product R2 X 82. Because of spherical symmetry it
suffices to consider the trivial bundle
) = 50 ) 7
i P 82 X (3) = 5, (7)
Le
The (normalized) Higgs field
o S2 x S0O(3) -~ 52 R3 = Lie algebra of S0(3)
to H is given by
. '
¢(r,a) = a r (8)
L
wher
.nd =
+ r = (x,y,z) € S, and a @ S0(3).
ar
Let
ving Ty = (0,0,1) ;

its
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then

and

Therefore ¢ reduces the trivial SO(3)-bundle (7) to a non-

trivial SO(2)=bundle
T(a) = ar_ . (9)

The latter bundle is isomorphic to the bundle of oriented
dyads of S2 and admits a canonical SO(2)-connection corres-
ponding to a magnetic pole with a charge egual to twice the
lowest (Dirac) value [19]. This connection is obtained by
projecting the one on P onto the direction of Eost considerg

as an element of the Lie algebra of S0O(3).

The bundle (7) admits an obvious section

s :+ 5, P , s{r) = (r,I)
where I is the unit element of S0O(3). The pull-back s*¢,
S*¢(r) =r,

corresponds to the "hedgehog" representation. On the other

hand, if s' is any (local}‘section of (9), then

) s
s' ¢ (r) = rO
corresponds to the description of the same Higgs field in
a gauge exhibiting an alignmeht of the field along the

third axis.

The field ¢ given by (8) is spherically—symmetric.
To make this statement meaningful it is necessary to 1lift

the action of S0(3) from the base, 82, to the bundle,
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p= 5, X S0(3). This can be done in many ways. For example,

if a,b € 50(3) and r € 52, then the formula

yo(x,b) = (ar,b)

defines a lift, bk

¢ o YZ # ¢ , unless a = I.

gowever, the action given by

YL(r,b) = (ar,ab)

leaves ¢ invariant,

SYMMETRIES OF GAUGE CONFIGURATIONS

The last example leads to the following general
question: how to define space time symmetries of gauge
configurations, and, in particular, of infinitesimal

connections and of Higgs fields?

To appreciate the subtleties of the problem, con-
sider first a simple, local situation. Let A be the G-
valued 1-form of potential defined on M and £ : M > M
a transformation (diffeomorphism). One says that A is

invariant under f if there exists f(a gauge transformation)

g + M - G such that
¥ - P
BN = 1 Ag + g 1 dg . 1:0)

Clearly, eq.(10) implies
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* =1

f'F = g ° Fg , where F = da + [A,A] . (11)

i
2
The converse is true if H2(M}R) = 0 and G is Abelian. In-
deed, if G is Abelian, then (11) reads

f*F =: B and F

I

da ,

therefore

0=£*aa - da = a(£*a - a)

and f*A = A is exact by virtue of the topological
assumption. However, for a non-Abelian G, the implication
(11) = (10) is false even in the case M = R", For example,
let G = S0(3) and consider a "plane wave" in Minkowski
space [20,215,

A(t,x,y,z) = (a(u)x + b(u)y)du ,

where
u=t=-2, a,b:R>6Y R3 and [a,b] # O

The field

F = (adx + bdy) A du

is invariant under the translation (t,x,v,2) + (t,x+XA,v,2),

but the potential is not.

The topological condition

H2(M,R) =0
is essential for the implication (11) - (10) to be true in
the Abelian case. For example, the field strength of a
magnetic pole, B = qf/rB, exhibits spherical symmetry for
any ¢, but the corresponding potential is spherically
symmetric - in the sense of eq. (10) - iff the magnetic

charge g satisfies the Dirac quantization condition.

A section s : M + P defines an isomorphism of
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pundles i +Mx G ~» P given by
i(x,a) = s(x) a where - x € M and a ¢ G.

AConnection form w on P, pulled-back by this isomorphism,

agsumes the form

w o= i@ = a_1(da + A(x)a)

where

*
A =5 @ .

an automorphism h : P ~ P (cf. the Brief Introduction)
covering £ : M » M, pulled-back by i to M x G, becomes

b = al 1 o h o i where

h, (x,a) = (£(x),g(x) 'a) and h(s(x))g(x) = s(£(x)).

A simple computation gives

h* w., = a_1 (da + A'a)

where

* - —
A' = gf" Ag 1~(dg)g LI

Therefore, condition (10) is equivalent to

and this, in turn, is equivalent to

.
h'w = w (12)

To summarize, a gauge configuration-described by a
connection form w on a principal bundle P - M is defined
to be invariant under a diffeomorphism f : M - M if there
is a lift h.of f to Aut P such that (12) holds. The ana-
logous condition of invariance for a Higgs field ¢ : P +» V
1s
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¢ o h = ¢ . (13

It is instructive to list typical situations when diffeo-
morphisms can be lifted and to give examples showing that

this cannot always be done.

Example 10. If P = M x G then £ : M » M 1lifts to h:MxG-Mxg
given by h(x,a) = (f(x)a). Moreover, the group Aut P is 3

semi-direct product of cM by Diff M [17].

Example 11. If P is a natural bundle - a bundle LrM of
frames of M of differential order r - then f can be lifteq

to P by the very definition of a natural bundle.

Example 12. If both M and G are compact, then any one-
parameter group (ft} of diffeomorphisms of M can be lifted
to a one-parameter group (ht) of automorphisms of m: P + |
in such a way that 7 o ht = ft o . It su@fices to take a
connection on P and the flow generated by the horizontal

1ift of the vector field induced on M by (ft).

However, a diffeomorphism which is not homotopic

to the identity need not lift:

Example 13. Complex conjugation on Uu(1), £(z) = z, does
not lift to the exponential bundle m : R - U(1), m(t) =

= exp 27 it) ,considered as a principal Z-bundle. (It does,

however, lift to an autcmorphism of the bundle structure.]]

Example 14. Similarly, the space inversion £ : 82 - 82’
f(r) = -r, does not lift to the principal Hopf bundle

S3 - 82.

From the point of view‘of physical applications, we
are most often interested in lifting a Lie group of trans-
formations of M to a Lie group of automorphisms of w:P-M,
covering the given action in M. There are subtleties, as

shown by the following
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gxample 15. Any rotation of 52 lifts to the Hopf bundle
5 e 52 (this follows from example 12), but the natural
acthn of 80(3) on S, does not lift. However, the action

of su (2) does lift, as is obvious from the identification

NvosU(2).
S3 Wy

pxample 16. There is a simple construction of all G-bundles
ih: T+ M admitting a Lie group K of automorphisms transi-
tive on the fibres of n (cf., e.g. [16] p. 105 and [22]).
et J be the subgroup of K, leaving invariant a point X, € M.
If p, € P is such that mw(p,) = X« then for any a € J, the
pOint apO is in the same fibre as Py,- There is thus an
element X (a) of G such that

a B = B A(a)

A=J+G = (14)

is a homomorphism. Moreover, K x G acts transitively on P

by
(a,b) p = apb '

and

(a,b) Py, = Py <> @ € J and b = Af{a) .

Therefore, P is diffeomorphic to the guotient (K x G)/J,

where J is assumed to act on K x G by

(a,blc = (ac, bAi(c)) , c &€ J .

Conversely, given a group K acting transitively on M, and
a homomorphism (14) of the stability group J of a point
X, € M, one constructs the bundle by taking

Pk = (K x G)/J

and defining the action of K x G on P, in the standard

manner.
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For example, if K = SU(2), G =U(1) and M = 82,
then J = 80(2) = U(1) and all homomorphisms A : J + G
are of the form

A_(z) = z? for some n e 7 .

It is seen by inspection that P is isomorphic to the

lens space

A
n

su(z)/zn ;, nez. (15)

If one starts, however, with K = SO(3), then one gets in

this manner only the even lens spaces,
n
SO(B)/Zn n SU(Z)/Z2n . (16)

In terms of magnetic monopoles, the bundles (15) and (16)
correspond to the Dirac and Schwinger guantization con-

ditions, respectively.

GRAVITATION+

The similarities and differences between gravitation
and theories of the Yang-Mills type have been discussed by
many authors (cf., e.g.,[9], [23] and the references given
there). In this brief section, I intend only to summarize
my views and to comment on the "Abelian nature of gravitatio

al waves".

1. Gravitation is a theory based on fibre bundles wich are ;

+This section has been influenced, in part, by a discussion
with R.P.Wallner. I am indebted to Peter Aichelburg and
Roman Sexl of the University of Vienna for hospitality and £
stimulating conversations. I wish also to acknowledge dis- d
cussions on this matter held at various occassions with
Jiirgen Ehlers, Friedrich Hehl, J.Nitsch and M. Schweizer.
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nconcrete" and, as such, have a richer structure (cf.
Qooncrere

gxample 4) than "abstract" bundles underlying gauge
theories of the Yang-Mills type.

2. The soldering form on LM leads to the notion of torsion
which has no analogue in electromagnetism or the Yang-Mills

theory.

3. The metric tensor is somewhat analogous to a Higgs
field: it breaks down the full linear symmetry to the
Lorentz group (cf. Example 8). There is a complete analogy

petween the condition of compatibility between the metric

tensor (guv} and a linear connection, expressed by

R, = 0 (17)

and a similar equation

0% = o (18)

assumed to be satisfied by the ground state of a gauge

configuration.

4, There has been a lot of discussion on the choice of the

structure group G for a theory of gravitation. Essentially,

there are two (minor) problems to consider:

(i) whether one wishes to incorporate translations - or

even take them as the starting point;

(1i) whether the metric is to be introduced ab initic, as
part of the definition of the bundle,or rather as an
additional structure, restricting the linear or the affine

group to its Lorentz or Poincaré subgroup, respectively.

Concerning the first problem, it is convenient to
summarize the situation by reference to the following

diagram of bundles over an n-dimensional manifold:
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M ™ (19)

Here TM is the tangent bundle and

AM = IM x TM
M

is the affine bundle. Its structure group is the general

affine group,

GA(n,R) = GL(n,R) x R"

which acts on AM as follows: if e : Rn & TXM is a linear
frame at x € M, considered as an isomorphism of vector
spaces, u € TXM, a € GL(n,R) and b € Rn, then

(e,u) (a,b) = (ea, u + e(b))

All solid arrows in (19) denote projections of principal
bundles with appropriate groups. The tangent bundle, how-
ever, does not admit a natural structure of principal
bundle. It is easy to see that the introduction of an rP-
action on T™, to make out of it a principal bundle, is
equivalent to giving a global section of IM >~ M, i.e. a
teleparallelism structure on M [24]. A.connection on

™ - M, compatible with such a structure, has torsion but

no curvature.

There is no essential difference between considering
connections on LM and AM. According to a classical theorem
(cE.[16], p. 127), any affine connection is defined by a

linear connection and a tensor field of type Ad.




9)

but

ring

orem

421

5, An essential difference between theories of the Yang-
Mills type and gravitation is in the choice of the La-
grangian leading to the field equations. In the Yang-Mills
case, there is only one kind of duality that can be used

to construct the left=hand side of the field equations: the
Hodge dual operating on @ (or F) considered as a G-valued
g-form. In the gravitational case, there is the Levi-Civita
AZ Rn—valued (n=2) -form nuv (cf. Example 5) which leads to
the Einstein(-Cartan) Lagrangian

oMV

;3
2ﬂU\)A

6. The vanishing of torsion, assumed in Einstein's theory,
considerably reduces the "degrees of freedom" inherent in

a metric connection. In particular, plane gravitational

waves are, in a well-defined sense, Abelian. To see this,
EVIES o © oL hdld

consider the metric

d52 = e‘I ® e1 + e2 24 e2 + e3 & e4 + e4 & e3 (20)
where

el - ax, e?=4dy, & =du, e*=av+Hau (21)
and H is a function of the coordinates u = t-z, x and y.

The connection 1-form I, referred to the coframe (e“},
I‘ =
i (auv{u) X + buv(u)y) du (22)

is compatible with (20) iff

a = = -_—
- + a\)u 0 and buv + b\)U o, (239

i.e. iff the polarization "vectors" a = (a“v) and b = (buv)

have values in the Lie algebra SO(1,3)-of the Lorentz

group. The vanishing of torsion,

% v
g 1.’ = 0, (24}
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restricts the values of a,b to the commutative Lie sub-

algebra n of S0 (1,3), isomorphic to R2 [25]? Therefore

[a,b] = 0

and the gravitational wave, described completely by egs.
(20) - (24), is really plane, in contradistinction to a
plane-fronted Yang-Mills wave with [a,b] # O.

GROUPS OF GAUGE TRANSFORMATIONS [21]

Gauge transformations may be defined as automorphismg
of a principal bundle preserving the absolute elements of a
gauge theory. Putting it in a slightly different way, a
gauge theory is based on a category C, which is a sub-
category of the category of principal G-bundles over M.

Gauge transformations are simply isomorphisﬁs in C.

For any principal bundle P - M, there is the exact

sequence
I+ AutoP + Aut P -+ Diff M (25)

where AutOP is the group of vertical (based) automorphisms
of P. If g is the subgroup of Aut P preserving the absolute

elements of P + M and

goz G n Aut P ,

then cone can form the exact sequence

I+§O.+§+g/g0r’1'

+Moshe Flato pointed out that n corresponds to the nil-
potent part of the Iwasawa decomposition of the Lorent:z
group. I gratefully acknowledge the hospitality extended to
me by M. Flato during my visit to Dijon.
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The elements of(io are pure gauge transformations, whereas

the elements of g can be referred to as gauge transformations,.
In the case of a Yang-Mills theory over Sé, the group g /go
coincides with 0(5) whereasgzjis "large". In Einstein's
theory,gc)= {id}, but g = Diff M is "large". The sequence
(25) splits if (i) P - M is trivial [17] or (ii) P is
natural.+ I do not know whether it splits in any case not

covered by (i) or (ii).

TIME-DEPENDENT GAUGE CONFIGURATIONS

s There are not many time-dependent exact solutions of
S a the Yang-Mills equations. Coleman's plane-fronted waves
have been already briefly discussed here. Waves with
spherically-symmetric wave fronts have wire singularities
[25,26]. In this section, I analyze in some detail the
Liénard-Wiechert solution, adapted by Arodz [27] to the
Yang-Mills case. A method used by Roskies [28] to study
the asymptotic properties of Yang-Mills configurations
leads to a simple estimate of the rate of radiation of the
3) colour charge carried by a classical gluon field. There is
an analogy between the energy-momentum vector in Einstein's
theory and the colour charge in chromodynamics. Physically,
the analogy is related to a presumed similarity in the self-
interaction of gravitons and gluons. To appreciate the
analogy formally, it is convenient to write both the Ein-
stein and Yang-Mills equations in terms of differential
forms,

du - 4mi = 47]

where j is a vector-valued 3-form describing the sources.
In the Yang-Mills case, U is the Hodge dual, *F, of the

field strength, i.e. a G-valued 2-form. The 3-form

d to + < ; . .
I am indebted to Ivan Koldr for having pointed out this

to me.
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i = - 4

i= e [A,*F]
is the gluon contribution to the conserved total current
i+ Jj.

Similarly, in the case of gravitation, U = (Uu) is

the 2-form of Freud's "superpotential" [29]

4U]J = ék-(dxl‘l ~ dx\) ~ dxp) N va ’
where m; = FEU dx° are the connection 1-forms. The currents
i= (iu) and j = (ju) correspond, respectively, to the

energy-momentum densities of the gravitational field and
of its source,

i o= #xdx’ t , 3 = #%dx’ T ,

U 1Y U HV

where (tuv> is the Einstein "pseudotensor" and (Tuv) is

the stress tensor of the source [10].

In both cases the field contribution i to the total
current is highly gauge-dependent: no physical meaning can
be attached to the notion of a local distribution of either
gravitational energy or colour charge of the gluon field.
If the fields satisfy suitable boundary conditions at large
distances, say F or T = O(r—z), one can compute the total

charge g (energy-momentum or colour) from the Gauss law

dng =41 (A +3) =¢ U (R~»> = , - (26)
BR SR

where SR is the surface (boundary) of a ball Bp of radius

R. The surface integral converges for R + = even if F or

I = O(r_1), provided that the "electric" component of the

1/r part of the field is tangent to SR. Such is the case of

pure outgoing waves. The boundary conditions are presumed
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to fix the gauge at large distances sO that g is well-

defined, up to the transformation g -~ g_1 g9, g € G (up

to a Lorentz transformation in the case of gravity). It

should be noted, however, that imposing suitable boundary

conditions is a subtle matter.

To construct the Liénard-Wiechert solution of the

Yang-Mills equations with group G, consider a point

particle of colour charge g, whose history is represented

by a time-like world-line z in Minkowski space. A priori,

the charge may depend on time. It is, therefore, a (di-

mensionless) function g : R > G.

Let zu(s) be the Cartesian coordinates of z. The

world-line is parametrized by its proper time, guv

. Y]
Zu z =

=, 2" = dz“/ds, 2° 5> 0. One associates with z a system

of comoving spherical coordinates (t,r,8,¢) by writing

[30]

M= M) + et (e, ) /p(u,0,9)

where u = t-r is a retarded time,

r=g (x"-z%@nz¥w) >0

uv

is a radial distance measured in the rest frame of an ob-

server moving along z, and & = (2“)
field,

£ = (1, sin 68 cos ¢, sin

These definitions imply

g ax* ax’ = (1-rp”' p) au® + 2 du

v

where a dot denotes differentiation

function p = - z* ¥ has a simple

is the null vector

f sin ¢, cos 0) .

dr - p-2 rztdﬂ2 + sin28d¢2)

with respect to u. The

physical interpretation:

if w is the frequency of a beam of light moving in the (6,9)-
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direction, as seen from rest in the coordinate system (xHM )

then wp(u,6,¢) is the frequency of the same beam measured

at zu(u) by the observer moving. along z. The world-line 5
is straight, 2" = 0, if and only if p = 0.
The Liénard-Wiechert potential may be written as
2 -1 u
A =g(u) r zu(u) dx . (27)

This form of the potential fixes the gauge almost completely
the only remaining freedom is of constant gauge transfor-
mations, q + g = g9, g € G. Such glecbal gauge transformationg
are not enough to align a time-dependent colour along a

fixed direction.
The field strengths corresponding to (27),

F = qrh2 du , dr + r_1 du A {gdr + grd(p_1é)J ’ (28)

satisfy the Yang-Mills equation D # F = O (r # 0) if and

only if

g+ [q,4] = © (29)
and

3 = e

q (p g) =0 5 | (30)

If G is either (i) Abelian, or (ii) compact and semi-simple,
then ed.(29) implies é = 0. It is worth'noting that, in the
important case (ii), strict conservation of colour follows
from the Yang-Mills equation alone. Moreover, the field (28)
has the same structure as in electrodynamics; it contains a
Coulomb-like r~! term and a Padidtive o term, linear in
(M) . Clearly, the latter term gives rise to outgoing ra-
diation of energy. The expressions for the Poynting wvector

and the total intensity may be obtained from the corres-

e

t}
hc
ar
se

an
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ponding formulae derived in electromagnetism by replacing
the square of the electric charge by = Tr qz. Moreover, it
is easy to see that, if d = 0, then the colour current j
corresponding to (27) is a distribution with support on

the world-line z.
If g # 0, then eg. (30) leads to
b =0 and

The particle is thus unaccelerated and its colour changes

linearly with time,
g(t) = at + b , : (31)
where, by virtue of eq. (29),

[a,b] = a # O .

The x-coordinates may now be adjusted so that p = 1 and

the solution assumes a manifestly spherically-symmetric

form,

A=r"' (au + b) dt , (32)
.

F=r (at + b) dt A dr . (33)

In this case, colour appears to change, but there is no
transfer of energy by the gluon field. Incidentally, the
field strengths (33) may also be derived from the potential
r~ ' (at + b) dt which is not gauge equivalent to (32).
Gauss's law applied to the field strengths (33) gives
the time-dependent charge (31). A closer analysis shows,
however, that the gauge configuration described by (32)
and (33) is, in fact, time-independent. This is easily
seen in the simple, but typical, case when G = SL(2,R)

and
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e it (=1/2 0 1 0
a = r b= s I =
(0] 0 -0 1./2 0] 1
If = T % au, then 80 = I - &y &6d

2t =5 as+s T as=xr"bat+aau,

F' = 871 Fg = r % (ar + b) dt A dr . (34)

The gauge-transformed field (34) is explicitly time-indepen-

dent, but contains an unexpected r-1 term which makes it

impossible to apply Gauss's law.

Returning to the analogy between the Yang-Mills ang
Einstein theories, one should bear in mind that a single,
spherically symmetric body cannot radiate gravitational
waves, but a system of bodies, moving undér their mutual
attraction, is believed to lose energy due to gravitational

radiation. One is thus led to consider the asymptotic be-

haviour of a bounded, time-dependent source of a Yang-Mills
field [28]. An approximate computation, described below,
shows that the total colour charge of such a source may

indeed change as a result radiation of colour, in analogy

to the gravitational case.

Consider a classical Yang-Mills field in Minkowski
space. Introduce a system of spherical coordinates (r,0,¢)

and put u = t - r. Assume that there is a gauge such that

j = O(r_3) and A = A_ + O(r_3), for large r,
where

r2AO=(Kr+P)du+(Lr+Q)dr+(Mr+R)rd 8+ (Nr+S)r sin 8 d¢, (35)

and the Lie algebra-valued functions K, L,...,S depend on
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1,8, and ¢ only. It follows from these assumptions that

the field strength is

where

- The Yang=Mills equation

d *# F + [A, * F] = 471]

is seen to be equivalent, to order r3, to
A*F_ +[A, xF_ ]=0(").
o of o :
The last equation reduces to the sysfem
=0 , L+I[LLl=0, “ (36)
5 AL .
CETH (ﬁ - [n,M]) = [L,M] : (37)
5 &L - -
'é'a (sin e w [LrN]) - [LIN] r (38)
3 (k+ [K,L] + Q) + [K,1] = DLM] + [N,N] +
1 d dJ ) aN
+E'i—n'—sa—u(a—eMSln8+a—¢') i (39)

where dots denote again derivatives with respect to u. Any
solution to this system gives an épproximate solution (35)
of the Yang=-Mills equation. Asymptotically, the solution
is an outgoing (retarded) wave. Egs. (36) can be solved,

L = au + b} where a and b depend on 6 and ¢, and

[a,b] = a . (40)



430

For G semi-simple and compact, the only solution to (40)
is a = 0. Therefore I = O,and if L = O is assumed, then
the system of equations reduces to (39) [28].The field
strength is now

F=dua(Md 0 + N sin 8 d¢) + r (K + Q) du . dr ¥ aq (419

where dots stand for terms which do not contribute to the
surface integral (26). The first term in (41) is of order
1/r and represents the radiative, purely transverse part

of the field. Total colour charge can be now evaluated by

2
computing (26) for u = const. and r = R + o, Using
% (du A dr) = r?(d0 . sin 0 dé¢) and equ.(39) one obtains ,
4t = ¢ (K + Q) d6 . sin 6 do ,

. . . . 4
4rq = ¢ ([M,M] + [N,N]) d8 . sin © d¢ P (42)
where the integrals are taken over a unit sphere. It is 5
clear from (42) that radiation of colour is a truly non-
linear and non-Abelian phenomenon requiring at least two ¢
particles with non-commuting charges. Radiated energy is
computed from the Yang=-Mills Poynting vector,

. - - 7
41E = ¢ Tr 1% + N%) d6 . sin 6 do ) (43)
Here E is the total energy of the system and Tr denotes
the scalar product in the Lie algebra of G, defined by
its (negative-definite) Killing form k.
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