BULLETIN DE L'ACADÉMIE POLONAISE DES SCIENCES Série des sciences math., astr. et phys. — Vol. XXI, No. 4, 1973

THEORETICAL PHYSICS

On the Einstein-Cartan Equations. IV

by

A. TRAUTMAN

Presented on November 3, 1972

Summary. It is shown that with every one-parameter group of symmetries of a Riemann—Cartan space-time there is associated a conservation law dj=0 for the current of energy, momentum and/or spin.

1. Symmetries of a Riemann—Cartan space. Let (X, g, ω) be a Riemann—Cartan space, i.e., a differential manifold X with a metric tensor g and a linear connection ω compatible with g. The transposed connection $\tilde{\omega}$ is defined in terms of its components $\tilde{\omega}_i^t$ relative to a field of frames (θ^i) ,

$$\tilde{\omega}_{j}^{i} = \omega_{j}^{i} + Q_{j}^{i},$$

where $Q_{j}^{i} = Q_{jk}^{i} \theta^{k}$ and Q_{jk}^{i} is the tensor of torsion of the connection ω . The transposed connection is metric if and only if $Q_{ijk} = Q_{[ijk]}$. If ω_{j}^{i} and $\tilde{\omega}_{j}^{i}$ are written as $\Gamma_{jk}^{i} \theta^{k}$ and $\tilde{\Gamma}_{jk}^{i} \theta^{k}$, respectively, then, for a holonomic frame (θ^{i}) ,

$$\tilde{\Gamma}^{i}_{jk} = \Gamma^{i}_{kj}.$$

The covariant derivative of a vector field v, relative to $\tilde{\omega}$, is

$$\theta^{j} \, \widetilde{\nabla}_{j} \, v^{i} \! = \! \widetilde{D} v^{i} \! = \! D v^{i} \! + \! v \, \underline{\hspace{1cm}} \, \boldsymbol{\Theta}^{i}.$$

Similarly, if (t_i) is a covector-valued p-form, then

$$\tilde{D}t_i = Dt_i - Q_i^j \wedge t_j.$$

A symmetry (automorphism) of (X, g, ω) is a diffeomorphism of X which preserves g and ω . Consider a one-parameter group of transformations of X generated by the vector field v. A necessary and sufficient condition for the transformations to be symmetries of (X, g, ω) is that the Lie derivatives of g and ω with respect to v vanish [1]:

$$(1) \qquad \qquad \widetilde{\nabla}^i \, v^j + \widetilde{\nabla}^j \, v^i = 0 \,,$$

$$D\widetilde{\nabla}_{j} v^{i} + v \underline{\hspace{1cm}} \Omega_{j}^{i} = 0.$$

In a Riemannian space, the connections ω and $\tilde{\omega}$ coincide and (2) is a consequence of the Killing equation (1).

2. Conservation laws in the Einstein-Cartan theory. Similarly as in Einstein's theory of general relativity, symmetries of a Riemann—Cartan space-time give rise to conservation laws in the form of an "ordinary divergence", dj=0. The conservation theorem may be obtained from the Einstein—Cartan field equations,

$$e_i = -8\pi t_i$$
, $c_{kl} = -8\pi s_{kl}$,

by making use of the differential identities [2] which imply

$$\tilde{D}t_i = \frac{1}{2} R_i^{kl} \wedge S_{kl},$$

$$Ds_{kl} = \theta_k \wedge t_l - \theta_l \wedge t_k.$$

The exterior derivative of the three-form

$$(5) j=v^i t_i + \frac{1}{2} \widetilde{\nabla}^l v^k s_{kl},$$

may be evaluated as follows:

$$\begin{aligned} dj = \widetilde{D} \left(v^l \ t_l \right) + D \left(\frac{1}{2} \ \widetilde{\nabla}^l \ v^k \ S_{kl} \right) = & v^l \left(\widetilde{D} t_l - \frac{1}{2} \ R_l^{kl} \wedge S_{kl} \right) + \frac{1}{2} \ \widetilde{\nabla}^l \ v^k \left(D S_{kl} - \theta_k \wedge t_l + \theta_l \wedge t_k \right) + \\ & + \frac{1}{2} \left(\widetilde{\nabla}^k \ v^l + \widetilde{\nabla}^l \ v^k \right) \ \theta_k \wedge t_l + \frac{1}{2} \left(D \widetilde{\nabla}^l \ v^k + v \, \right) \Omega^{kl} \right) \wedge S_{kl} \,. \end{aligned}$$

By comparing the last two lines with Eqs. (1)—(4) one arrives at the

THEOREM. If v generates a one-parameter group of symmetries of a Riemann— Cartan space-time, then there holds the conservation law

$$(6) dj=0,$$

for the 'current' j defined by (5), where (t_i) and (s_{kl}) are the densities of energy-momentum and of spin, respectively.

The conservation law (6) is meaningful in the limiting case of special relativity. If v generates a translation, then $\nabla^k v^l = 0$ and j becomes the projection onto v of the energy-momentum density. If $v^k = \lambda_l^k x^l$, where $\lambda_{kl} = \lambda_{[kl]}$ is a constant matrix and (x^k) is a radius-vector, then $j = \lambda_{kl} j^{kl}$, where $j^{kl} = x^k t^l - x^l t^k + s^{kl}$ is the tensor density of total angular momentum.

INSTITUTE OF THEORETICAL PHYSICS, UNIVERSITY, 00-681 WARSAW (INSTYTUT FIZYKI TEORETYCZNEJ, UNIWERSYTET, WARSZAWA)

REFERENCES

- [1] A. Lichnerowicz, Géométrie des groupes de transformations, Dunod, Paris, 1958.
- [2] A. Trautman, On the Einstein-Cartan Equations. II, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys., 20 (1972), 503—506.

А. Траутман, Об уравнениях Эйнштейна - Картана, IV часть

Содержание. В настоящей работе показано, что каждой однопараметрической группе симметрии пространства—времени Риманна—Картана соответствует закон сохранения dj=0 для тока энергии, импульса или спина.