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Summary. It is pointed out that the motion of spin of a classical particle moving in a gravitational
field satisfies a principle similar to the pringiple of equivalence of inertial mass and gravitationalt
charge. The torsion of space-time may be measured by observing the precession of spin of a particle..
The precession is predicted by the Einstein—Cartan theory of gravitation.

1. Introduction

According to relativistic quantum mechanics, mass and spin are the two fun-
damental characteristics of an elementary system (particle). In Einstein’s theory
of general relativity, mass — but not spin — plays a direct dynamical role: the
density of energy-momentum is the source of curvature. By intorducing torsion
and relating it to the density of intrinsic angular momentum, the Einstein-Cartan
theory restores the analogy between mass and spin [1—3]. The similarity between
mass and spin extends to the principle of equivalence, at least in its “weak form”
[2, 4]. According to this principle, the world-line of a spinless test particle, moving.
under the influence of gravitational fields only, depends on its initial position and
velocity, but not on its mass. Similarly, the motion of spin depends on the initial
data, but not on the magnitude of the spin of the particle: if S;; is a solution of
the equation of motion of spin [5—8], then so is A4S;;, A=const.

In the Einstein—Cartan theory, space-time is assumed to be a four-dimensional
differential manifold X with a metric g and a linear connection w. The metric has
a normal hyperbolic signature and is compatible with the linear connection, Dg;;=0.
Since torsion has no (direct) influence on the propagation of light nor on the motion
of spinless test particles [3, 9, 10] the metric tensor can be determined from measure-
ments in the same manner as in Einstein’s theory [11]. In this paper we show how
the precession of spin, which follows from the equation of motion, may be used —
at least in principle — to determine the torsion of space-time. A different method
of measuring torsion has been proposed by Hehl [12].
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The notation of this paper follows closely that of [3] and [7]. In particular, if (6%)
is a field of co-frames, then

o'y=7-3 (@' -0~ Qi) O,
‘where y is the Riemannian connection defined by g and Q! is the torsion tensor
«corresponding to w. The covariant derivative in the direction of the unit vector
field (') tangent to a time-like world-line / is denoted by a dot or a stroke depending

-on whether it corresponds to w or y. E. g., if S is a vector field defined along /,
then

(1) Si =S;—‘l‘ (Qtjk“jSk—Qkij) STk,

‘The proper time measured along / will be denoted by s.

We assume that an observer in a space-time (with torsion) uses photons to de-
termine a non-rotating local frame of reference. By the classical argument of the
“bouncing photon’, this is equivalent to constructing a Fermi frame along the world-
~line / of the observer, the Fermi propagation being defined relative to the Rieman-
mian connection y [13, 14]. In the sequel, all tensor quantities will be described
by their components with respect to such a Fermi frame (e;). The vectors e, (x=1,2,3)
©of the Fermi triad are orthogonal to the vector e,=u tangent to / and satisfy

e,=—@'le)u.
‘The Fermi triad is assumed to be orthonormal,
(eal€p)=—04p.
"The round brackets occurring in the last two equations denote the scalar product
of the vectors they enclose.
2. The precession of spin

Consider a spinning test particle moving along a world-line /. The tensor S,
describing the spin of the particle is assumed to satisfy the standard subsidiary
condition [5]

2 Sy u/=0.

By virtue of this condition, the space-like vector of spin,
Si=% i S*u',

is sufficient to reconstruct the spin tensor,
Sy =i u* S*.

The equation of motion of a point test particle with spin may be obtained from
the corresponding equations for a continuous medium by a method outlined by
Weyssenhoff and Raabe [15]. Essentially, the method boils down to replacing in
the equations the particle derivative defined for a fluid by the covariant derivative
in the direction of the world-line of the point particle [7, 16]. As a result, in the no-
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tation used in this paper, the equation of motion of spin for a point particle has the
same form as the corresponding equation for a continuous medium, in the notation
of [7]. It reads

Sey=; S +u; Sy) u*
and, taken together with (2), may be interpreted to mean that the tensor Sj; is
Fermi propagated along [/ relative to the asymmetric connection ®. The same is
true of the spin vector [17],

(3) S’,+uift"Sk=0.
Because od S;u'=0, the vector of spin has a vanishing timelike component
relative to the Fermi frame (e;) defined in the Introduction. We write
S=(S1, 52, 83), K=(K;, K3, K3),
where

K, =%(Q234—Q423—0324) etc.,
and we use (1) to replace the equation of motion (3) by the equivalent equation

q das
() E_sz'

Instantaneously, the vector of spin § precesses around the vector K. In agreement
with the principle of equivalence, the angular velocity of precession is independent
of the spin of the test particle. In this respect, the influence of torsion on spin differs
from that of a magnetic field on the behaviour of charged spinning particles.

3. Measurements of torsion

According to the equation of motion (4), the vector K may be mesured by ob-
serving the precession of spin of particles moving along /. From the knowledge
of K one can obtain the values of some components of the torsion tensor. More
information may be obtained by observing spinning particles moving with different
velocities.

The relation

Kin=% Qs+ Quis— Qi)
defining the “contortion tensor” [9] may be solved with respect to Q,
Oij=Kir;— Ky,
so that the measurement of torsion reduces to that of the tensor K. Let
hy=06'—u' u,

be the projector on the hyperplane orthogonal to u. Clearly, the antisymmetric
tensor

Ki.l (Qa u)=Kklm h': h_li u™

bears the same relation to K as S;; does to S. The torsion tensor may be split
into three irreducible parts [1]

0="0+40+70Q,
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where % g
Y0 =1 (95 Q'w— 5, Q')
and

“Qin=Quny-
For any Q and u we have

K” (VQ, u)=0 .
This shows that the vector part of torsion cannot be determined on the basis of Eq.

(4). It is easy to see that torsion may be easily measured if it is either purely antisym-
metrical or due to a spinning fluid of the Weyssenhoff type.
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B. Anamosud, A. Tpayrman, ITpHHIMN 5KBHBAXCHTHOCTH AJIA CIIHHA

Copepxkanne. B mactosmeit pa6ore AOKA3bIBACTCSH, YTO NBHKCHHE CIOHMHA KJIACCHYECKOM YaCTHIIBE
OBAXYIIEHCS B TPABUTALMOHHOM IIOTIE oqueEanxer TPAHUAI, TIOXOX HA IIPHHIMII €KBHBAJICHT~
HOCTH 'm'lepTHox‘Z[ " TsoKenoit Mace. Ha ocHosammm HabmoeRwrii nponeccHn érmua q,ai:i'mm BO3MOX-~
HO OmpezielicHHe KPYYeHHS IIPOCTPaHCTBa-BpeMenw. Ilpemeccmio npencxa:ii,ii;'aercx" ; Teopmeit
Ditamreitna—Kaprana. Q4 OP 2O



