Colloques Internationaux C.N.R.S.

N° 220 — Ondes et radiations gravitationnelles

THE EINSTEIN-CARTAN THEORY
OF GRAVITATION

by Andrzej TRAUTMAN

Instytut Fizyki Teoretycznej Uniwersytetu Warszawskiego
00-681 Warszawa, ul. Hoza 69

RESUME

En 1923, E. Cartan a proposé une modification de la théorie de la relativité géné-
rale d’Einstein. Dans la théorie modifiée, on admet comme modéle d’Univers une variété
différentiable munie d’un tenseur métrique et d’une connexion linéaire euclidienne
asymétrique. La torsion de cette connexion est directement liée 4 la densité du spin.
L’article contient quelques résultats récents obtenus par lauteur dans le cadre de la
théorie d’Einstein et de Cartan.

INTRODUCTION

The properties of gravitational waves propagating in empty space
are fairly well understood. Their classical behaviour is adequately described
by the field equations of Einstein’s theory of general relativity. Much less
is known about the interaction of gravitational radiation with matter, and
very little about the quantum effects of gravity. According to J. Weber,
there is more gravitational radiation of cosmic origin than expected on the
ground of computations based on Einstein’s equations and our present
knowledge of the distribution of matter in the Galaxy. The rate of emission
of gravitational waves depends on the precise form of the field equations
and on the way in which matter acts as the source of the field. There is
an interesting modification of Einstein’s theory which affects the form of
the equations only inside matter. The modification, due to Elie Cartan,
gives rise to a new, relativistic theory which we propose to call the Einstein-
Cartan theory of gravitation. The purpose of the report is to present a brief
account of the theory and its application to cosmology.

A heuristic motivation for considering the modified theory may be
found elsewhere [1]-[4] and a good presentation of its history and earlier
results is given in a series of papers by Hehl [S], [6], [21], which also contain
a comprehensive bibliography. This report is restricted to statements of
definitions and results without proofs.
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DEFINITIONS AND NOTATION

The Einstein-Cartan theory is a classical relativistic theory of space,
time, and gravitation. As a model of space-time it assumes a four-dimensional
differential manifold X with a metric tensor g and a linear connection w.
Following Lichnerowicz, the manifold, the metric, and the linear connection
are assumed to be of class (C,, C, piecewise), (C,, C; piecewise), and
(C,, C, Dpiecewise), respectively. The metric has a normal hyperbolic
51gnature and is compatlble with the linear connection (in other words,
the connection is “metric” or “Euclidean”).

Locally, the manifold always admits a field of co-frames 69,
=12, 3.4 ande =g, 9’ ® 6/. Relative to (0?), the linear connection
is represented by the lforms w which may be used to compute the
2-forms of curvature :
Q= dw + W A= RL.g*n @,
i J k j J

and torsion

= do' + Wi A0 ——;el /\Q‘~l i 0 Aok

The linear connection defines on X a covariant exterior derivative D
which generalizes both the covariant derivative V and the exterior diffe-

rential d ; e.g., ® = D' and Dg;; = dg; — w;; — wy;, where w;; g,-kwl’.‘.
The curvature and torsion forms satisfy the Bianchi identities
D Q) = and DO =Qnrg.

The Levi-Civita pseudotensor 7. = |det gl*/?, gives
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the last of which is the volume element of X. The metric condition Dg;; = 0
implies :
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UNIQUENESS OF THE GRAVITATIONAL LAGRANGIAN
Similarly as in Einstein’s theory, the field equations may be derived

from a principle of least action consisting of a gravitational and a matter
part. The gravitational part in essentially unique because of (*)

Theorem 1. Any pseudo 4-form on X which is intrinsic and linear homoge-
neous in (£2, ®) is proportional to

1 =
81K = 5 0y AaQL

By varying the metric, the frames, and the linear connection inde-
pendently of one another, one obtains

1 i ¢ 1 = :
e - e I
86K 5 nE Sgii + 60° e, > Ew; A ¢/ + an exact form,
where E¥ is the (generalized) Einstein tensor,

1 =
; 5 N A £/ and Gy = Dnil..

Theorem 2. The following identity holds [7]

nEY = gi A ¢ —% Dcll,

Theorem 3. For any metric tensor g, the equation ¢ = 0 is equivalent to
T i
w; =7 + 5’. A

where v is the Riemannian connection associated to g and A is a 1-form
on X.

THE FIELD EQUATIONS

The metric and the linear connection are determined in the Einstein-
Cartan theory by the system of equations

¥ =—-'CTti (@9)

(*) I owe this theorem to a remark of J. Ehlers.
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= 8aG
S0 w 2
Dg;; =0 (3)
where #; and s; = — s;; are 3-forms describing the sources of the field.

If one defines a symmetric tensor T by
= : : 1 2
nT? = ¢/ N ¢! e DsY

then the system (1), (2), (3) may be replaced by an equivalent system of
equations, containing

Eii =_8_1T4g Tii
C

instead of eq. (1). The physical interpretation of the sources may be
inferred from the covariant conservation laws which follow from the Bianchi
identities :

Theorem 4. The field equations (1)-(3) imply [8]

L

5 R:." A Sy “4)

— j =
Dy, = Qjn ¢

Dsi].= 0/. i Gi A ’i 5)

The equations of Einstein’s theory are obtained from (1)-(3) by
putting s; = 0. In this case, torsion vanishes, nT7 = 6/ a £, and (4) reduces
to the covariant conservation law of energy-momentum, Dz; = 0.

In the limit of special relativity, G = O, the connection is integrable
and has no torsion. The Cartesian coordinates satisfy Dx! = 6%, energy-
momentum is conserved,

and eq. (5) may be written as
DGid — Xt + s7)=0.

Therefore, the 3-form (s¥) may be interpreted as the density of spin,
whereas (77) is the density of energy and momentum.

SYMMETRIES AND CONSERVATION LAWS

The transposed connection & is defined by
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5/‘ =wit Q’.'

and _may be used to compute the covariant exterior derivative D relative
to @. A symmetry (automorphism) of space-time in the Einstein-Cartan
theory is a diffeomorphism of X which preserves both g and w.

Consider a one-parameter group of transformations of X generated
by the vector field v. A necessary and sufficient condition for the trans-
formations to be symmetries is that the L1e derivatives of g and w with
respect to v vanish [11] :

Viyi + Viyi = o (6)
DYy +vi0 =0, %)

In a Riemannian space, the connections w and & coincide and (7)
is a consequence of the Killing (6).

Similarly as in Einstein’s theory of general relativity, symmetries of
space-time give rise to conservation laws in the form of an “ordinary di-
vergence”, dj = 0. The conservation theorem may be obtained from the
covariant conservation laws given by (4) and (5). A simple computation
leads to

Theorem S. If v generates a one-parameter group of symmetries of X,
then there holds the conservation law [9]

d =0

for the current j defined by

- 1 ~
j=vi + = o 9)

EQUATIONS OF MOTION

Let (u') be a velocity field, i.e., a smooth vector field on X, nor-
malized by gi,.uiuf = 1. Consider the 3-form u = uin; and define, for any
tensor field (¢, ) on X, its particle derivative (p, ) relative to u [12] :

¥, N = Dip, w).

Following Weyssenhoff and Raabe [13], a spinning dust may be defined
as a continuous medium characterized by its velocity (uf), the density of
energy and momentum (P;), and the density of spin (S;;). The 3-forms
of energy-momentum and of spin are
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t; = Pu and si; = Syu, (10)
respectively. From eq. (5) there follows
P =y uks"i (11)

where
p=g,;Pul

Eq. (5) is equivalent to the system consisting of eq. (11) and the equation
of motion of spin

¥ = wiu, §9 — ulu,S* (12)

Eq. (4) gives rise to the equation of translatory motion [10]
: 1 :
= k caronaM
P = (Ql.l. r 2 R,.,. 5 )u’, (13)

which is a generalization, to the Einstein-Cartan theory, of an equation
derived by Mathisson [14] and Papapetrou [15] for point particles with
an intrinsic angular momentum. It is easy to prove

Theorem 6. A spinless test particle moves along a geodesic of the Riemannian
connection associated with g (even if X torsion).

A SIMPLE, NON-SINGULAR COSMOLOGICAL MODEL WITH SPIN

Some time ago, I conjectured that the singularities of gravitational
collapse and cosmology may be averted by the direct influence of spin
on geometry, as taken into account in the Einstein-Cartan theory [16].

Recently, Kopczynski[17] constructed a class of non-singular cosmolog-
ical models based on the Einstein-Cartan theory of gravitation. The models
provide a lower bound for the minimum radius of the world, corresponding
to the hypotetical bounce, presumably occurring during the hot stage of
the development of the Universe. One of the simplest models is for a
Universe filled with a spinning dust characterized by its four-dimensional
velocity (u'), density of mass p, and density of spin s; = S;;u, W S; = 0.
These assumptions are compatible with a Robertson-Walker line-element ds,

ds? = 2 dt* — R(1)? (dx*+ dy?* + dz?)

and u' = &, with x' = x, x2 =y, x> =z, and x* = ct. Assuming that

the spins are aligned along the x-axis, S,; = 0 and S;; = 0 for j. k #6,
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DISCUSSION

TRAUTMAN/DESER

There is no conflict between the derivation here presented and the ECT,
because its net effect is a direct (contact) spin-spin coupling, which, like all
other material interactions is of course permitted. The ECT docs not imply
the existence of a “second gravitation”, which would indeed be a discrepancy.
I also empharize that the classical GR breaks down necessarily at particle
compton radii (~ 10~ !3 cm), long before the Planck length (10=33 cm).

Finally it is to be recalled that in the derivation leading to GR, one
consequence is that the orbital and spin parts of the T,, matrix elements are
necessarily coupled with the same strength, so that there is also a nice place
for spin also in normal Einstein theory.

TRAUTMAN/STEWART

1) Peter Hajicek and I have made a calculation of the amount of anisotropy
permitted in the Universe which would allow a singularity to be averted. We
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find that a singularity could only be avoided, if the fractional anisotropy in
the Hubble constant is :

A on
H

~

The best observational evidence is :

AH
o =6
H -

2) In order to formulate an experiment which would compare the GR and
Einstein-Cartan theories one probably needs to consider a possibly rotating
fluid. The total angular velocity vector is then the sum of the vorticity and
the spin, and so one wants an experiment which differentiates between angular
velocity and vorticity.

TRAUTMAN/Z. PERJES

To what extent will this theory modify the validity of various unicity
theorems and conjectures of black hole physics ? Does it seem possible to verify
experimentally the predictions of the theory under appropriate circumstances ¥4
The ring and internal satellites of Saturn, for instance, feel a considerably high
relative angular momentum.
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Is there any reason to believe that spins were correlated during
the hottest stage of the evolution of the Universe, say for [¢] X7? A
mechanism is provided by a cosmic magnetic field H, since, if it exists
at all, it may successfully compete against increasing temperature T,
provided that the flux is conserved, HR? = const. Since TR = const.,
the ratio uH/kT behaves like 1/R and may have been so large in the past
as to have allowed the magnetic field to align all spins. More precisely,
if pu is the nuclear magneton and H, is the (unknown) present value of
the intergalactic magnetic field, then uH(#)/kT(f) ~ 10%° H,/R(r) where
H, is measured in gauss and R(#) in centimeters.

The model described here suffers from at least two defects : It neglects
both the pressure and the magnetic field energy in the description of the
hot stage of the development of the Universe. It would be interesting to
know whether a closed cosmological model would also bounce due to
torsion. An indication that it would indeed is provided by a solution
of the Einstein-Cartan equations with an inhomogeneous, spherically,
symmetric distribution of spins where the Friedmann singularity is again
averted [20], [21] although the curvature is not regular. It may also be
expected that torsion due to the increasing alignment of spins in a collapsing
magnetic star will prevent the occurrence of singularities, even after the
star has crossed its event horizon.

A part of the work reported in this paper was done in Vienna while
the author held the Erwin Schrodinger Visiting Professorship for 1972.
I thank W. Thirring, R.U. Sexl, P.C. Aichelburg, and H.K. Urbantke for
their hospitality at the Institute for Theoretical Physics of the University
and for enlightening discussions. I have been encouraged to pursue this
line of research by conversations with M.A. Melvin and J.A. Wheeler during
the Trieste Symposium on the Development of the Physicist’s Conception
of Nature (18-25 September 1972).
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and making use of equation (2) to determine the torsion, one can reduce (1)
to a modified Friedmann equation
1 GM 3G:S? =

__R2_..__+

put A 14
2 R 2c*R* i

supplemented by the conservation laws of mass and spin,

4 3 -+
M =—apR” =const. and S =—nm
3 3
The last term on the left side of equation (14) plays the role of a
“repulsive potential”” which is effective at small values of R and prevents
the solution from ever approaching zero. In fact, the equation may be
solved exactly, :

oR3 = const.

R(#) =R . (1 + #2/r2)'®  where 1 = S/V/3 Mc?

min
and
R(0) = R_, = (3GS’/2Mc*)!/3,

At ¢t = 0, the radius of a sphere containing N particles of mass
m = M/N and spin 1/2 i = S/N is

R_. = (3NGHh?/8mc*)'3.
If m is the mass of a neutron, then
R~ 310% N2 om.

For N =~ 108, a figure which is often quoted as representing the
total number of baryons in the part of the Universe accessible to obser-
vation, R . is of the order of one centimeter. This may appear to be a
rather small size for the Universe, but it is very large when compared to
the Planck length (Gh/c3)'/? ~ 1,6.10733 c¢cm which has been considered
as providing the only natural limitation on the validity of classical
Einsteinian cosmology [18], [19]. In our model, the density of matter
at ¢+ = 0 is of the order of m2c¢4/Gh? ~ 1055 gcm~—3. It is muchsmaller
than the density ¢5/G?*%h ~ 109 gcm~—3 at which the quantum effects
of the gravitational field are presumed to play a dominant role. At t = 0,
the torsion is of the same order of magnitude as the inverse Compton
wavelength of the particles. For t >> 7 = fi/mc? ~ 10-23 sec the model
coincides with the corresponding solution of Einstein’s equations. There-
fore any considerations concerning the hadronic era of the Universe, and
its subsequent development, will be little affected by the introduction
of torsion in cosmology.



