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All classical, local theories of spacetime and gravitation are

based on a rather small number of assumptions about the geometry,
the form of the field equations and the nature of the sources.
The basic assumptions may be formulated in such a way as to allow
an easy comparison between the theories. To achieve this, it is
convenient to distinguish the 'kinematic' part of the assumptions,
referring to the type of geometry, from the 'dynamic' part, which
consists in specifying the form of the field equations.

The kinematics of essentially all theories is based on a four-
dimensional differentiable manifold M as the model of spacetime.
The manifold is endowed with at least two geometric structures: a
connection and a metric structure. The connection is necessary
to compare - and, in particular, to differentiate - objects such
as vectors and tensors, needed to describe momenta, forces, field
strengths, etc. In most cases & linear connection is used, but
it is possible to develop all or parts of physics on the basis of
other connections (affine, conformal). For example, to compare
directions and to define straight (autoparallel) lines it suffices
to consider a projective connection, defined as the equivalence
class of linear connections whose ‘coefficients ng are related
by
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A metric structure is needed to measure distances, time inter-
vals, angles and relative velocities. A theory is relativistic
if its metric structure is given by a metric tensor g of
signature (+++-). A somewhat weaker metric structure is called
conformal geometry: it is given by an equivalence class of metric
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tensors, two tensors g and g- being considered as equivalent if
and only if they differ by a point-dependent factor,

e P
g~ ¢ g

Conformal geometry is enough to write 'gauge equations' such as
source-free Maxwell and Yang-Mills equations.

In most theories, the metric structure and the connection are
assumed to be compatible. For example, a conformal geometry is
compatible with a projective connection if the property of being a

null direction is preserved under parallel transport. In a rela-
tivistic theory, the metric tensor is compatible with a linear con-
nection iff the latter is metric, Vugvp =0

From the kinematic point of view, the majority of viable theo-
ries falls into one of the following classes:
(1) Newtonian theories based on a linear connection I' and a
Galilean metric structure, given by a symmetric tensor (h¥V) of
signature (+++0). A suitably normalized zero eigenform (ru) of

h 1is the 1-form of absolute simultaneity. In the standard theory,
(ru) is the gradient of absolute time.

(ii) Bimetric theories have, in addition to the metric tensor g |,
another symmetric tensor (huv) as a basic variable. Linear

connection(s) are built from g (and/or h) by the Christoffel
formula or its modifications. There are two main subclasses:

1. Linearized theories of gravity interpret h as the gravi-
tational potential meaningful only up to transformations

*ih + a + a =
UV uv TRV v u
wvhere (a ) is arbitrary and V 1is defined by the Levi Civita
u

connection of the metric o

2 Bimetric theories in the strict sense had been proposed by
N. Rosen and recently considered also by A.A. Logunov. In these
theories, matter variables couple to h only, but the lagrangian
of gravitation is allowed to depend on both g and h

(iii)Riemann-Cartan theories assume a compatible pair (r,g) as

determining the underlying geometry. The most important among
them are:

1. Finstein's theory of 1915, based on Riemannian geometry, and
o the Einstein-Cartan theory, which is a slight modification

and generalization of Einstein's theory, obtained by allowing a.

non-zero torsion QM
vp
Other possibilities are:
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3. the Nordstrom theory, based on conformally flat Riemannian
geometry;
L. theories with distant parallelism (teleparallelism);

they are dual to Riemannian theories in the sense that they assume

venishing curvature, but qQ"vp # 0.

They are also called tetrad theories (c. Mpller) as they admit a
family of preferred fields of tetrads, defined up to constant
Lorentz rotations.

All theories listed under (ii) and (iii) are relativistic:
the tangent spaces to the spacetime manifold in any of these
theories have a geometry equivalent to thet of Minkowski space.

The principle of equivalence played a heuristic role in arriv-
ing at Einstein's relativistic theory of gravitation. One is
tempted to formulate it today in the following, rather sharp, way:
in the vacuum, the geometry of spacetime defines in lowest differ-
ential order only one linear connection. This principle, if
accepted, may be used to rule out many of the bimetric theories
listed under (ii.2).

To develop a definite theory of gravitation it is necessary

to
Ao gpecify its kinematics, i.e. the type of geometry;
B. Write the field equations of gravitation and the equations of

motion of other types of matter;

Cs Give a physical interpretation to the quantities occurring

in, or derivable from, the geometrical model;

s Study the consequences of the kinemetic and dynamic aspects

of the theory.

These general guidelines require comments which can be here only
very brief. The field equations of gravitation usually follow the
pattern of the Poisson equation

Ap = Lmp

of the Newtonian theory: there is a "left-hand side" constructed
from the potentials and a "right-hand side" describing the sources.
In most cases, the left-hand side is obtained from a variational
principle whereas the form of the sources follows from either

(a) a lagrangian 1 depending on both gravitational and matter
variables, or

(b) phenomenological considerations.

In the first case, the interaction of matter with gravitation is
achieved by imposing a principle of minimal coupling which is a
prescription how to go over from the special-relativistic lLagrangian
to its general-relativistic counterpart without introducing ex-
plicitly the curvature tensor. The second approach is less
satisfactory from the point of view of foundations, but more
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suitable to astrophysical applications. In either case, it is
necessary to specify which geometric elements of the theory have a
dynamical significance, i.e. are determined from the field equa-
tions and which are 'absolute', independent of the particular
physical situation. For example, the metric tensor is absolute

in special relativity and dynamical in the general theory. Torsion
is absolute - and zero - in Einstein's theory, but acquires a
dynamical significance in generalized theories such as the Einstein-
Cartan theory. The group of symmetries of a theory preserves the
absolute elements.

It is important to remember that the physical interpretation
of the mathematical notions occurring in a physical theory must
be compatible with the equations of the theory. For example, it
follows from Einstein's equations that the worldlines of 'dust
particles' are geodesics; this determines the physical interpret-
ation of the linear connection. When one goes over to a theory
with torsion, it is not possible to '"generalize" this result by
postulating that test particles move along the autoparallels. It
turns out that in the Einstein-Cartan theory spinless particles
still move along the geodesics of the Riemannian connection. To
measure torsion, one has to consider particles with spin.
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