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Introduction

The purpose of this short article, which is intended for non-specialists, is to review
the relationship between energy and gravitation and to give basic information on
cosmological models of the Universe.

I do not dwell upon the concept of energy which has been analyzed in other
lectures at this Conference. For our purposes, it suffices to remember that energy
has its roots in Newtonian physics. Total energy is conserved, kinetic energy is
part of the total energy. different kinds of energy can be transformed one into
another. In relativistic physics, energy becomes a component of the energy-mo-
mentum vector. Moreover, energy is related to mass by the celebrated Einstein
formula. In order to retain the conservation laws in the presence of electromagnetic
radiation, energy and momentum have to be ascribed to the electromagnetic field.
According to the theory of special relativity, the densities of energy and momentum,
together with the stresses, form a second-rank tensor field T*#, where o, § =0, 1, 2, 3.
Its divergence vanishes,

¢)) Tef 5 =0,
if all relevant kinds of matter are taken into account. Total energy and momentum
are obtained from this tensor by a suitable integration.

The Newtonian theory of gravitation may be briefly summarized as follows:
there is a gravitational potential @, subject to the Poisson equation,
2 4¢ = 4nGp,

=
and a reference system (t,x,y, z) = (t,r) such that the free fall of a particle of
inertial mass m; and gravitational mass mg is governed by the equation of motion

3) m;T + mg grad ¢ = 0.

Since the inertial and gravitational masses are known to be equal,

m; = mg,




equation (3) is invariant under the replacement of r and ©. respectively, by

(4a) ¥ =r—a@
and
(4b) @ =@ +at)r + b,

where the vector a2 and the scalar b depend arbitrarily on time. Egs. (4) are closely

related to the Einstein elevator thought experiment: by a suitable choice of a the
‘gravitational force’ grad ¢ may be reduced to zero along the trajectory of any
freely falling particle. For an isolated system, the gravitational potential ¢ may

be fixed by the boundary condition lim @ = 0; this implies 8= 0 and reduces (4a)
f—ao
- — > -
to Galilei transformations, ' = r — Vt — fo. The requirement lim ¢ =0 is non-
local and cannot be imposed in the case of cosmology. As a result, even in the
Newtonian approximation, we have the principle of equivalence: gravitational forces
and inertial translatory forces are locally indistinguishable. Locally, ‘inertial’ frames

-
are defined up to transformations (4a); the arbitrariness of the functions a (t) is the
Newtonian residue of the general invariance underlying Einstein’s relativistic theory
of gravitation [1].

Energy as a source of gravity

Any relativistic theory of gravitation should be based on a set of field equations
which reduce to (2) in the limit of small velocities and weak fields. One can guess
the form of the equations by considering the relativistic generalization of the New-
tonian density of mass p. The three simplest possibilities are summarized in Table L.
In the scalar theory, the Newtonian p is replaced by the density of rest mass, whereas
a tensor theory is obtained if the density of energy is considered as the main source
of the gravitational field. Vector theories are unacceptabie because, like electro-
dynamics, they predict repulsion between charges of the same sign. In the scalar
case, the electromagnetic field does not directly contribute to the sources of gravity.

Table [

Relativistic theories of gravitation classified according to the nature of the sources

i Nature of | Functional form of the

Nature of : : source for Theery light
the source | tggteg;?i:;t' due to | deflection
a dust an e.m. field }
1
i
density of ¢

current of mass vector puc (predicts gravitational repulsion

i
|
E 1 .
rest mass ! scalar p | emTe = Nordstrom no
|
! instead of attraction)

| ] |
energy-momentum | — |
tensor | tensor puc ub | em T - Einstein | yes

| i
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By the same token, the rays of light are not deflected in the gravitational field.
Since light is known to be deflected, scalar theories, such as the Nordstrom theory [2],
have to be ruled out and we are left with tensor theories.

In the theory of special relativity, there is in space-time a set of inertial frames
characterized by the simple form of the Minkowski metric tensor ,g relative to
these frames. (,g,s) =diag(— 1,1,1,1). According to the argument of the pre-
ceding section, global inertial frames cannot be properly defined in the presence of
gravitational interactions and the flat metric tensor og must be replaced by a more
general, curved or Riemannian metric g. On the other hand, a (symmetric) tensor
is required to serve as the potential of the gravitational field. By a stroke of genius.
Einstein made the fundamental assumption of general relativity:

the gravitational potential coincides with the metric tensor field g determining

the geometry of space-time.

If it is further assumed that the field equations should (i) contain nothing besi@gs
g and the sources, (ii) be of second differential order with respect to g, and (iii)
reduce to eq. (2) in the Newtonian limit, then their form is uniquely determined.

) R — ;;— 28R =81 Ge 4T,

where Rys = R},;, R = g““R,,, and R¥;, is the Riemann curvature tensor.
The Einstein field equations (5) are sometimes modified by the inclusion of a cosmo-
logical term [3] which will not be considered here. The ordinary conservation law
of special relativity, eq. (1) is now replaced by the covariant law

: (6) T8 B = 0

where the semicolon denotes covariant differentiation. Unless there is a symmetry
of space-time, eq. (6) does not lead by itself to any globally conserved quantity:
the energy and momentum of the sources, described by the tensor T, must be supple-
mented by quantities related to the gravitational field.

In the Newtonian or special relativistic description of physical phenomena,
the local distribution of energy is hardly ever of any significance. In the theory of
the electromagnetic field, one is sometimes even encouraged to use a ‘canonical’,
asymmetric and not gauge-dependent energy-momentum tensor because “only the
integrated, total energy and momentum play a rdle and they are gauge-invariant
anyhow”. The situation changes drastically when gravitational interactions are taken
into account: since the densities and currents of energy and of momentum of matter
are sources of the gravitational field, their local distribution acquires a direct physical
meaning.

Gravitational energy

The significance of the local distribution of energy is restricted, however, to particles
and fields other than the gravitational field. Surprisingly enough, gravitation provides
a unique definition of the energy-momentum tensor of matter T, but fails to
do so with respect to itself. Occasionally, people regard this to be a defect of the
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theory which should be remedied by modifying its ‘structure. Personally, I believe |
the non-localizability of gravitational energy to be a fundamental physical aspect of '
general relativity which results from the principle of equivalence. Its roots may

already be seen at the Newtonian level: because of (4b), ‘gravitational force’ is locally

an ill-defined concept. It is even more so at the relativistic level. Because of the {
importance of this issue, I formulate in several ways the argument against a careless
use of the notion of gravitational force or field strength. (i) In a freely falling
rocket one does not feel any gravitational forces; if the rocket is sufficiently large,
one can notice the tidal forces, depending, however, on the second derivatives of ¢.
(ii) Elementary particle theoreticians favour the following approach to gravity:
consider a theory of gravitons, defined as particles of mass zero and spin 2. The
corresponding potentials h,z are subject to gauge transformations

hlcﬁ = hcﬁ = éaﬁ = fﬁ.a

where ¢ is an arbitrary vector field. Unlike in electrodynamics, there is no gauge-
invariant combination of the first derivatives of h. The simplest gauge-invariant
form

™ (Bag.ur — Bay gy & Bpnap — o)

1
>
depends on the second derivatives of h.

(iii) For a mathematician, general relativity is based on (pseudo)Riemannian
geometry. He knows that the Christoffel symbols,

{a } = _l'gaﬂ(guﬁ-y -+ guv.p — gB*/,,u)a
By 2

presumed to play the role of gravitational field strengths, can be reduced to zero
along any curve by a suitable choice of the coordinates. The mathematician will
also say that the simplest tensor which can be constructed from g by differentiation
is the curvature tensor, that it contains second derivatives of the metric and bears
a close relation to (7) and to tidal forces.

Since the gravitational field strengths are not well defined, it is not surprising
that gravitational energy cannot be localized. In the important case of an isolated,
gravitating system it is possible, however, to define the total energy-momentum
content of the system. This can be done in several, essentially equivalent manners.
For the purposes of this lecture it is enough to present briefly the original approach
of Einstein [4]. Omitting indices and using a symbolic notation which is easy to
decipher, the field equations (5) may be written as

(8) culU — ¢t =T
where

U = curlg
i1s a ‘superpotential’ and

: ©) t = (grad g)?
e




is the ‘pseudotensor’ of energy and momentum of the gravitéac;al field. The total
energy (and momentum) may be obtained from eq. (8) by integration,

(10) P g (CL1) = 1[, u.

volume surface

For an isolated system, the surface integral occurring in (10) may be evaluated
well outside of the system, where the field is weak. Its value is, therefore, unaffected
by the freedom of reference frames.

An effective energy-momentum tensor may be defined for gravitational waves
provided that their wavelength 2 is much smaller than the radius of curvature of
the background space and that one does not insist on localization of the gravitational
energy in regions with an extension smaller than several wavelengths [5 — 7]. Let the
metric g be split into a ‘background’ part g, and a wave-like part h, g =g, + h.
This implies a corresponding splitting of U and t. By evaluating the average value
of both sides of eq. (8) over many wavelengths and noting that (grad h) =0,
one obtains

curl Uy — t, = T + {(grad h)2)

where ((grad h)?) is the effective energy-momentum tensor of gravitational
waves; it acts as a source of the background metric on the same footing as T.
An important feature of the effective energy is that it is positive-definite. This
results automatically from the structure of Einstein’s equations. In connection with
this, it has been conjectured, and shown in many important cases [5, 8 —10], that
the total energy E of an isolated system is never negative, provided that the
energy-momentum tensor of the system satisfies an appropriate energy condition, say

(11) Toputu? > 0 for any time-like vector u.

Cosmology

Surprisingly enough, the same simple laws of gravitation determine not only the fall
of an apple on the ground, the motion of the Moon around the Earth but also
the overall motion in the Universe. However much doubt we may have about
particular cosmological models, it is encouraging that they correctly account for
the two fundamental properties of the observed Universe: its expansion and the
existence of a hot stage in the past.

The basic equation which determines the evolution of the Universe may be
derived in the Newtonian theory on the basis of the law of conservation of energy.
Consider a model of a Universe filled with a dust of density p(t). Let R(t) be
the radius of a sphere comoving with the dust: the mass contained in the sphere
is constant,

(12) M = %—np(t) R(1)* = const.
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The total energy of an element of the dust with unit mass is

(13) i Rz — _C:x_f:'i_ = g = const.
2 R

This is the fundamental Friedmann [I1] equation which, in the Einstein theory,
must be supplemented by a relation between ¢ and the curvature k/R? of space,

The line-element is then
ds® = R(t)2dI§ — c2dt2,

where dIf describes a three-dimensional space of constant curvature k = + 1 or 0.
The solution of eq. (13), represented on the figure, contains ‘singularities’: each
of the functions R vanishes for at least one value of t.

These singularities may be thought of as corresponding to a dense and hot stage
in the evolution of the Universe. The microwave background radiation which per-
meates the Universe with a black body distribution corresponding to a temperature
of 2.7 K is surely a relic of that hot era. Unfortunately, the mathematical singu-
larities in the geometry implied by the Friedmann equation are more obstinate than
one would like them to be. Unlike in the theory of shock waves, they cannot be
simply removed by a more realistic description of the sources producing the gravi-
tational field or by consideration of less symmetric models. The nature of the singu-
larities occurring in cosmology and in local collapse has been the subject of studies

P k=1
k=0 RO~ T

k=1

f

of the Soviet [12—15] and British [16 — 18] schools. Hawking and Penrose show that
singularities in cosmology follow necessarily from Einstein’s equations under very
reasonable assumptions which include an ‘energy condition’ of the type (11). A
possibility of preventing the cosmological singularity by a direct influence of
spin on the geometry has been described at this Conference by Kopczynski [19].

An intriguing question is whether the Universe is closed (k = 1) or open (k = 0
or — 1)?If we believe ineq. (13), the question can be in principle answered by measur-
ing the Hubble time,

T = (R/R)now,
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and the present density pPnow of matter in the Universe. The Universe is closed 1f
> pPnow €xceeds the critical density

p — 3 -
¢ 8nGr

Alternatively, the Universe is closed if the deceleration parameter

== 1
g=— (RR/Rz)now == 2 pnowvlp.;

: 1 s :
is larger than = . Many theoreticians favour the closed model for aesthetic reasons.

A recent analysis [20] of all observational evidence yields the value
=0.03 £+ 0.01

thus supporting the open model. (See, however, |26] where a different view is
expressed).

The expression (10) for the total energy is not applicable in cosmology. If one
insists on using it to evaluate the energy content of a closed Universe, one obtains
E—0

The large numbers that can be formed from cosmological and atomic quanti-
ties, and the coincidences between them, have received much attention since they
were noticed for the first time by Weyl, Eddington and Dirac [21] (see also, 22, 23.
IV, VI and VIHI). One such large number is the inverse of the gravitational fine
structure constant,

y = Gm?/hc = 61D,

where m is the proton mass. Following an idea of Chandrasekhar [24], we introduce

e
The fundamental coincidence,
(14) CT ~ —‘ii‘ N2
mc

has led Dirac to conjecture that G is inversely proportional to the present age
of the Universe (which is of the same order as 7). In Table II, which is adapted
from [22] and [24] we summarize some of the definitions (D), theoretical results
(T) and observations (O) involving the numbers N.

Personally, I am in favour of the explanation of (14) due to Carter (VI
p. 126): 7 is such as to allow for the development of life. This is possible during
a specific period in the evolution of the Universe. I feel, however, that y is as
much in need of an explanation as the electromagnetic fine structure constant.
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. Table 11

p mass mN, i length N, k/mc * i density N, mic?/k?
==  grav. radius 1 Universe (O)
= | of proton (D) |
1 ' Planck (D) |
_0___‘ proton (D) Compton (D) 1 nuclear (D)
2 i } Rmin of observable |

! Universe in a model l
| | with spin and i
| torsion 2%(T)

1 Planck (D)

i
i
|
i

radius of neutron star (T)

-
1

3 | Chandrasekhar

Hubble radius cz (0) ! pmax in a model with
grav. Bohr radius (T) | spin and torsion*® (T)

| limit (T)
7
B ‘ galaxy >¢(0O) ‘
4 : observabie ;
{ Universe (O) i Planck (D)
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