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Thus the solution of the quantum field problem with exponential interaction
in 1R3 provides a solution for the classical gas problem with pair interactions. Conse­
quently, the prediction of quantum field theory can be, in principle, tested experi­
mentally.
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THE GEOMETRY OF GAUGE FIELDS*) **)

A.TRAUTMAN

Institute of Theoretical Physics, Warsaw University, 00-681 Warsaw, Poland

and

Polish Academy of Sciences, PKiN, 00-901 Warsaw, Poland

Principal fibre bundles with connections provide geometrical models of gauge theories. Bundles

allow for a global formulation of gauge theories: the potentials used in physics are pull-backs,
by means of local sections, of the connection form defined on the total space P of the bundle.
Given a representation P of the structure (gauge) group G in a vector space V, one defines a (gene­

ralized) Higgs field a as a map from P to V, equivariant under the action of G in P. If the image
of a is an orbit W c V of G, then a breaks (spontaneously) the symmetry: the isotrory Oittle)

group of Wo E W is the "unbroken" group H. The principal bundle P is then reduced to a sub­
bundle Q with structure group H. Gravitation corresponds to a linear connection, i.e. to a con­

nection on the bundle of frames. This bundle has more structure than an abstract principal bundle:'
it is soldered to the base. Soldering results in the occurrence of torsion. The metric tensor is

a Higgs field breaking the symmetry from GL (4, R) to the Lorentz group.

INTRODUCTION

It has been known for some time that principal bundles with connections provide
adequate geometrical models for classical gauge theories such as electromagnetism
and the Yang-Mills theory [1-4]. Gravitation also fits in this scheme, but the corres­
ponding principal bundle has a richer structure [5] and the Einstein field equations
follow from a Lagrangian which is linear rather than quadratic in curvature, as is
the case for other gauge theories [6]' Fibre bundles constitute a mathematical
framework convenient for the description of gauge fields in any case; they become
necessary if one wishes to consider the geometry of topologically non-trivial fields
such a~ those due to magnetic poles [7-9] and instantons [10-14]. A Higgs field
has a natural definition as a section of an associated bundle. Wu and YANGhave

shown that a similar definition is applicable to wave-functions of particles moving
in the field of a magnetic pole [15]. The notion of spontaneous symmetry breaking
has also a clear interpretation in this framework [16]'

This paper contains a short summary of the fundamental notions, underlying any
gauge theory, in the language of fibre bundles. The reader may consult standard
books [17, 18] and articles [5, 19] for the precise definitions and properties of bundles
with connections. Magnetic poles and simple instantons are discussed at some length,
as examples of physical situations requiring non-trivial bundles. Considerable atten­
tion is paid to gravity and the differences distinguishing it from other gauge theories.

*) Invited talk at the "Symposium on Mathematical Methods in the Theory of Elementary
Particles", Liblice castle, Czechoslovakia, June 18-23, 1978.

**) Work on this paper was supported in part by the Polish Research Programme MR. I. 7.
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If ocis a k-form of type (1,then its covariant exterior derivative

is a 2-form of type Ad, called the curvature form. Explicitly,

Doc = hor doc

is a (k + I)-form of the same type. For example,

O=Dw

then Docmay be evaluated from the formula

where the commutator of two G'-valued forms is defined as follo\V.s: Let oc= oc'e,

and fJ = fJ'el be two such forms and let (el) be a frame (basis) in G', then

[oc,P] = OCIA fJJ[ el, eJ] = OCIA fJJc~Jet

where (c~J) are the structure constants of G with respect to (el)' There always holds
the Bianchi identity

If ocis a k-form of type (1such that

A smooth principal bundle includes, in its definition, the following list of differenti-
able manifolds and smooth maps:

a total (bundle) space P,

a Lie group G,

a base space M,

a projection 1t : P - M,

a map C : P x G - P defining the action of G

on P; if a a, bEG and e EGis the unit element, then

c(a) 0 c5(b) = c5(ba) and c(e) = id,

where c(a) p = c5(p,a), pEP; moreover

1t 0 c5(a) = 1t •

A connection is given by a I-form w on P, with values in G', the Lie algebra of G.

For any v E G', c5(exptv) is the one-parameter group of transformations of P generated

by v; if Ll(v) is the vector field on P induced by c(exp tv), then

w(Ll(v)) = v and c(a)* w = Ad(a-1) w

where c(a)* 0) is the pull-back of 0) by c5(a) and Ad (a) is the automorphism of G'
associated to a E G by the adjoint representation of G in its Lie algebra.

At any point pEP one defines the horizontal subspace by

horp P = {u E TpP : co{u) = O} .

There is a direct sum decomposition

(2)

(3)

(4)

where

o = dw + t[w, w.]

DO=O.

hor oc= oc

Doc· = dOC-+ (1:10)1A oc"

oc= OC-e., Doc = (DOC-)e., 0) = wle"

I

I;

(1) TpP = horp P E9 verp P (e.) is a frame in V, and (1:, is the ath component of the vector

where the vertical space ver p P coincides with thekernel ofthe map Tp1t, tangent to 1t at
p. Therefore, on the bundle with connection, a vector U E TpP admits a decomposition,

U = hor U + ver u

corresponding to (1).

Let (1 : G - GL(V) be a representation of G in a vector space V. A k-form of type (}
on P is a k-form ocon P, with values in V and equivariant under the action of G,

c(a)* oc= (1(a-1) oc.

If ocis such a form, then so is the form hor ocdefined by

hor oc(Ul' ••. , Uk) = oc(hor u{> •.. , hor Uk)

where u1, ••• , Uk E TpP.

~ (1(exp tel) e,,1 .dt 1-0

A (1-invariant metric on V is a bilinear symmetric map

h:VxV_R

such that

h«(1(a)u, fl(a) v) = h(u, v) for any a E G and u, v E V.

If G is connected, then h is (1-invariant iff

h,",(}~1+ hc,,(1:1 = 0 ,

where h." = h(e., e,,). For example, the Killing metric on G' is Ad-invariant.
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ELECTROMAGNETISM AND THE YANG-MILLS THEORY

w = iW1 + jW2 + kW3

is a I-form with values in 1m H, then

W 1\ W = 2iw2 1\ W3 + 2jW3 1\ W1 + 2kw1 1\ W2 ,

W 1\ W 1\ W = - 6w1 /\ W2 /\ W3 ,

w/\WI\Wl\w=O.

The Maxwell and Yang-Mills theories are the two most important examples
of gauge theories. Their structure groups consist of unit complex numbers and unit
quaternions, respectively. This remark allows a "unified" treatment of these two
theories. Let K = C (complex numbers) or H (quaternions). For u eK, U denotes
its conjugate. Consider the group

U(I,K) = {u eK: uu = I}.

U(I, C) = U(I)
Then

A change of the local section implies a change of the potential; the new potential
is related to the old one by a well-known "gauge transformation of the second kind"
(cf., for example, [20]). The pull-back of ex byf is the physicists' Higgs field

q> = exof:N-+ V.

According to (4) one has for the covariant derivative f* Dex = Dq> = VI'q>0 dxl'eo
the following explicit formula

V I'q>0 = q>0.1' + e:jA~q>b .

is the unitary group in one dimension, isomorphic to SO(2), and

U(I, H) = Sp(I)

is the (quaternionic) symplectic group, isomorphic to SU(2). The latter isomorphism
is obtained by mapping the quaternion units 1, i,j, k into the 2 x 2 matrices I,
(.J - 1) U,,' t.J - 1) uP' (.J - 1) u.' The Lie algebra of Uti, K) is isomorphic to the
imaginary subspace of K,

ImK=.{zeK:z+z=O}.

Therefore, in both Maxwell and Yang-Mills theories the connection and curvature
forms are pure imaginary, co = -wand Q = -.0.

There is a natural way of defining exterior and tensor products of K-valued forms.
For example, if IX is a K-valued I-form, then

ex ® IX = t(ex ® IX + ex ® ex) + tex 1\ IX,

where the form in the bracket on the right is real and ex 1\ IX is pure imaginary. If

F~y = A~.I'·- A~.y + cJkA~A~.

GAUGE AND HIGGS FIELDS

A = A~dxl'ej.

F = f*.Q = tF~y dxl' 1\ dx' e,
Similarly one has

and equation (2) implies

A gauge theory is defined by specifying (at least):

(i) a gauge group G ,
(ii) the type of particles which are coupled to the gauge field, and

(iii) the precise form of the field equations.

In a pure gauge theory, other than gravitation, one neglects sources of the gauge
field and assumes as the field equation

D*.Q=O,

where * .0 is the dual of .0, computed with the help of a metric in the oriented base
manifold M. This field equation may be obtained from a variational principle with
a Lagrangian density (4-form) proportional to

(5) klj * .0' 1\ .oj

where.Q = .Q'e, and k is an Ad-invariant non-singular metric on G'.
A (generalized) Higgs field is a o-form of type e, i.e. a map ex : P -+ V such that

ex 0 15(a) = e(a-1)1X.

The representation e of the gauge group defines thus the type of particles under
consideration. A standard Higgs field corresponds to V = G' and e = Ad. Typically,
the interaction between the gauge and the Higgs field is taken into account by supple­
menting (5) with a term of the form

(6) hob * Dexo 1\ D~ + U(IIXI)"

where 11X12 = hoblXolXb, h is a e-invariant metric and" is a horizontal volume element.
One says that the coupling between ex and W is minimal since the interaction term (6)
contains (J) only through DIX.

In most cases, physicists work with potentials and fields expressed in a local gauge.
This corresponds to taking a local section of the bundle,

f :N -+ P, 7t 0 f ",;id, N eM,

and defining the potential as the pull-back of W by f,
A =f*w.

If (xl') is a system of local coordinates in N, then
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If n = - 0, then both * Q A 0 and 0 A 0 are real-valued 4-forms. In this

compact notation, the structure formula (2) reduces to

o = deo + eo A eo

and the Bianchi identity (3) becomes

dO + eo A 0 - 0 A eo = 0 .

The space K may be considered as a real Euclidean space of 2 (K = C) or 4 (K = H)
dimensions. In either case, its line-element is

t(dz ® dz + dz ® dz)

and

*(dz Adz) = {2.J-1 for K = C,-dz A dz for K = H.

Clearly, in the quaternionic case, the 2-form dz A dz corresponds to 't Hooft's "
and dz A dz A dz A dz/12 is the volume element of H.

MAGNETIC POLES AND SIMPLE INSTANTONS

I

1

1

In order to construct the bundle and connection corresponding to a magnetic
pole oflowest strength (n = 1), consider Minkowski spacetime R4 with the worldline
of the pole removed. Since

R4 ,. {line} is diffeomorphic to R2 x 82 ,

it is enough to consider U(l)-bundles over 82, which are known. The simplest non­
trivial among them, corresponding to the generator of 1t1(U(1» = Z [23] is given
by the Hopf map 83 _ 82 [24,25]. It turns out that the same computation will
also yield the simplest instanton if one considers simultaneously the 8U(2)-bundle
87 - 84 [26). Indeed, let zo, ZI eK, then equation

. zozo + ZIZI = 1

defines 83 or 87, depending on whether K = C or H. The action of u e U(I,K)
given by

(zo, ZI) z = (zou, ZIU)

defines these two fibrations and

eo= ,(zo dzo + ZI dZI - dzozo - dZ1Z1)

is a connection form on 83 or 87, corresponding to a magnetic pole (K = C) or the
BPST instanton (K = H); cr. [10], [20] and [26] for details. The string singularities
occurring in the components of the vector potential of a magnetic pole are due
to the nontrivial character of the bundles for n 9=O.

SPONTANEOUS SYMMETRY BREAKING

Then

ex:P- We V

Q = {p e P : a(p) = wo}

Dex = O.(7)

Consider a principal G-bundle P over M and a Higgs field whose range is an
orbit Wof G in V, i.e.

is a subbundle of P over the same base M; its structure group is H[16, 18]' Con­
versely, given a reduction Q of the bundle P to a subgroup H of its structure group G,
one defines a Higgs field ex : P - W = G!H by putting cx(p) = HeW for p e Q.

A connection form eoon P, restricted to Q, defines an H-connection on Q iff it is
H' -valued, Le. iff

and W is such that for any pair of points, wo, w e W there is an a e G so that w =
= e(a) wooLet H be the isotropy group of wo,

H = {a e G : e(a) Wo = wo} •

F = (e.J -l/lic)(E"cdt A dx + .. , - B"dy A dz - ... )

with

leads to the Dirac quantization rule for the strength g of the pole [22],

2eg/Fic = n .

Clearly, [F] = 0 if M has Euclidean topology. Therefore, if a magnetic pole is
ever found, this will prove that either space-time has non-Euclidean topology, or the
bundle picture of electromagnetism is incorrect, or both.

-l-fF=neZ21t.J -1 c

for any 2-cycle (closed surface) c. This condition, when applied to the field of a magne­
tic pole,

B = gr/r3

Let P be the electromagnetic bundle over a four-dimensional space-time M.
The structure group U(l) being abelian, there is a globally defined electromagnetic
field F on M, 0 = 1t*F. The field F is closed and, by the Weillemma [21], its coho­
mology class [F] is integral, Le.

112 Czech. J. Phys. B 29 [19191

Czech. J. Phys. B 29 [1919] 113



A. Trautman: The geometry of gauge fields
A. Tralltman: The geometry of gauge fields

GRAVITATION

by

If M is four-dimensional, as it will be assumed from now on, one defines

* Q~ 1\ Q; .

Q~ = dOJ~+ ~ 1\ OJ~(9)

(10)

In order to appreciate the differences between gravitation, understood as a theory
based on a linear connection and a metric tensor, and a gauge theory on a principal
bundle without soldering, consider the various invariant forms which may be con­
structed in each of the following four cases:

(i) A gauge theory on a bundle P -+ M with structure group G c GL(4, R) based
on a connection form OJ= (OJ~);no metric and no soldering. From the curvature
form

one constructs two closed forms

Tr Q = Q:, Tr Q2 = Q~ 1\ Q; .

Upon integration on cycles, they both lead to quantities invariant under smooth
deformations.

(ii) If one adds a metric g on M, then one can construct the dual * Q~ and the con­
formally invariant Lagrangia~ density

(iii) If one is given a connection form OJon FM, then in addition to curvature (9),
one constructs torsion (8). There are no more invariant forms than in case (i).

(iv) Given OJon FM and g on M, in addition to the forms and invariants occurring
in (i)-(iii) one can construct the tI'Sand also

(11) the Einstein-Cartan Lagrangian tI". 1\ Q'" ,

(12) the Euler form tI"'Q"Q'" 1\ ~",

(13) the square of torsion, g". * e" 1\ e',
(14) g/l4gvtl * Dg". 1\ DgQ", etc.

H is clear that gravitation, understood as a theory based on g and OJdefined over
FM (last case) is richer than other gauge theories. The metric tensor may be looked
upon as a Higgs field which breaks the symmetry form GL( 4, R) down to the Lorentz
group. As noted by NAMBU [19], equation (7) reduces in.this case to the usual com­
patibility condition between a linear connection and a metric, assumed in both the

Einstein and the Einstein-Cartan theories [30]' Moreover, the soldering form is

also a kind of a Higgs field; it differs from other Higgs fields by being a I-form (rather
than a O-form) and by being uni'l,uely determined by M alone. If one takes these
observations seriously, one may be led to consider a theory of gravitation based

on a Lagrangian which is a sum of terms proportional to (10), (13) and (14). VONder
HEYDE[31] proposed a theory based on a sum of(10) and (13), whereas SKINNER[32]
considered (13) as a correction to (11).

e" = dO" + OJ~ 1\ oy .

A metric tensor g on M defines the map

and also

tI"'Q = O"tI"'Q<1' tI". = tOQ 1\ tI"'Q' tI" = to' 1\ tI"., tI = :lO" 1\ tI" .

given by

tlo12J(e) = Idet g,,~e)11/2, tI"'Q" = tI["'Q"]

tI"'Q": FM -+ R

g,,~e) = g(e", e.) .

(g".) : FM -+ ft';(R", R)

If OJ= (OJ~)is the form of a linear connection (= connection on FM), then the
covariant exterior derivative of 0 is the 2-form e of torsion,

Gravitation is different from other gauge theories in several aspects. The origin
of these differences may be traced to the soldering of the bundle of linear frames
FMto the base manifold M[5]' For an n-dimensional manifold M, the soldering
form 0: TFM -+ R" is defined as follows: if e = (e,,) E FM and U E T.FM, then
O"(u) is the JLlh component, with respect to e, of the vector T.rr(u), obtained by

projecting u on the base. Clearly, 0 = (0"), JL = 1, ... ,~, is a I-form of type id,

c5(a)* 0 = a-tO.

Q = {(r, a) EP: a-tr = ro}

may be identified with SO(3) by Q E (r, a) 1-+ a E.SO(3). Clearly, SO(3) -+ S2 is
non-trivial and carries an SO(2)-connection corresponding to a magnetic pole with
n = 2 [26]. Therefore, by a spontaneous breaking of symmetry it is possible to obtain
a non-trivial bundle Q even though P is trivial.

(8)

As an example of spontaneous symmetry breaking, consider the 't Hooft-Polyakov
solution [27, 28] of the Yang-Mills equations with a Higgs field of type Ad. For
any fixed t and r > 0, the base may be identified with S2' The SO(3)-bundle P
over S2 is trivial, P = S2 X SO(3), and the (normalized) Higgs field ex: P -+ S2 C

C RJ is ex(r,a) = a-tr for any r E S2 and a E SO(3). The north 'pole ro = (0,0,1) E
E S2 is unchanged by rotations around the z axis, thus 11 = SO(2) and
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This paper is based in part on the research done in 1976-77 when I was Visiting Professor
at the State University of New York at Stony Brook. I thank CHEN NING YANG for encourage­
ment, discussions and hospitality at the Institute for Theoretical Physics, SUSB. I havl: also
learned much from conversations with D. Z. FREEDMAN,A. S. GOLDHABER,P. VAN NIEUWEN­
HUIZEN,J. SMITH, P. K. TOWNSEND,W. 1. WEISBERGER,and D. WILKINSON.
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SOME REMARKS ON REFLECTION POSITIVITY*)

A. UHLMANN

Karl·Marx Universify, Leipzig, GDR

The requirement of reflection positivity is investigated and its general applicability to different
physical theories is pointed out. Its role is illustrated on an example from electrostatics and
on several simple examples of field theories. Then, after presenting an abstract construction
of the concept, the role of reflection positivity in classical lattice systems is discussed.

Reflection positivity has appeared in Euclidean quantum field theory and in
lattice theory. It has been used in constructing the Hamiltonian in quantum field
theory, the transfer operators in spin lattice systems, and in formalizing part of the
Peierls argument in existence proofs for phase transitions.

What will be said below to this topic is not only incomplete but alw highly subjecti­
ve. Therefore I have to point out some very important aspects which are not con­
sidered here, and which have been handled much better than I can do in textbooks

[1] and review articles [2] already: As a constructive tool RP is one of the Oster­
walder and Schrader axioms [3]' Here RP reflects the positivity condition of the
Wightman axioms as analytically continued to the Schwinger points. How is it pos­
sible to continue a positivity condition? For the complicated case of QFT this is well

described in [1, 3], in GLASER[4], and other papers. Here, to see t1}eflavour of the
argument, let us notice one version of a theorem due to Fitz-Gerald: Assume fez, w)

to be analytic in Izi < 1, Iwl < 1, and choose 0 < e < 1. If then for every natural
m and every choice of real SI' ... , Sm, with 0;::;; Sk ;::;;e the matrix aij = f(s;, s1)

turns out to be positive definite it follows the positive definiteness of the matrix

bjk = f(zj, Zk), no matter how the complex numbers ZI, Z2, ... have been chosen
out of the interior of the unit circle [5]' Considering f along the imaginary axis
and redefining g(Sj, Sk) = f(isj, isk) one arrives at the positive definiteness of the
matrix g(Sj, -Sk) for real numbers Sj bounded by one. Though this example is widely
oversimplified it shows how to obtain RP by analytic continuation.

Quite another way RP is entering in Nelson's approach, [7,6], to Euclidean QFT.
The centre of this theory is the famous generalizing the concept of Markov random
processes to that of Markov random fields [1, 2]. RP shows up as a consequence of
the Markov property. There are some indications, [8, 9], that with the aid of reflec­
tion positivity a "good" class of stochastic processes can be defined in which the
Markovian behaviour is "weakened". The derivation of RP from Markov proper­
ties was presented by MACK[10] last year at Primorsko. His lecture further includes
an application to lattice gauge theory found also in [11].

*) Invited talk at the "Symposium on Mathematical Methods in the Theory of Elementary
Particles", Liblice castle, Czechoslovakia, June 18-23, 1978.
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