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0. Summary Al
) Gr0ups of gauge transformations (gauge groups) are defined in the framework of prin— !

i ‘cipal bundles. The gauge group of a trivial bundle is exhibited and the gauge aspect
- of gravitation is compared to that of Yang-Mills theories

1. Introduction

Recent developments in theoretical physics indicate a wide-ranging importance of gauge
fields. There are reasons to believe that all fundamental forces are mediated by
particles which are quanta of appropriate gauge fields. In the approximation of clas=
sical physics, gauge configurations are described best by’ connections on principal

‘bundies over spacetime, The mathematical framework of fibre bund]es provides precise

‘definitions of the notions used in classical gauge theories. Among them are the no-

tions of gauge transformations. In the older literature, a distinction was made be-

tween transformations ‘of the first and second kind [} whereas in recent works one

refers to global and local gauge transformations [2]. . There is also considerable
o interest in-gauge transformations in the theory of gravitation [3]‘and its 'super-
: ﬁisymmetric modification [4]. = - : - ' ‘

Extending an earlier note [5], this paper contains the definitions and elementary
properties of gauge groups. The theory of gravitation is contrasted to a Yang-Mi]is :
*heory over/Hinkowski spacetime. The paper follows the standard notation and ter-
minology used in differential geometry and applications of fibre bundle theory to
physics (see, for examp]e. [G] and the references given therein). All manifolds and

¢« o tion a projection w'-of the total space of the bundle P on the base M and an ac-

1" tion of a Lie group G on P to the right. The action is free and transitive on the -
fibres of n. If §5:PxG -~ P is the map defining the action, then one writes s(p,a) = -
6a(p) or pa, for simplic1ty A connection is given by a one-form w on P, with
values in the Lie algebra of G. A (local) section s of n, S:M—+P, neS = idM.
corresponds to the physicists' idea of choosing a gauge. Let p:GxN = N be a map
defining a (left) action of G in a manifold N. A (generalized) Higgs field of type
p is amap @:P >Ny equivariant under the action of G, i.e, such that ®ob, :

a ]00. where o, (n) = p(a,n), a €G and n € N. The pullback & = s*w 1s the gauge
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_maps are assumed to be of class C”. A principal fibre bundle includes in its ‘defini- ‘ifl'
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potential in that gauge.

2. Automorphisms of principa] bund]es

B ! A diffeomorphism u:P + P is an automorphism of the bund]e 7P+ M if there is a
’L:}‘!- diffeomorphism v:iM + M such; that ol = Vorr and’ u(pa) = u(p)a for aﬂy‘ p€eP

b i and a € G. The set AutP of all automorphisms of. P 1is a group under composition
of maps. The diffeomorphism v  is uniquely determined by the automorphism u -and

' there is a homomorphism of groups J:AutP - DiffM given by J(u) = v. An automor-
phism u 1s called vertical (or based) if j(u) = idM. the set AutoP of al vertical
automorphisms is a normal subgroup of AutP and the sequence ¢ -

14 Aut - Autp 4 pifmm

framework of prin-

i

nd the gauge aspect ) is exact. There are natural bijections among the fo1iowing three sets
‘ S(1) AutgP; i
(i1)  the set of a11 maps U:P + G such that U(pa) = a~ U(p)a for any p e P and
S v ‘ 3.€6; :
.importance of gauge (i11) the set of all sections of the bundle E - M, associated to miP = M by the
are mediated by - G : adjoint action‘of G on itself [7]. ‘ i

imation oficlas-
»proxima‘ion iy o The correspondence bétween (i) and (i1) is given hy
ons on principal A

es provides precise . i gty " SR i ulp) = pulp). ¥
g them are the no- - o Let k:PxG +E be ‘the lcanonical map, - k(ps a) = k(pb,b” lab), ‘where a,b e G If U
ction was made be- i s as n (1), then k(p U(p)) depends only on n(p) and defines a section u of
 recent works one % NeUEaR e : » ‘ i A
so considerable o ‘ ' Lo

; Example 1.

e
d its 'super- : i ' :
Sl : o ‘ If ¢ is a centrall e]ement of G, then the constant map U:P -~ G, kU(p)‘= ¢, defines - =~ -

- a vertical automorphism e St e :

|
|

ons and elementary - . . L
ed to a Yang-Mills . fﬁExampie 2. : ;
otation and ter- : iLet M be n-dimensional, x € M and let T M be the tangent space to M ‘at x. A
yundle theory fb (1inear) frame at x is a (linear) isomorphism e:R" -+ T M. The set LM of all

A1l manifolds and "'” such frames at a]i points of M. gives rise, in a natural manner. to the principal
Judes in its definj- : s bundle of frames; w(e) = x. The action of its group, GL(n,R), is by composition
j of linear maps, ea = eca. The bundle E associated to LM by ad consists of
all linear automorphisms of the tangent spaces to M; a section of E+M isa fier
of,invergible‘tensors ofymixed‘vaIence on M. Any vertical automorphism of LM is
given by a tensor field of this kind. : ‘

base M and an acs

ind transitive an the
one writes G(p,a)'-
m w on P, with

+ P, moS idMq : ! Example 3. . ¥ :

xN -+ N be a map Lihiaiilet TVT M+ T It )M denote the tangent map to vi:M - M at x € M. For any

Higgs field of: typs : ! v € DiffM, one defines fts 1ift Lv:LM + LM by : i

h that o6, E—— { iiLv(e)! =T v°e. where x = n(e). ; ‘ e .(1)‘

. % 1is th . ‘
o Uaen 2?“9? ‘ c1ear1y. Lv is an automorphism of LM~M and jL = Tdpieeme For any u ¢ AutlM,
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the composition ue (Ljlu” ])) is a vertical automorphism

« :For any manifold M and (Lie) group. G, one defines the. group. GM of all maps
fromi M to G; the composition in 6 'is 1nduced pointwise from G There is a,

- vnatural homomorphism © of  DiffM into the automorphism group of GM given by

tv(w) - wov'1, where v € DiffM, w:M + G.

|

The group of all automorphisms of the trivia] bundle prl.MxG + M is 1somorph1c to

the sem1 direct product of DiffM and G _relative to 7. / :

Indeed any automorphism u:MxG + MxG may be represented by the pa1r (v.w). where
v = j(u) € DiffM and w:M -+ G is such that i
u(x,a) = (v(x),w(v(x))a) for any x €M and a € G.,
Moreover. if the automorphism u'. is represented in this way by (v' .w '), then
ueu' is. represented by (Vov_, WoT, (w')).

3. Gauge groups and symmetries .
.In any physical theory, besides dynamical variables which are subject to equations of

~motion, there occur absolute elements, such as external forces or the metric tensor
' in special relativity.. In a gauge theory, the absolute elements are often given by
' geometric objects, defined on the bundle w:P =+ M, in addition to the connection and

the Higgs field which play a‘dynamical role. It is reasonable to define the gauge

' group of such a theory as the subgroup G of AutP, consisting of all automorphisms

of n which preserve the absolute elements. The elements of G are called gauge
transformations. A pure gauge transformat1on is a vertical element ot G The pure

gauge group

i Skt
|
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is a normal subgroup of 6 and there 1s the exact sequence

L,»GO-»G-»G/G it e

f Gauge transformations act on sections and connections if-'s is a section of
-1 {s another section:’ Similarly, the pu11bock.

n:P+M and u € G, then s' = UoSoV
w' = u*» of a connection form is another conpection form and there is the equality

s*' = ykg'¥g,

_This can be 1nterpreted as_foilows: the form o describes the.same geometry and

pnysics as o' does, only 'translated' by the diffeomorphism v. In other words, any.

~ invariant constructed from ' and the absolute elements at x € M is equal to the

corresponding 1nvar1ant constructed from « at v(x)

_ The gauge group of a Yang-Mil]s theory over MinkOWSki space is easily obtained on
“the ;basis of Proposition 1: . the group Go is 1somorphic to G”. whereas G is 1so-

w'lmorphic to the semi direct product of the 1nhomogeneous Lorentz group and GM relative
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to T,
“¢fiall mans ' The following example shows that the gauge exact sequence.need not split for a
Fredg 15 a non-trivial bundle.
Consider the Z-bundle w=:R = U(1), =(t) = exp2nit, and assume its total space R to.
have the standard metric and orientation. If these two elements are considered as
absolute, then G reduces to R, the group of translations, and the sequence (2) be-

comes
1 = PR e il g 1,
Lt By definition, a diffeomorphism v:iM - M is a symmetry of a gauge configuration

given by « on P if there is a gauge transformation u:P -+ P which covers v, i.e. =
j(u) = v, and
i+ then U*o = w,
Similarly, a Higgs field of type » given by the map o¢:P - N admits v as a
symmetry if it is invariant under u € G, :
u*e. = o,
-and j(u) = v. If N is an orbit of G, then ¢ restricts the bundle n:P - M to
the little group of ?q €N, .
H = {a € G: p(a,op) = ogl
The total space Q of the restricted bundle is
Q = {p €P:olp) = ¢p}
& and.it is straightforward to prove
Proposition 2. ;
A Higgs field with values in an orbit of G is invariant under u € AutP if and only

if u € Autq.

4. Gravitation

The 'kinematic' aspect of gravitation is described by a connection « on tne
nd by a metric which

bundle LM of linear frames of an n(=4)-dimensional manifoid
n : S
c SR SR where- N s

a

may be considered as a generalized Higgs field g:LM -+ N 2(

an orbit of GL(n,R) in the space of symmetric, n n matrices. According to the theo-

rem on inertia of quadratic forms on R" there is a one-to-one correspondance between

the set of all such orbits and the collection of all possible signatures of these
forms. The 'dynamics' consists of differential equations for « and g.

An important aspect of gravitation is the 'concrete' nature of‘LM: its elements are
_linear frames on M whereas not much can be said about the elements of an ‘abstract'
bundie P. The bundle m:LM - M*is 'richer' than an abstract bundle. Its additional

structure is completely described by the canonical one-form 6:TLM - R" defined by
L

v




' where 9 is the restriction*of 6 to T LM and e € LM 1is interpreted as an iso-

morphism from R" to Tn(e)(‘b Clearly, eaoTeba 1oee thus proving
: ‘ Ly 4 i |
aae a of

‘and, for any u € TLM,

. Proposition 3.

morphism and, therefore, an element of LM lying over n(p). The equivariance of h-

. gaugé groups in gravity: e
Proposition 4. e i : ' g

(3) of e: u*e =9 fs equivaIent to eu(e)oT u = e’ any e. Using (3) and mou =
~ one obtains u(e) = e. £ - i

Proposition 5.
«If uilM -+ LM is a diffeomorphism such that wou = ver for some diffeomorphism

) e Ly,
“(41) u*e =0,

i cennection w. Denoting by Q' and e the forms corresponding to ' = u*w, u € AutLM.
one obtains . it ‘ e w A
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A principal bundle  w:P ~ M, with an n- d1mensional base and structure group GL(n R)
is 1sumorph1c to the bundle of linear frames LM + M  if and only if there is a map ;
9:TP + R linear on the fibres of TP = P, and satisfying (4) and (5) for any L
a f\GL(n ,R) and ueTP. |

_Indeed, if there is such a'¢ on P, then the (based) isomorphism h:P + LM is de-
termined as follows. Condition (5) means that, for any p ¢ P, the linear map

Tpn (Pt w(p )M factors through ep TpP Wi 1 e. there is a linear map '

h(p):R" - T (p)M e s e

"

g

such that h(p)oep = Tpn. The map h(p) is uniquely defined; moreover, it is an 1so-

fo1lows from (4).

The canonical (' soldering' ) form o plays the role of an abso]ute element in the
theory of gravitation. The fol]owing two propositions are useful 1n determining the -

If u e Aut LM and u%e = 6, then u = id. This follows directly from the definitioh '

V:M + M, then the following conditions are: equivalent : Sk
Indeed, 1t follows from the definition of ¢.and (1) thgt‘
(u*e)e = iu(e)']oLv(e)oee for any e € LM.

(1) = (i1) 1s now obvious andi (ii) = (1) fol1ows from the surjectivity of 0q

Let @ and o be, respectiVer, the curvature and torsion two-forms of a linear

i Al e




(3)
arprefed as an jso=
proving

(4)

{5}

ture group 6L(n,R)"
if.there;is.a map
(5) for any

h:P - LM is de-

he linear map
near map

eover, it is an isq-
equivariance of h.

ute element in ;hé"
in determining the

from the definftign
(3) and mou = §,

diffeomorphism

ctivity of 6o

y-forms of a linear
'A d U*w, u e AutLM'

Proposition 6. el : ] oo e

~ For ‘any—u—€ AutLM, ’ i ’ ik Ak
e ! : Q' = u*q.
" If, moreover, u = Lv, then "5‘ : :
; gl ¥ u*e; ; : : . (6)

0
i

It is important to reaiize that (6) does not, in genera], ho]d uniess u is the
Jift of a diffeomorphism; one can 'generate torsion/' by applying a suftable vertical
. automorphism to a symmetric connection. These remarks are intended to justify our:
- definition of the group G of gauge transformatiens in theories of gravity based on -
LM: ' e

!

G =, {u € AutLM: u*e = e}

lBy Proposition 5 this group is isomorphic to DiffM and. by Proposition 4 the group.
6"of pure gauge transformations reduces to . (id} This should be contrasted with
: the case of a Yang-Mills theory over Minkowski space, for which G0 = G iis 'iarge
and G/G is finite-dimensional (' small'). . ‘ e i

. Incidentally, the iift L:DiffM - AutLM defines a splitting of the sequence
1 - AutglM - AutiM - DiffM ~ 1

and the representation u - (v,uelv” ), v = j(u) yields an isomorphism of AutLM' on
the semi-direct product of DiffM and Aut LM, relative to the homomorphism o:DiffM
- Aut(Aut M), where o (W) = LveweLv™ A o iy AutyLM.
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