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Fiber Bundles, Gauge Fields, and Gravitation

ANDRZEJ TRAUTMAN

1. Introduction and Motivation

1.1. Physicists were using concepts that are now part of the theory of
fiber bundles before mathematicians introduced the notion of a bundle. For
example, the phase space of classical mechanics and statistical physics
coincides with the cotangent bundle of a configuration space. The derivation
by Dirac of the formula for the strengths of magnetic poles is equivalent to
the classification of circle bundles over S, by their Chern numbers. In this
respect, the situation of physicists can be likened to that of Monsieur
Jourdain qui fait de la prose sans le savoir. There thus arises the question
whether it is worth while to learn the language and use the methods of fiber
bundles since so far it has been possible to do without them. It is hard to give
a straightforward and convincing answer to this question; probably the only
reasonable thing to say is “‘the future will tell.”” My personal opinion is that at
least some concepts of fiber bundle theory will become an established part of
mathematical physics because fiber bundles provide a natural and con-
venient framework for discussing the concepts of relativity and invariance,
describing gravitation and other gauge fields, defining the notion of induced
representations, and giving a geometrical interpretation to quantization and
the canonical formalism of particles and fields. Fiber bundles provide a
convenient language for dealing with local problems of differential geometry
and field theory. They are necessary to understand and solve global,
topological problems, such as those arising in connection with magnetic
poles and instantons.

For along time, Einstein searched for a “‘unified” geometrical theory of
gravitational and electromagnetic forces. The success of his attempts, based
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on modifications of Riemannian geometry, was limited. Probably the best
geometrical—but hardly unified—theory of this type is the one due to
Kaluza and Klein. Its underlying geometry is that of a five-dimensional
Riemannian space with a one-parameter group of isometries. It turns out
that the Kaluza—Klein space is the total space of a circle bundle and that the
electromagnetic potentials play a double role: they define a connection form
on the bundle and, together with the metric of space-time, determine the
five-dimensional Riemannian geometry. Gauge theories such as those based
on SU (n) groups have a similar geometry. If the present views on the role of
gauge fields in strong and weak interactions are confirmed, then fiber
bundles with connections will provide the framework for a geometrical
description, according to one pattern, of all fundamental physical forces.
This unification will be considerably different from Einstein’s own attempts,
but may be close in spirit to his program of geometrizing physics.

1.2. The notion of a fiber bundle generalizes that of a Cartesian
product.m Two simple examples from physics and geometry will clarify the
need for such a generalization.”’

(i) In Aristotelian physics both space and time are absolute, every
event being defined by an instant of time and a location in space. This is
equivalent to saying that space-time E is a Cartesian product 7" X S, where
T is the time axis and § is the three-dimensional space. In Galilean physics
time remains absolute, but space is relative. This can be described by saying
that there is a projection m: E - T, i.e., a surjective (onto) map = that
associates to any event p € E the corresponding instant of time ¢t = 7 (p) €
T. The set (line) T is called the base space and the set 7w '(1) of all events
simultaneous with p is called the fiber over t. Each fiber is isomorphic to the
Euclidean three-dimensional space R?, which is therefore called the typical
fiber. The total space E of this fiber bundle may be trivialized, i.e., represen-
ted as the Cartesian product T' x R>. Any such trivialization (map) h: E >
T x R’ is of the form h(p) = (m(p), x(p)), where r(p) = (x(p), y(p), z(p))
are the space coordinates of the event p relative to an inertial observer. One
can say that Galilean space-time E is the total space of a fiber bundle which
is trivial, i.e., isomorphic to the product bundle T x R?, without there being
a natural isomorphism between these bundles.

(ii) Consider the two-dimensional sphere S, with a preferred orien-
tation. Define a ‘‘dyad” as a pair of unit orthogonal vectors tangent to S, ata
point. Let P be the set of all dyads whose orientation agrees with that of S,.
One can make P into the total space of a bundle in such away that 7: P > S,
is the map sending a dyad into the point at which its vectors are attached to
S,. If e = (ey, e») is a dyad at x € S5, then so is the pair (e}, e5), where

el = ey cos ¢ + ey sin @, ej = —e;sin @ + e, cos ¢ (1.1
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and all dyads at x may be obtained in this manner from (e;, e;). Therefore,
SO(2) is the typical fiber of the bundle 7: P > S,. Equation (1.1) defines an
action of the (structure) group SO(2) on P. The bundle 7: P - S, is a simple
example of a principal bundle. Moreover, this bundle is nontrivial in the
following sense: there is no diffeomorphism k: S, X SO(2) > P such that
mok(x,a) = x. Indeed, if such a k existed, then s: S, > P, defined by
s(x) = k(x, ao), would determine a smooth field of unit vectors on S,. By the
“no combing of S,,” theorem of Brouwer, such a field s does not exist. In
general, if 7: E > M is a bundle and N is an open subset of M, then a
smooth map s: N - P,such that 7 o s = idn, is called a (local) section of . If
N = M then s is a global section. For a principal bundle, the existence of a
global section is equivalent to its triviality. Incidentally, the bundle of dyads
occurs in the description of a magnetic pole of unit strength. (The system of
physical units used here is such that the charge of the electron is equal to the
fine-structure constant.) The nontrivial nature of the bundle 7: P > S5,
shows up in the occurrence of a ‘“‘string singularity” in the expression for the
vector potential of the magnetic pole.“)

1.3. The last remark leads to what is probably the most important
domain of applications of fiber bundles in theoretical physics: infinitesimal
connections on principal bundles provide good geometrical models of
classical gauge fields. This has been known among mathematicians and
.physicists for some time but, for the sake of completeness, let us recall some
of the arguments in favor of this view. In a notation that is standard in
physics, one can consider the analogies between electromagnetism and
gravitation:

Electromagnetism: Gravitation:
ax™ 0 9T @t G
w= b e 0% Egyt—an steurur v s gy
A= M Tl Lo =Ty oy ox” ax T ax® ox"” ox”
3,4 NS iA“ Vy,
FM-V Raﬂuv
Brivor =0 R a1 =0

The issues raised in the discussion on the significance of the electromagnetic
potentials become clear when electromagnetism is interpreted as an
(infinitesimal) connection in the space of phases. Namely, the experiments
proposed by Aharonov and Bohm“* have a very simple analog in elemen-
tary geometry: the surface of a cone is locally flat, but a vector undergoing
parallel transport along a loop enclosing the vertex does not return to its
original position. Similarly the phase of a wave function of a charged particle
undergoes parallel transport determined by the potential. The region with
the magnetic field is analogous to the vertex of the cone. Electromagnetic
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potentials should not be slighted, but considered for what they are: the
coefficients of a connection.

A heuristic approach to the notion of a connection on a principal bundle
shows how this concept is related to the physicist’s view of gauge potentials:
Let 7: P > M be a principal bundle with structure group G. The result of
action of a € G on p € P is another point pa € P, lying in the same fiber as
p, w(pa) = m(p). Alocal section s: N > P defines a diffecomorphism k: N X
G > 7 '(N) by k(x,a)=s(x)a = p. The section s being fixed for the
moment, we may identify s(x) with (x, ) and s(x)a with (x, a) = (x, €)a,
where ¢ is the unit element of G. An infinitesimal connection on P defines
parallel displacement of elements of P. If dx = (dx") is a small displacement
at x = 7(p) € N, then the parallel transport of (x, ¢) along dx results in
(x + dx,e — A), where A = A, dx" is a 1-form on N, with values in the Lie
algebra G' of G. Parallel transport should commute with the action of
G: (x, a) displaced along dx becomes (x + dx,a — Aa). If s': N'> P is
another section, then there is a map U: N N N' > G such that

sip)=s)Ul) (1.2)

for x € N N N'. The section s' leads to the diffeomorphism k': N' X G »
a YN, k'(x,a) = s'(x)a = s(x)U(x)a, and

kitx a)—=k(x, Ua)
k'(x + dx,a) = k(x + dx, (U + dU)a)

Relative to k', parallel transport is described by a 1-form A’ = A, dx"“. By
parallel transport, the point k'(x, £ ) becomes k'(x + dx, e — A’), which s the
same as k(x +dx, (U +dU)(e —A’)). On the other hand, k'(x,¢)=
k(x, U) is parallel to k(x + dx, U — AU). Since parallel displacement in P
should not depend on the choice of section (gauge), (U +dU)(e — A') =
U — AU. This leads to the transformation law

A'=U'dU + AU) (1.3)

of the potential under gauge transformations of the second kind. It follows
from (1.3) that the G'-valued 1-form

w =a '(da + Aa) : (1.4)

is independent of the section. The form » has a simple geometric inter-
pretation: £ + w is the element of G that moves the point (x, a) into the
point (x,a)(e + w) = (x,a + da + Aa) parallel to (x +dx, a +da). The
section-independent 1-form w on P is called the connection form,; it is the
gauge-independent counterpart of the potential A. Relation (1.3) contains,
as special cases, the transformation laws of the coefficients of a linear
connection (Christoffel symbols, Ricci rotation coefficients), of the elec-
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tromagnetic potentials, and of non-Abelian gauge potentials of the Yang—
Mills type. The advantage of the connection form w, defined on P, over the
potential A, defined on N = M, results from the following considerations:
the connection form w is defined independently of any section, whereas A
refers to a (local) section of the bundle. As a consequence, for a nontrivial
bundle, the potentials are defined only locally, whereas the connection form
w is defined globally, all over P.

1.4. Aninteresting application of the bundle approach to gauge fields is
the construction of Riemannian geometries of the Kaluza—Klein type.? If
there is a connection form w on P, g = g,, dx"* dx” is a metric tensor on M
and 4 is a bi-invariant metric on G, then one can define a metric tensor y on
P by the formula

y(u, v) = g(Tw(u), Tm(v)) + const h(w(u), w(v))

where u and v are vectors tangent to P, and T7r: TP » TM is the projection
of such vectors on M, induced by 7. The metric vy is invariant under the
action of G on P. For G = SO(2) it coincides with the metric considered in
five-dimensional, “‘unified” theories of gravitation and electromagnetism.

1.5. Relativistic theories of gravitation—such as Einstein’s theory of
general relativity—may also be considered as gauge theories. The bundle P
consists in this case of orthonormal linear frames (tetrads, Vierbeine) of the
space—time manifold M and G is the Lorentz group. Alternatively, one can
take P to be the bundle of orthonormal affine frames, in which case G is the
inhomogeneous Lorentz group. There are, however, important differences
between Einstein’s theory and gauge theories such as electrodynamics or the
Yang-Mills theory. First of all, the bundle of frames is soldered to the base M
whereas in other gauge theories the bundle is rather loosely connected to M
(Section 4.1).

The soldering results in the appearance, in theories of gravitation, of
torsion, in addition to curvature, which occurs in any gauge theory. (Torsion
is zero in Riemannian geometry, but being zero is different from not existing
at all.) Moreover, the form of Einstein’s equations of gravitation is different
from the “generic” form of the field equations assumed in gauge theories.
The latter are derived from Lagrangians quadratic in curvature, whereas the
former are based on a linear Lagrangian. The possibility of constructing such
alinear Lagrangian is also related to the existence of the soldering form on P.

2. Fiber Bundles and Infinitesimal Connections

2.1. In physics, we usually need spaces on which differential calculus
can be developed. For this reason, we restrict our considerations to the
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differentiable case. The reader should consult the books and articles listed at
the end of the paper for precise definitions and properties of bundles with
connections.” ™

2.2. A smooth principal bundle includes, in its definition, the following
list of differentiable manifolds and smooth maps:

a total (bundle) space P

a Lie group G

a base space M

a projection w: P > M

a map 6: P X G » P defining the action of G on P to the right; if

a,b € G and ¢ € G is the unit element, then

8(a)o8(b) =6(ba) and &(e)=1id
where 8(a)p = 6(p, a), p € P; moreover
modla)=m
One often writes pa instead of §(a)p.
2.3. A connectionis given by a 1-form w on P, with valuesin G', the Lie
algebra of G. For any v € G', §(exp tv) is the one-parameter group of

transformations of P generated by v; if A(v) is the vector field on P induced
by &(exp tv), then

w[A(v)]=v
and
8(a)*w = ad (a Mo (2.1)

where 6(a)*w is the pull-back of w by §(a), i.e., §(a)*w(u) = w[T8(a)u]for
any u € TP. ad (a) is the automorphism of G’ associated to a € G by the
adjoint representation of G in its Lie algebra.

At any point p € P one defines the horizontal subspace by

hor, P = {u € T,P: w(u) = 0}
There is a direct sum decomposition
T,P = hor, P ® ver, P 2.2)

where the vertical space ver, P coincides with the kernel of the map T,m,
tangent to 7 at p. Therefore, on a bundle with connection, a vector u € T,P
admits a decomposition

u =horu +veru

corresponding to (2.2).
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2.4. Letp: G > GL(V)be arepresentation of G in a vector space V. A
k-form a on P with valuesin V issaid to be of type p if it is equivariant under
the action of G,

d(a)*a = pla Ha

If « is such a form, then so is the form hor @ defined by
hor a(u1, ..., uxr) = a(hor uy, ..., hor u)

where

Uiy e & TP
If « is a k-form of type p, then its covariant exterior derivative

Da = hor da
is a (k + 1)-form of the same type. For example,
Q = Dw

is a 2-form of type ad, called the curvature form. Explicitly,

Q= do + 3w, o] (2.3)

where the commutator of two G'-valued forms is defined as follows: Let (e;)
be a frame (basis) in G', and let « = a'e; and B8 = B'e; be two such forms;
then

[, 8]1=a' A B'len e]=a’ A B'c e

where (ck,-,-) are the structure constants of G with respect to (e;). There
always holds the Bianchi identity

DQ=0 (2.4)
If « is a horizontal k-form of type p,

hora = «
then Da may be evaluated from the formula

Da‘ =da® + phio' A a’ (2.5)
where
a—0¢c. Da = (Da*)e,, w=w'e

(e,) is a frame in V, and pj; is the ath component of the vector

i (exp te;)e
dtp e bt
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2.5. A p-invariant metric on V is a bilinear symmetric map
h:VXV->R
such that
h(p(a)u, p(a)v) = h(u,v) foranyae Gandu,ve V
If G is connected, then 4 is p invariant iff
hacpsi + hespai = 0
where hg, = h(e,, e5). For example, the Killing metric on G' is ad invariant.

2.6. Associated bundles. Let p: G X F -» F denote an action of G in a
manifold F to the left, p(a) o p(b) = p(ab), p(e) = idwhere p(a)q = p(a, q).
If 7: P > M is a principal G-bundle, then one defines an action of G in
P X F by

(p,q)a =(8(p,a),pla™, q))
Let

k:PXF->E=(PXF)/G

be the canonical map on the quotient of P X F by G. The set E has a natural
structure of a fiber bundle with projection wg: E > M defined by
me o k(p, q) = w(p). The manifold F is the typical fiber of the bundle E
associated to P by p. For example, if V is a vector space and p: G - GL(V)
is arepresentation of G in V, then each fiber of E has a natural structure of a
vector space and E is said to be a vector bundle.

Let ¢: P > F be a mapping equivariant with respect to the action of G
in P and F, i.e., such that for anya € G

podla)=pla)egp (2.6)
Define the section ¢ of 7g: E > M by
¢(x) = (p, (p)) 2.7)

where p € 7 '(x); the right side of (2.7) does not depend on the choice of p
inside the fiber over x € M. Conversely, given asection ¢: M - E of 7g, one
can define an equivariant mapping ¢: P - F by

@(p) =k, °¢om(p)
where
o 77_1(77(17))

is the diffeomorphism defined by «,(q) = «(p, q). Therefore, there is a
natural, one-to-one correspondence between equivariant mappings from P
to F and sections of the associated bundle with fiber F.
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2.7. Example. Let P = LM be the bundle of linear frames of an
n-dimensional manifold M. Its structure group G is GL(n, R) and the action
is given by (e, a) — 8(e, a) = ea, where e = (e,.), a = (a*,), ea = (e.a".),
and u,v=1,...,n. For any linear representation (homomorphism)
p: GL(n,R) > GL(V) one constructs the associated vector bundle E =
p (M) of quantities of type p over M. A section ¢: M - E of this bundle is a
field (of quantities) of type p and ¢(e) € V gives the components of the field
with respect to the frame e at x = 7(e). A section s: M - P of P is a field of
frames and ® =¢@os: M > V is the expression of the field by its
components relative to s. If U: M - G then s’ = sU is another field of
frames and, according to (2.6), @' = ¢ os' is related to ® by the trans-
formation law of components of a field of type p,

®(x) = p(U(x))®'(x)

2.8. Definition of principal bundles by transition functions is close to
the physicist’s way of thinking in terms of local coordinates, gauge trans-
formations, etc. Since any x € M has a neighborhood N such that 7 '(N)is
isomorphic to N X G, it is possible to find an open covering (N, ) of M and
diffeomorphisms k,: N, X G - m '(N,) such that 7wok,(x,a)=x and
k.(x,a)b = k.(x, ab).If x € N, N Np, then there is an element a.g(x) of G
such that kg (x, £) = ka(x, aus(x)) and

Aap: Na N NB -G (28)
is a mapping. Moreover
if xeN,NNgNN, then a,, (x)= a.s(x)ag,(x) (2.9)

Clearly, there is a great deal of arbitrariness in the choice of the diffeomor-
phisms k,,: given a family (U, ) of mappings U,: N, -~ G, one can define the
“transformed” diffeomorphisms k. (x, a) = k.(x, aU,(x)) and the “trans-
formed” transition functions

atg(x) = U,(x) 'ans(x)Us(x) for xe€ N, N Ng (2.10)

Conversely, given an open covering (N, ) of a manifold M and a family (a.g)
of transition functions (2.8) subject to (2.9), there is a principal bundle
m: P > M with group G, and a family (s, ) of local sections, s,: N, = P such
that sg(x) = 54(x)dqp(x) for x € N, N Ng. The bundle is determined by the
transition functions uniquely up to isomorphisms; two families of transition
functions related by (2.10) lead to isomorphic bundles.

2.9. There is a general method of constructing principal bundles from
Lie groups. Let us first recall that, if H is a closed Lie subgroup of a Lie group
G, then the set G/ H of left cosets modulo H has the structure of a manifold.
The group G actsin G/H to the left by a(bH) = abH, where bH is the coset
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containing b € G. This action of G in G/H is transitive and any manifold ¥
homogeneous under an action p of G may be obtained in this manner by
taking for H the stability (isotropy) group of one of its points, say o

H ={ac G:p(a)o = o}

Moreover, G > G/H is a principal H-bundle. To describe the more general
construction, consider two closed Lie subgroups K and H of G such that K
is a normal subgroup of H. The quotient H/K is then a Lie group and there is
a principal H/K-bundle

m: G/K » G/H

defined by 7(aK) = aH, 6(aK, bK) = abK where a € G, b € H.

3. Gauge and Higgs Fields

3.1. To construct a gauge theory(g) it is necessary to specify (i) a gauge
group G; (ii) the type of particles that are coupled to the gauge field; this is
done by choosing a representation p of G in V; (iii) the form of the field
equations. One then considers principal G-bundles over spacetime M and
connections defined over these bundles. Let w be a connection form on a
G-bundle 7: P > M. The potential corresponding to a local section s: N -
Pis

A =1%p
If (x*) is a system of local coordinates in N = M, then
A=ALdrle

Similarly, the field strengths relative to the local section s are

F=3s*Q=3F, dx" ndx"e
By virtue of (2.3) one has

Floc AL~ AL, +cRALAL
A change of the local section implies a change of the potential and of the field

strengths. The new potential A’ is given by equation (1.3) and the cor-
responding formula for the field strengths is

Ri={"'FU
3.2. A particle of type p, interacting with the gauge field, is described by

a map ¢: P> V subject to (2.6). The pull-back of ¢ by a section s is the
physicists’ Higgs field or wave function

P=¢pos: N>V
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It is convenient to refer to ¢ itself as the Higgs field. According to what was
said in Section 2.6, ¢ corresponds to a section ¢ of the bundle associated to P
by p; sometimes one prefers to work with ¢ instead of ¢. According to (2.5),
one has the following explicit formula:
V.0 =, +phALD°

for the pull-back D® = s*D¢ = V,®° dx* e, of the covariant derivative of
¢. A standard Higgs fields corresponds to V = G’ and p = ad, so that
Pik = Cik.

3.3. Assume now that the base M is an qriented Riemannian space
with metric g; one can then form the dual * a of any horizontal form a on P.
The sum of degrees of the forms a and * « is equal to the dimension of M.

Let (e;) be a frame in G' and let k be an ad-invariant nonsingular metric on
G'. The form

ki*Q' A Q) (3.1)
where k; = k(e;, ¢;) and Q) = Q'e; is invariant under the action of G and may

be taken as the Lagrange density of a variational principle for a pure gauge
field. If dw is a variation of the connection form, then

8Q = Déw (3:2)
and the resulting field equation is
D+xQ=0 (3:3)

The interaction between the gauge and the Higgs field ¢ is taken into
account by supplementing (3.1) with a term of the form

has * De® A De® + Ul(le|)n (3.4)

where |¢|* = a0, h is a p-invariant metric on V, and 7 is a horizontal
volume element. One says that the coupling between ¢ and w is minimal
since the interaction term (3.4) contains w only through De.

3.4. Spontaneous Symmetry Breaking. Consider a principal G-bundle P
over M and a Higgs field whose range is an orbit W of G in V, i.e.,

¢:P>WcV

and W is such that for any pair of points, wo, w € W thereisana € G so that
w = p(a)wo. Let H be the isotropy group of wy,

H ={a e G:p(a)wo = wo}
Then
Q ={p e P:¢(p) = wo}

is a subbundle of P over the same base M its structure group is H"”
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Conversely, given a reduction Q of the bundle P to a subgroup H of its
structure group G, one defines a Higgs field ¢: P > W = G/H by putting
¢o(p)=H e Wforpe Q.
A connection form w on P, restricted to Q, defines an H-connection on
Q iff it is H'-valued, i.e., iff
Dgp =0 (3.5)

This condition is usually taken as part of the definition of the ground state in
a gauge theory.

As an example of spontaneous symmetry breaking, consider the
‘t Hooft-Polyakov (hedgehog) solution’™® of the Yang-Mills equations
with a Higgs field of type ad. For any fixed ¢ and r > 0, the base may be
identified with S,. The SO(3) bundle P over S, is trivial, P = §, X SO(3),
and the (normalized) Higgs field ¢: P > S, © R?is ¢(},a) = a 't for any
te S, and a € SO(3). The north pole &, = (0,0, 1) € S, is unchanged by
rotations around the z axis, thus H = SO(2) and

Q ={{a)e P:a 't =y}

may be identified with SO(3) by Q 3 (f, a) — a € SO(3). Clearly, SO(3) >
S, is nontrivial and carries an SO (2) connection corresponding to a magnetic
pole with n = 2. It should be noted that condition (3.5) is not satisfied by the
hedgehog solution. The SO (2) connection is obtained here by projecting the
SO (3) connection on the £, direction, rather than by restriction. We see from
this simple example that by a spontaneous breaking of symmetry it is
possible to obtain a nontrivial bundle Q even though P is trivial.

3.5. Topological invariants for gauge fields may be obtained by the
Chern-Weil construction."* Let

G XG X XG >R

be a k-linear symmetric map, invariant under the adjoint action of G in G'.
If ay, ..., ax are G'-valued forms on P, ; = a'“e;(;), then

o, e =ai A ab® Ao nal®fear o - - s G
is an invariant, R-valued form on P. We write
fla) = fla, a,...,a),
fle, B) = f(a,B, ..., B)

Any two G connections on the principal bundle P - M, say w and w, can be
smoothly joined by a one-parameter family of connections (w;),

w, =w + ta, O=¢f=1
where
a=wi;=a
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is a horizontal form of type ad. If Q, is the curvature form of w,, then
d
7@ = k df(a, Q) (3.6)

By invariance of f, the form f(Q,) projects to a form f(F;) defined globally on
M and the same is true of f(a, ),). Integrating both sides of the projection of
(3.6) over a cycle ¢ in M one obtains

[1&)= [ 77 6.7)

This is commonly interpreted to mean that the integral (3.7) is a ““topological
invariant” although the argument presented here shows only that the
integral is unchanged by smooth deformations of the connection. Moreover,

the form f({)) on P is exact,
1

f(Q) = kd L flw, tQ + 3> - [w, w]) dt

(The last relation does not project globally on M because o is not
horizontal.)

For example, if k£ is an invariant metric, one has the Pontryagin
invariant associated with

; : : £ - _ .
kijQ! AY = d(k,-,w' AQY + icijkwl Aw' Aw")
where
1
Cijk = Kacix
= Clijk] by invariance of k

3.6. Natural connections on Stiefel bundles provide an important class
of pure (sourceless) gauge fields."> Let G(n) be one of the three groups
SO(n), U(n), or Sp(n). The general construction of Section 2.9 leads to the
Stiefel G(n) bundle over a Grassmannian manifold,

Gm+n)/G(m)-> G(m +n)/[G(m) X G(n)]

The G(n)'-valued part of the canonical form on G(m + n) projects to a
connection on G(m + n)/G(m) which is sourceless and universal for G(n)
connections. The «cases UQR)/U(1)->UQR)/[U1)xU(1)] and
Sp(2)/Sp(1) » Sp(2)/[Sp(1) x Sp(1)] correspond to the magnetic pole and
the instanton of lowest order, respectively.®

4. Gravitation

4.1. Gravitation is different from other gauge theories in several
aspects. The origin of these differences may be traced to the soldering of the
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bundle of linear frames LM to the base manifold M. For an n-dimensional
manifold M, the soldering form“® 6: TLM - R" is defined as follows: if
e=(e,)eLM and u e T.LM then 6*(u) is the uth component, with
respect to e, of the vector T,m(u), obtained by projecting u on the base.
Clearly, 8 = (6*),u =1,...,n,is a 1-form of type id

s(a)*6=a"'6

If s: N - LM is alocal section of LM - M, i.e., a field of frameson N < M,
then

s*eu- = SM-
where s“(p) is the uth element of the frame dual to s(p), p € N,
(s.(p), s“(p)) =67

For example, if (x*) is a system of local coordinates in N and s is the field
of natural (coordinate, holonomic) frames associated to (x*), then s* = dx*.
If o = (w",) is the form of a linear connection (=connection on LM ), then
the covariant exterior derivative of 6 is the 2-form © of torsion,

0" = do* + w*, A 6 (4.1)
A metric tensor g on M defines the map
(8uw): LM > £ (R", R)
given by
guv(e) = gleu, &)

4.2. If M is four dimensional, as it will be assumed from now on, one
defines

Nivooi LM > R
by
no23(e) = |det g, (e)|'
Nuves = Niuves]
and also

o 1 1,v 1
N =0 = KN M m AT, M= A

In order to appreciate the differences between gravitation, understood
as a theory based on a linear connection and a metric tensor, and a gauge
theory on a principal bundle without soldering, consider some of the
invariant forms that may be constructed in each of the following four cases.

(i) Suppose one has a gauge theory on a bundle P > M with structure
group G < GL(4, R) based on a connection form w = (»",), with no metric
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and no soldering. From the curvature form
QF, = dw”, + 0*, r 0%, 4.2)
one constructs two closed forms of the type considered in Section 3.5,
0 Qfnl),

Upon integration on cycles they both lead to quantities invariant under
smooth deformations.

(i1) If one adds a metric g on M, then one can construct the dual * Q*,
and the conformally invariant Lagrangian density

* Q4 A Q% (4.3)

(iii) If one is given a connection form @ on LM then in addition to
curvature (4.2), one constructs torsion (4.1). There are no more invariant
forms than in case (i).

(iv) Givenw on LM and g on M, in addition to the forms and invariants
occurring in (i)—(iii), one can construct the n’s and also the following:

I A GF the Einstein—Cartan Lagrangian (4.4)

Nuvea ™" A Q°°,  the Euler form (4.5)

8ur * 0% A O, the square of torsion (4.6)

g*°g"”” * Dg,, A Dg,,, etc. 4.7)

It is clear that gravitation, understood as a theory based on g and w
defined over LM (last case) is richer than other gauge theories. The metric
tensor may be looked upon as a Higgs field which breaks the symmetry from
GL (4, R) down to the Lorentz group. As noted by Nambu® equation (3.5)
reduces in this case to the usual compatibility condition between a linear
connection and a metric, assumed in both the Einstein and the Einstein—
Cartan theories.""”’ Moreover, the soldering form 6 is also a kind of a Higgs
field; it differs from other Higgs fields by being a 1-form (rather than a
0-form) and by being uniquely determined by M alone. If one takes these
observations seriously, one may be led to consider a theory of gravitation
based on a Lagrangian that is a sum of terms proportional to (4.3), (4.6), and
(4.7).

4.3. Consider a manifold M with a metric g and a connection w which
need not be symmetric or even metric. By supplementing the Einstein—
Cartan Lagrangian (4.4) with a 4-form representing matter and varying their
sum with respect to g and w, one is led to the system of equations®'?

Muve A Q° = =871, (4.8)
Dn,’ =87s,” (4.9)
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If the source 3-forms ¢, and s,” do not depend on w, then equations (4.8) and
(4.9) are invariant under projective transformations of the connection,

w", —» ", +8“A (4.10)

In this case, among the connections related by (4.10) there is one which is
metric

Dg,. =0 (4.11)
if, and only if, s,, is skew,
Sty —0 (4.12)

A theory of space, time, and gravitation based on equations (4.8), (4.9),
(4.11), and (4.12) is called the Einstein—Cartan theory. Similarly as in
Einstein’s theory, the sources may be either derived from an action principle
or postulated on the basis of phenomenological or statistical considerations.

4.4. Writing
=R a8 0 0T
R =K o R =g""R,.
Liie nvtvm Suv = T",Spu,,

and using (4.11) one reduces equations (4.8) and (4.9) to

R,. —3g..R = 8mt,, (4.13)
Q' +858L 807, =8ns", (4.14)

One should note that in the presence of spin and torsion, the tensors #,, and
R,. need not be symmetric.

4.5. The Bianchi identities lead to
Di =0, .t —R", is. (4.15)
Ds.. =0, At, 0,71 (4.16)
where
Q= Q0% R?® =R 8
The generalized conservation laws (4.15) and (4.16) reduce to expected
relations in the appropriate limits: (i) If s,, = 0 then Q*,, = 0, equation
(4.8) or (4.13) reduces to Einstein’s, and
Dt, =qV,t", =0

is the usual differential conservation law of energy-momentum in general
relativity theory: (ii) In the limit of special relativity, R“,,, = 0, Q*,, = 0,

-
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one can use rectilinear coordinates (x*), and (4.15), (4.16) imply the usual
laws,
oL
ax”

d
=0 and 'é;;(x“tpy — X0 +55,)=0

(iii) If the vector field (v*) generates a symmetry of (M, g, w) then the 3-form
v 1, + 3V 0"s,,

is closed.?” (Here V denotes the covariant derivative with respect to the

transposed connection, &“, = 0", + Q*,.) Elie Cartan formulated what is

now called the Einstein—Cartan theory as early as in 19232V (cf. also the

review by Hehl er al.,”” where an extensive bibliography is listed). He

demanded, without justification, that the sources satisfy Dr, = 0. Together

with equation (4.5) this leads to an algebraic relation between curvature and
torsion, hard to satisfy otherwise than by assuming R*,,, = 0 or Q*,, = 0.

4.6. Let (u*) be a velocity field, i.e., a smooth vector field on M,
normalized by g,.,u“u” = 1. Consider the 3-form u = u“n,, and define, for
any tensor field (¢“) on M, its particle derivative (¢*) relative to u,

¢“n = D(e’u)
Following Weyssenhoff and Raabe, a spinning dust may be defined as a
continuous medium characterized by its velocity (#*), the density of energy—

momentum (P,), and the density of spin (S,.). The 3-forms of energy-
momentum and of spin are

t,=P,u and s, = S.u (4.17)
respectively. From equation (4.16) there follows
P* = pu" — u 8™ (4.18)
where
p = guP u’

Equation (4.16) is equivalent to the system consisting of equation (4.18) and
the equation of motion of spin,

i T L e T
whereas equation (4.15) gives rise to the equation of translatory motion
B, =(0°,P, — IR” S u’ (4.19)

which is a generalization, to the Einstein—Cartan theory, of the Mathisson—
Papapetrou® equation for point particles with an intrinsic angular
momentum. From (4.19) it is easy to prove that a spinless test particle moves
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along a geodesic of the Riemannian connection associated with g, even if M
has torsion.

4.7. A simple cosmological model may be constructed for a universe
filled with a spinning dust.”® The form (4.17) of energy-momentum and
spin density is compatible with the Robertson-Walker line element

dr* — R(t)*(dx* + dy* + dz?)

The field equations reduce to a modified Friedmann equation®*

o

w7 R + F =0 (4.20)

where M and S is the total mass and spin within a sphere of radius R(¢),
respectively. The last term on the left side of equation (4.20) plays the role of
a repulsive potential which is effective at small values of R and prevents the
solution from ever approaching zero. The significance of this smooth
solution is probably restricted because even a small amount of anisotropy
and shear will provide a contribution to equation (4.20) reversing the sign of
the 1/R* term.®® In any case, it is clear that the gravitational effects of spin
become comparable to those of mass only when the density of spin squared is
comparable to the density of energy (in geometrized units these quantities
are of the same dimension).

4.8. Let ©*, denote the Levi-Civita (Riemannian) connection form
associated with the metric g. Similarly, RDM,, and R will be the Ricci tensor
and the Ricci scalar of g. The 1-form of the metric connection with torsion
Q*,, is given by

Wyy = (5,“; =g %(Qy,pv =+ pr,u + Quy,p)ep (4'21)

If (4.21) is substituted in (4.8) or (4.13) and (4.14) used to solve for torsion in
terms of spin, the Einstein—Cartan equation (4.13) assumes the Einstein
form (22)

o

R,, —38.R =87(T,, +7.,) (4.22)
where
Ttk %Yaﬂ’(s,,“,, a5

is the symmetric energy-momentum tensor obtained from the canonical
one, t,,, by the Belinfante-Rosenfeld symmetrization process. The term 7,,,,
which is quadratic in s,,,, represents the only essential difference between
the Einstein—Cartan and the Einstein theories. The difference is not entirely
trivial because the canonical tensor, by its relation to the Hamiltonian, may
be expected to satisfy ‘‘positive energy conditions,’”” whereas there is no clear
reason for T,, + 7,, to satisfy any such conditions. In fact, the existence of

.
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smooth cosmological models with spin is based on the possibility of circum-
venting the singularity theorems of Hawking and Penrose by assuming that
t.., rather than T, + 7,, should satisfy the positivity condition.

4.9. In the past, there was much research and discussion on whether
and in what sense gravitation is a gauge theory.?** Recently, this problem
has been considered in connection with the program of constructing a
“supersymmetric”’ theory of gravitation (cf. References 35-37 and the
references given there). In classical relativity, the following questions have
been raised and given diverse answers by different authors:

1. What is the gauge group of gravitation?

2. What are the corresponding gauge potentials; what is the status of

the metric tensor?

3. Can the form of the field equations be derived from arguments of

gauge invariance?

Utiyama was the first to say that gravitation may be looked upon as a gauge
theory; he identified its potentials with the coefficients of the Riemannian
connection of space-time. Using gauge arguments, Sciama argued in favor
of an asymmetric connection as the basis of gravitation and showed that spin
may be the source of torsion. Independently, on the ground of heuristic
considerations invoking a gauge group with translations (in addition to
Lorentz transformations), Kibble derived the full set of field equations of
gravitation with spin and torsion; the Sciama-Kibble theory was later
recognized as being essentially equivalent to Cartan’s theory of 1923; I
proposed calling it the Einstein—Cartan theory. Chen Ning Yang pointed out
that Einstein’s theory is different from other gauge theories in being based
on a Lagrangian that is linear, rather than quadratic, in curvature. He
proposed considering a theory of gravitation based on Riemannian
geometry and a Lagrangian of the form (4.3). The source-free equations of
this theory, V,R,, = V,R,,, appear to be too weak; e.g., they admit as a
solution the de Sitter universe with an arbitrary radius of curvature. There is
a modification of Yang’s theory based on a metric connection with torsion
and two sets of field equations, as in the Einstein—Cartan theory. According
to Fairchild,es) however, such a Yang—Cartan theory does not have a correct
Newtonian limit. Very recently, Hehl, Ne’eman, Nitsch, and von der
Heyde®® have formulated a theory of gravitation based on a Lagrangian
quadratic in both curvature and torsion. The theory is claimed to have a
weak-field limit with a Newtonian and a ‘‘confinement” potential, and also
an Einstein limit yielding to Schwarzschild solution.

It is clear, from the diversity of results and views, that there is no unique
“gauge theory of gravitation.” As explained in Sections 1.5 and 4.2, this is
due to the fact that gravitation is a ‘‘rich”” theory from the geometrical point
of view: it contains several invariants which may be used to build the kinetic
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part of the gravitational Lagrangian. The correspondence principle of
relativistic gravity to the Newtonian theory suggests—but probably does not
require—a Lagrangian linear in curvature, whereas the analogy with elec-
trodynamics leads to the idea of a quadratic Lagrangian. Any theory of
gravitation based on a Lagrangian of the latter type requires a careful
analysis of its viability.

For me, a gauge theory is any physical theory of a dynamical variable
which, at the classical level, may be identified with a connection on a
principal bundle. The structure group G of the bundle P is the group of
gauge transformations of the first kind; the group ¢ of gauge trans-
formations of the second kind may be identified with a subgroup of the group
Aut P of all automorphisms of P.“°"*? In this sense, gravitation is a gauge
theory: the basic gauge field is a linear connection w (or a connection closely
related to a linear connection). In addition to w, there is a metric tensor g
which plays the role of a Higgs field. The most important difference between
gravitation and other gauge theories is due to the soldering of the bundle of
frames LM to the base manifold M. The bundle LM is constructed in a
natural and unique way from M, whereas a noncontractible M may be the
base of inequivalent bundles with the same structure group. For example,
LS, reduced to SO(2) is isomorphic to SO(3), but there is a denumerable set
of inequivalent SO(2) bundles over S,, corresponding to the different
elements of (SO (2)) = Z. The soldering form 6 leads to torsion which has
no analog in nongravitational theories. Moreover, it affects the group ¥,
which now consists of the automorphisms of LM preserving 6. This group
contains no vertical automorphism other than the identity; it is isomorphic
to the group Diff M of all diffeomorphisms of M. In a gauge theory of the
Yang-Mills type over Minkowski space-time, the group ¥ is isomorphic to
the semidirect product of the Poincaré group by the group %, of vertical
automorphisms of P. In other words, in the theory of gravitation, the group
% of “‘pure gauge’’ transformations reduces to the identity; all elements of ¢
correspond to diffeomorphisms of M.

What is the structure group G of the gravitational principal bundle P?
Since space-time M is four dimensional, if P = LM then G = GL(4, R).
But one can equally well take for P the bundle AM of affine frames; in this
case G is the affine group. There is a simple correspondence between affine
and linear connections which makes it really immaterial whether one works
with LM or AM.”** If one assumes—as usually one does—that w and g are
compatible, then the structure group of LM or AM can be restricted to the
Lorentz or the Poincaré group, respectively. It is also possible to take, as the
underlying bundle for a theory of gravitation, another bundle attached in a
natural manner to space-time, such as the bundle of projective frames or the
first jet extension of LM.® The corresponding structure groups are natural
extensions of GL(4, R), O(1, 3) or the Poincaré group.

-l
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