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Summary. A new argument is presented to support the Cartan idea of modifying Einstein’s theory
of gravitation by relating torsion to intrinsic angular momentum. It is shown that the Einstein
equation may be written in two equivalent forms, with either the symmetric or the canonical tensor
density of energy and momentum as the source. The Cartan equation determines the linear connec-
tion only up to projective transformations; this arbitrariness may be removed by requiring that the
connection be metric.

1. Introduction. In 1922 Elie Cartan [1] suggested a simple generalization of
Einstein’s theory of gravitation. He proposed to consider, as a model of space-time,
a four-dimensional differential manifold with a metric tensor and a linear connection
compatible with the metric but not symmetric, in general. According to Cartan,
the torsion tensor of the connection should be related to the density of intrinsic
angular momentum [2]. Independently of Cartan, similar ideas were put forward by
several authors (for example, see [3—5]; the last paper contains other relevant
references).

The following is a heuristic argument to support the Cartan proposal: by the
holonomy theorems, curvature and torsion are related, respectively, to the groups
of homogeneous transformations and of translations in the tangent spaces of
a manifold. In the approximation of special relativity, the group of inhomogeneous
Lorentz transformations and its invariants (mass and spin) play a fundamental role
in the description of elementary physical phenomena. In Einstein’s theory of general
relativity, mass directly influences curvature but spin has no similar dynamical
effect. As a result of the absence of torsion, the infinitesimal holonomy groups of
the Cartan connection of an Einstein space consist of only homogeneous transforma-
tions [6]. By introducing torsion and relating it to spin, one obtains an interesting
link between the theory of gravitation and the theory of special relativity [7].

*) The research reported in this note was carried out in the spring of 1971, during the author’s
stay at the Laboratory for Astrophysics and Space Research of the Enrico Fermi Institute for
Nuclear Studies, University of Chicago.
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It is conceivable that torsion may produce observable effects inside some of the
recently discovered astronomical objects, such as the neutron stars, which probably
have very strong magnetic fields accompanied by a substantial average value of
density of spin. I

For a body with given values of spin and mass, the dimension‘zﬂr numbers
characterizing the order of magnitude of the effects of torsion and of curvature are,
respectively,

spin/(radius)?> and mass/radius.

(We use a system of units in which the gravitational constant and the velocity of
light are equal to 1.) For an electron, the ratio of these two (very small) numbers is
of the order of 1/ax137; the influence of spin on geometry is larger than that of
mass. This is no longer so for matter in bulk because mass is essentially additive
whereas in most circumstances spins cancel out one another.

2. Notation. The model of space-time is assumed to be a four-dimensional
differential manifold X of class C*. All maps and fields on X are also restricted to be
of this class. A local section of the bundle of /inear frames of X defines 4 fields of 1-
forms 6! (i=1,...,4) which are linearly independent at each point of X [6]. All
geometric objects on X, other than forms, will be described by their components
with respect to (6%); e.g., the metric tensor on X is written as

&ij 61@015 (l’.]=1: seey 4)’
and ) are the 1-forms of a linear connection on X. » VO'= —w;® ¢’. Under the
replacement of 6 by ¢, where §'=a'§’ and (a})=a: X—>GL (4, R) the connection
forms change according to :
¢y a, W=, d;+da;
and the components of the metric become
2 8ii=8n a’? a} .

Leto: GL (4, R)>GL (N, R)be a homomorphism of Lie groups and ¢’: 2 (R*)—
— L2 (R") the derived homomorphism of Lie algebras. The linear map ¢’ may be
represented by the matrix (¢%)), 4, B=1, ..., N. If 9=(p,) is a tensor-valued p-form
of type o, defined on X*), its covariant exterior derivative [9] with respect to the
connection (w}) is a (p+1)-form of type o, given by

Do,=dp +0% oA pp.

For a tensor-valued 0-form (¢,), D¢ =6" V: 9.4 is the usual covariant derivative,
whereas for a scalar-valued p-form ¢, D¢ reduces to the exterior derivative dop.
The curvature and the torsion are 2-forms of type ad, given, respectively, by

Q=doj+wircf and O'=do+wing’.

*) More precisely, (p4) is the pull-back, by that local section of the bundle L (X) of linear
frames which is associated to (6), of a horizontal p-form of type o, defined on L (X) [8].
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The forms (6%, %) and (6%, 2%) may be considered as pull-backs, from the bundle
of affine frames to the manifold X, of the Cartan connection and its curvature,
respectively [10].

The metric tensor is assumed to have the normal hyperbolic signature so that
g=det (g;;) is negative. It is convenient to introduce the completely antisymmetric
pseudotensor #;jx;, ;71234=l/——g, the tensor-valued forms

77ijk=01 Hijki» ’7:'1'=l N Hijk»
’11=% O Aniy, n=%0'Am,
and to write
ni=gn;, ni=g%ny, n=g"g"nu, etc

In general, indices are lowered by means of the matrix (g;;) and raised by means
of its inverse (g'), according to the rules of tensor calculus. Clearly, the forms 7,
7', n¥, ' and n** are the duals of 1, 0%, O'AG), O*AGAOF and O'AO AGEAD,
respectively.

It is easy to prove the following

LemMA. If (4}) is a 1-form of type ad and
MAn—nin2s=0,

then there exists a scalar-valued 1-form L such that ;=95 A.

3. The field equations in empty space. Let us consider a space-time X with a metric
and a linear connection which, to begin with, are unrelated to each other. The 4-form

8nK=3%nAQ]
is independent of the choice of the frames (f') and, therefore, is defined globally
on X. On a Riemannian space-time, the form K reduces to the integrand of the
variational principle used to derive Einstein’s equations.

By varying the metric, the frames and the linear connection independently of
one another, one obtains

8n6K=14 EY 8g;;-+-e; A 30—} ¢l A dw'+an exact form,
where
EY=%(g" nj—g" nj—g" m)A L
is the (generalized) Einstein tensor (-valued 4-form),
e;=—3%1A2], and c;=Drj.
The Einstein tensor is symmetric, even in the non-Riemannian case, whereas
e;=gi;;€’ is not, elAB'#e/AD.
According to (1) and (2), a variation of the frames 6'= —a} ¢’ induces the

following changes in the connection forms and the components of the metric, the
connection and the metric themselves being kept fixed,

i i
owi=Da;, 08,;=0;;+0;.
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These changes do not affect K; the equation 6K=0 yields the identity
3) El=e;A6’4+3Dcl.

From the principle of least action, f K=0, by varying with respect to (g;;, %)
and (¢, ®}), one obtains two sets of equations

4) E¥=D. =0,
and
) =0, &=0)

It follows from Eq. (3) that these two sets are equivalent to each other.

The lagrangian form K is invariant under the ‘projective transformation’ of
the connection, i.e. under the replacement of ’, by ®}+0} A, where 1 is any 1-form
on X. This implies the identity =0 and makes it impossible to determine, in
a unique manner, the connection from Egs. (4) or (5). By using the Lemma, one
proves

THEOREM 1. For any metric tensor (g;;), the equation c.=0 is equivalent to
wj=yi+0} 2

where y_,i are the forms of the Riemannian connection of (g;;) and 1. is a 1-form.
This leads to the following

COROLLARY, The following three conditions are equivalent to one another: (a)
oi=y%, (b) ;=0 and 6'=0, (c) c!=0 and Dg;;=0.
The equivalence of (a) and (b) is due to Palatini [11].

4. A classical field interacting with gravitation. A classical field, such as the
electromagnetic field, may be regarded as a model of a physical system interacting
with gravitation. In this case, the equations of motion may be derived from a principle
of least action and their formal properties analyzed in detail. To describe the field,
let us consider a tensor-valued p-form (¢,) of type ¢ and assume a lagrangian 4-form
L depending, in a local manner, on g;;, 6%, ¢, and Dg,. Independent variation of
the variables leads to

OL=%T" 6g;;+1,A00'—% sIAn dw'+LAASp,+an exact form.

If all the variations are induced by a mere change of the frames, then dL=0
and an argument similar to the one used in the preceding section leads to the
identity

©) T{=t; A6’ +1 Ds}+0% LAA gp.

By varying the total action [ (K+L) with respect to (., g5, @¥) and (¢, 0", 0¥,
one obtains two sets of equations

@) LA=0, EY=-8xT4, ¢j=—8ns!
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and
8 I2=0, eo,=—8%1, ci=-8%ns%,

which are equivalent to each other by virtue of the identities (3) and (6). This shows
that, to write the field equations in the Einstein—Cartan theory, one is free to use
either the symmetric, tensor-valued 4-form of energy and momentum (7%) or the
‘canonical’, asymmetric, vector-valued 3-form (z,).

The electromagnetic potential should be defined as a scalar-valued 1-form ¢
so that the field be F=dp. The alternative identification of the potential with a
covector-valued O-form (¢;) would lead to the field (D¢p;) A 0* which is not gauge-
invariant in the presence of torsion. Any scalar-valued form leads to sJ=0 and
T} =t,A 0. Therefore, a pure electromagnetic field cannot be the source of torsion,
a fact which is hardly surprising if one remembers the non--local character of the
spin of a photon. It is amusing to note that the lagrangian of both the massless
scalar and the electromagnetic fields can be represented by one formula, 8zL=
= —*(dp)Adp, where star denotes the dual of a form and ¢ is a 0-form (scalar
theory) or a 1-form (electromagnetism).

5. The metric theory. The relevance of spinors in physics indicates that the
linear connection on space-time is compatible with the metric tensor, i.e., that
Dg;;=0. Otherwise, there would be no natural lift of the linear connection to a
connection on the bundle of spinor frames. By assuming that the linear connection
is metric, as was done by Cartan and the other authors [3—05], it is possible to
remove the freedom of projective transformations, inherent in the non-metric theory
of section 3. The Lemma of section 2 is useful in the proof of

THEOREM 2. Let (g;;) be a metric tensor and let (s)) be a 3-form of type ad,
defined on X. Among the linear connections on X, satisfying the Cartan equation

¢ = —8xs,
there is exactly one such that
) Dg;;=0
if and only if
(10) Ski+S5=0.

The metric conditions (9) and (10), which are assumed to hold from now on,

imply
D=0, Q;;+2,=0

and lead to the following simple form of the Einstein—Cartan equations
(1D eiz%”ijk/\gjk:_sntia
(12) Ciy =i A O = —87us,;;.

By writing @%=1 Q’f, 0'A0, 5,;=si,n and introducing the forms 6=
=0, M =35, 0'A 0, the last equation can be solved with respect to the

components of torsion,
Qij= _87'[’7ijk/\sk.
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In the approximation of special relativity, there exists a radius-vector, i.e. a vector
field (x*) such that Dx'=0!*). Eq. (6), together with the conservation law of energy
and momentum, D¢, =0, and the symmetry of 7% gives rise to the conservation law
of total angular momentum:

if I14-0, then D (x't!—x)¢fsH)=0.

The forms (x* #/ —x’ ') and (s%) are interpreted as the density of orbital angular
momentum and of spin, respectively.

INSTITUTE OF THEORETICAL PHYSICS, UNIVERSITY, WARSAW
(INSTYTUT FIZYKI TEORETYCZNEJ, UNIWERSYTET WARSZAWA)
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A. Tpayrman, O6 ypasmemusx Diimmreiina-Kaprana. I.

Copepmanue. ABTOp TpeLCTaBIseT B HACTOSMIEH PaGOTe HOBbIE APIYMEHTEL C LEbIO TIOLTBEDXK-
nenus upew Kaprama, xacaromieiicss 0606ienms Teopuyr DUHINTENHA TyTeM YCTAHOBICHHS CBSI3H
MEXIY KPYYCHMEM M BHYTPEHHUM YIJIOBBIM MOMEHTOM. IlokazaHo, 4TO ypaBHEHHE DWIIHTEHHA
MOXKET OBITh 3aNUCAHO B JBYX 9KBUBAJCHTHBIX (OPMaX, C CHMMETPHUECKOM TH60 C KAHOHMYECKOH
TCH30PHO IIIOTHOCTBIO SHEPIUM-HUMILYJIbCAa B KAYECTBE MCTOYRWKA. Ypapmenwe Kaprama ompe-
JEIACT JIMHEHHYIO CBA3HOCTH C TOYHOCTHIO IO NPOEKTUBHBEIX MpeoOpa3oBaHMil; TA IPOW3BOIb-
HOCTb MOXET OBITH yCTpaHeHa TpeGoBaHHeM, YTOOHI CBS3HOCTH GhLTa-ObI METPHUYECKOM.

*) Incidentally, the existence of a radius-vector field in a space without curvature is equivalen t
to the vanishing of torsion: Dx'=@" implies Q) x'=©".
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