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INTRODUCTION

The Einstein-Cartan theory of space-time is motivated by the desire to provide
a simple description of the influence of spin on gravitational phenomena. This is
achieved by taking as a model of space-time a four-dimensional differential mani-
fold endowed with a metric tensor and a linear connection and by relating certain
combinations of the curvature and torsion tensors to the densities of energy-
momentum and of spin, respectively. The essential idea that underlies this theory
was advanced by Cartan' as early as 1923. Much later, and independently of
Cartan, an equivalent theory was formulated by Sciama? and Kibble,® whereas
Weyl* considered the special case of the Dirac equation in a curved space-time
with torsion. In recent years, the Einstein-Cartan theory has been developed by
Hehl et al.>'® and by the Warsaw group.“'20 The review paper by Heh!® gives a
historic account of the theory and a tensorial formulation its equations, whereas
Reference 15 contains an exposition based on Cartan’s tensor-valued differential
forms. I(opczyr’lskil3 and Tafel'® discovered a class of nonsingular homogeneous
solutions of the Einstein-Cartan field equation. The credibility of the interpreta-
tion of these solutions as models of the universe'® was questioned by Stewart and
Hajigek 2!

The present paper, which is based in part on the lecture by the author at this
Conference, contains a short account of some of the work performed recently in
Warsaw on the Einstein-Cartan theory. It should be read in conjunction with other
review articles.'*?%%

VECTOR FIELDS ON THE LORENTZ BUNDLE

Consider a Lorentz bundle =: E — X, that is, a reduction of the bundle of
linear frames of a four-dimensional manifold X to the Lorentz group; the reduc-
tion is defined by a metric tensor field g on X, and the elements of E are linear
frames (“‘tetrads’) orthonormal relative to 2.2 The components of the metric
are

Siiegnm~gi=-gu=rl, ‘gg=0  forigx i

A linear (metric) connection defines on E 10 fundamental vector fields (Pi, Si),
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Sk + 85 =0,i,j,k =1, 2, 3, 4, which are lincarly independent at each point of

E. The vector fields S; generate Lorentz transformations of the tetrads, whereas Eh
P i e : i / s in the usual manner. The

the Ps correspond to infinitesimal parallel transfers of the frames. More pre- The metric tensor allows one to raise and lower indice

cisely, if»(@i) and (™) are, respectively, the canonic and the connection 1-forms covariant exterior derivative is denoted by D; thus, for exan]Ple,
on £, Pand § are defined by the duality relations . DQij 26 aad Do~ Qij N L

8i(Pi)‘ 2 6ji, Oi(Sjk) g ) - s are the Bianchi identities. D coincides with the exterior derivative for scalar-
™ (Sim) = 85, - Sul 0" valued forms, and D¢, = 0' V¢4 for a tensor field (¢p4). ’
- s g The principle of least action for a relativistic theory of gravity coupled to a
: ; tensor field (¢, ) may b; written as : ‘
O -dff +ufndl, OF - dot s ot Ly 5 fk - 0;

K
nix = 0" miju, mi = 30° A i, etc.

The equations of structure

are equivalent to the commutation relationships where A is a pseudo-4-form constructed from 6, w',, gim,da, and D4 . If these

[P, P] + Qkijpk o %R“ijsu = 0, (2a) : fields are varied independently of one another,
[P, Si] = giPx — g P}, gy _ $A 0 $EV5gy + 80" A e + $6ul A ) + 664 A L* + anexact form.
[S5.5ul = gy Su - gikSji + guSik — giSi, i (e : If the variations ate induced by an infinitesimal change of the frames,
where Qijk and R i,-kl are the torsion and the curvature tensors, respectively, - e 80" = “"ijﬂj’
0" = 304 0T A 65, Qi - 1Ri, o' g™ ' (@) ' the o =
If both torsion and curvature vanish, the system of Equations 2 becomes : 6wij = Daij. 0gij = o + ai

identical in form with the set of commutation relations among the standard

generators of the inhomogeneous Lorentz group. The analogy between torsion !
and curvature with regard to their relation to translations and rotations is a strong | ; 6A = 0,
argument in favor of the Einstein-Cartan theory.'?? The last two terms on the
left-hand side of Equation 2a are similar in form té the Mathisson-Papapetrou ; :
force,”? which occurs in the equation of motion of a spinning particle when the ' : E; = 0 A ¢ + 4DC, “)
equation is generalized "' to a space with torsion. ! ; AU o g

The commutation telationihips (Equations 2) define a 10-dimensional % provided that the field equation L? = 0 is satisfied. This shows that it is imm

i / o ik f independent gravita-
i i i i i hooses (6',¢) or (gj,w*,) as the set of indep
f,and only if : rial whether one ¢ cs (6, i L 0
P e el o tional variables for a principle of least action of the Palatini type. :
4 Because any pseudo-4-form on X that is intrinsic and linear homogeneous in

) (2,0)is proportional to
) 87I'K = %ﬂij A Qij,

and

which results in the equality

e

THE VARIATIONAL PRINCIPLE

From now on, we restrict our attention to a four-dimensional differential K
manifold X endowed with a metric g and a linear connection. Locally, we can wetakc

always introduce a field e of frames on X that may, but need not, be orthonormal : A=K+ L,
relative to g. To alleviate the notation, the frame dual to e will be denoted by the ! . '
3 : : y ; with

same symbol as the canonical 1-form on E considered in the preceding section. } -

This abuse of notation is justified by the fact that for an orthonormal e, the dual } ; L = L(g.0,¢,D¢),

frame is equal to the pull-back .o.f the icanf)mc I-form by the section of E that i and arrive at the following set of Einstein-Cartan equations:

corresponds to e. In the same spirit, (w;') will denote the I-forms of the connec- s 5

tion relative to the coframe (6'). Equations 1 and 3 may now be interpreted as 3 Ini A Q% = _8xy, S
* defining the 2-forms of torsion and curvature referred to (6'). The completely . : 1 1

: e b 5 /2 . @ \ Dr)k &= 81rsk )
antisymmetric “‘pseudotensor” (nju), 1234 = | detg | /2 is used to define a Col- \

lection of forms on X, Lt -0 (6)



244 Arnals New York Academy of sviences  VO1. 262/1975/ ;

where (1;) a.nd ,(Sij) are vector and tensor-valued 3-forms that describe the sources
of the gravitational field; these forms are obtained by varying L relative to )

and (wY), respectively. Because K is invari jecti
1 ; invariant under the projective - -
formations, - . 8o

wj = of + &,

E_quat.ion 6 cannot be solved unless sit = 0. If the trace of s does not vanish, the
situation can be rectified by replacing L with :

AL
L =L+ p™ A Dy,

where p is treated as a Lagra ipli i i

Mg s s g nge multiplier to be determined fr(lm the requirement
; b. By varying the ac.:txon integral that corresponds to K + I with respect to u

we obtain Du;; = 0. This may be interpreted by saying that X admits a covariantl);

constant unit volume. Clearly, the equation of motion of th i
el n of the field ¢ is unaffected

A straightforward algebraic com

raightfc putation leads to the followin theo
compatibility: if the Cartan equation ; T

Dy ' - 8rs,!
is satisfied, then '
S+ 55 =0 is equivalent to Dg; = Kgij,
and
D = 0} A
FrDeis =0
Sij + Sji = 0 :

ghe §kew symmetry of s;5 is in agreement with its physical interpretation as>the
ensity of intrinsic angular momentum. If s computed from the Lagrangian fails

to have this property, one can agai i i i
; 2 gain save the situation by having recourse t
term with a Lagrange multiplier.? - b e

SUMMARY

It is pointed out that the commutation relations among the fundamental v
'tor ﬁclds.deﬁncd on a Lorentz bundle with a connection generalize the corres o:s_
ing relations for the Lie algebra of the Poincaré group. It is apparent frompthese-
comm.utators that there is an analogy between torsion and curvature with regard
to their relation to translations and rotations in the tangent spaces of the mg *
fold. A detailed analysis of the variational principle that underlies the Einst:?n‘:

Cartan theory leads 0 a th ibi
t eorem on the compatibility of th i
structures in space-time. - : i i
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