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INVARIANCE OF LAGRANGIAN SYSTEMS

ANDRZEJ TRAUTMAN

1. Introduction

A GENERAL lesson to be drawn from the development of the theory of
relativity is that it is desirable to analyse in detail the various structures
inherent in the mathematical models used to describe physical phenomena.
The analysis should concentrate on the relation of these structures to experi-
mentally verifiable statements. The presence of any structure that has no
legitimate link to physical phenomena may be considered as an indication of
a defective model. Einstein’s refutation of absolute time is a classical example
of such an analysis.

On the other hand, a good understanding of the fundamental structures
underlying a theory may suggest new and fruitful generalizations. For
example, the Galilean model of space-time is based on several structures,
not all of which are clearly apparent in conventional expositions of classical
mechanics. Among the elements of the Galilean model is a flat linear con-
nection; it may be replaced by a more general one, thus providing a good
description of Newtonian gravitation. A deep, geometrical interpretation of
the gauge transformations in electrodynamics has led to interesting generaliza-
tions such as the Yang-Mills theory and to a better understanding of the
Bohm-Aharonov experiments.

The intuitive notion of structure has been clarified and formalized by
Bourbaki.™ As a rule, ‘rich’ structures are used in physics: those of differen-
tial manifolds carrying additional geometric objects and of Hilbert spaces
with preferred sets of operators. With respect to differential-geometric
notions, the custom of expressing everything in terms of local coordinates
prevailed for a long time. This is equivalent to working with the number
spaces R* (n = 1, 2, .. .), and their subsets. The number spaces are endowed
with many superimposed ‘natural structures’: R" may be looked upon as a
vector space, affine space, differential manifold, Lie algebra, etc. What is
worse, numerous accidental identifications are associated with these spaces:
an ntuple of real numbers defines not only a point in R* but also a form on
R", considered as a vector space, and a vector tangent to the differential
manifold R™at 0. Therefore, a steady and stubborn use of coordinates makes it
difficult to separate and describe the various geometrical structures associated
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with physical theories. An important example of such a situation is provided
by the variational principles of physics. The calculus of variations, as it is
usually presented, does not provide clear answers to questions such as these.
What is the domain of definition of a Lagrangian? What is the set of trans-
formations under which it is meaningful to test the invariance of an action
integral? What is the geometrical significance of the Euler-Lagrange equa-
tions ?

This paper is an attempt to formulate a part of the calculus of variations,
as it is used in physics, in an intrinsic, geometric manner, without ever
referring to local coordinates. The paper is related to an earlier article™
and complements work done on this subject by other authors.[31.[41.151.16]
It is now generally accepted that fibre bundles provide a natural framework
to describe histories of physical systems such as the space-time development
of a classical field.!%?-171-181 In accordance with this point of view, in the
next section we recapitulate some of the notions of the theory of bundles
needed in later parts of the paper. Section 3 deals with generalities of the
problem of invariance and Section 4 is devoted to a review of the notion of
jet and differential prolongation. The last two sections, which contain the
essential results of the paper, are devoted to an intrinsic characterization of
the Euler-Lagrange mapping and to a geometric formulation of the Noether
theorem on invariant principles of least action, 11201

2. Bundles

All the objects and morphisms considered in this article belong to the
category Man of finite-dimensional, Hausdorff, differential manifolds of
class C®. A mapping is a differentiable map of one (differential) manifold
into another. If f:M — N is invertible and both fand f~* are mappings, then f
is a diffeomorphism; it is called a transformation if M = N. The real line R is
assumed to have the natural structure of a differential manifold. A mapping
of a manifold into R is called a function.

A differentiable bundle is a surjective mapping =:E — M satisfying the
usual condition of local triviality.**! The set E, = n~(x), considered as a
submanifold of E, is called the fibre over x € M. The domain and the range of

 are called the fotal space and the base of the bundle respectively. Sometimes

it is convenient to refer to £ as the bundle. A section of 7 is a mapping
y:M— E such that mwoy =idy. A pair (&%) of mappings, &:M,; — M,
n:Ey—> Eysuchthatmy 0 9 =& om iscalledamorphism of the bundlesr, : Ey — M
intothe bundle y:E; — M. Forany mapping #:E; — E, there exists at most
one mapping &:M; — M, such that (£,%) is a morphism. In other words, if &
exists, it is determined by n and % can be referred to as the morphism of
bundles. If, in addition, & is a diffeomorphism and y is a section of m,
then oy o &t is a section of m,. An automorphism of a bundle is such a
morphism (&,%) of the bundle into itself that both £ and # are transformations.

R T I - T RO /- NN o 0l v, i Nt

[




ided
it is
1ese.
ans~
tion
Jua-

ons,
ever
et
1,161
rork
1ent
the
dles
the
1 of
the
10f
her

INVARIANCE OF LAGRANGIAN SYSTEMS 87

To any section y of m: E— M there corresponds the submanifold y(M) of
E.Given a transformation 7:E — E, we may ask whether the transformed
submanifold (5 o y)}(M) corresponds to a section of . This is so if % is an
automorphism of 7 but not otherwise, in general. By requiring that # carry
sufficiently many sections into sections, we can prove that # should be an
automorphism. A family I' of sections of « is said to separate the points of the
bundle if, for any two points y,,y, € F not belonging to the same fibre #(y,) #
m(ys), there exists a section y € I' such that y on(y;) = y;, where i = 1, 2.
The following proposition says that only automorphisms map elements of I'
into sections.

ProposiTION 1. If the family T of sections of w: E — M separates the points
of the bundle and v: E — E is a transformation, then a necessary and sufficient
condition for both (n o y)(M) and (n~* o y)(M) to correspond to sections of =,
for any y € L', is that n) be an automorphism.

The sufficiency of the condition is obvious; to prove that it is necessary we
note that a transformation # is an automorphism if and only if

7(y1) = n(ys) < 7won(y) =7 on(ys).

The tangent functor T'maps a bundlesr: E— Minto thebundle T : TE—TM.
Let 75 denote the tangent bundle of a manifold M, 7y : TM — M. The vertical
bundle of  Is the restriction of 5 to the manifold of vertical vectors,

ver £ = {Y e TE|Tm(Y) = 0}.
If m: E— M is a bundle and f: N — M is a mapping, then the set

FHE) = {(x.p) € NX E| f(x) = =(y)}

can be made into the total space of the bundle (the pull-back of w by f)
[¥mif*(E) — N, where f*n(x,y) = x. The mapping n*f:f*(E) — E defined by
7*(x,y) = y is a morphism of bundies. In particular, if U< M is open and
[:U— M is the canonical injection, then y = f*w is the restriction of = to
7w HU). A section of my is called a local section of =. The set of all local
sections of = is denoted by I',, whereas I'2= 1", stands for the set of local
sections with relatively compact domains. Let (§,%) be a morphism of
7y By — My in gt By — My, The mapping ' E; — £¥(E,) defined by 7'(y) =
(mi(y),m(y)) is a morphism of 7, into &*my, i.e. the diagram

BT () 2

£

my f*’ﬂz 7y

M, § em,
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commutes and
n=myéor. )
The bundle 7¥ry 1 7*(TM) = hor E— E is called the horizontal bundle of

m:E—> M. There is a canonical exact sequence of morphisms of vector
bundles over £,

0-—>ver E—~TE->hor E—0.

To any morphism #:E; — E there corresponds the morphism ver 7 =
Tn |ver Ey, of vector bundles, called the fibre or vertical derivative of 7. Cleatly,
ver is a functor from the category of bundles to the category of vector
bundles. If #: E— M is a vector bundle, then the vector space ver, E, fibre
of ver E over y € E, can be identified with E,,,, and this defines a morphism
(m,@) of vector bundles

ver E

E

M

A convenient abuse of notation consists in forgetting about = and writing
simply ver 7:ver E; — E for the composition of w with the vertical derivative
of :E, — E. The pair (w07, ver #) then becomes a morphism of vector
bundles.

The letter % is used to denote the familiar two-argument, mixed-variance
functor on the category of vector spaces: ifa: 4’ — A4, f:4 — B, and b: B— B’
are linear maps of vector spaces, then £(a,b): £ (4,B) — £ (A',B’) is defined
by ZL(a,b)(f) = b ofo a,and a* is written instead of the ‘adjoint’ map £(a, id).
This functor has a natural extension to the category of vector bundles; the
extended functor is also denoted by &, If 7r;: E; — M (i = 1, 2) are two vector
bundles, then the total space of £(mry,m,) is

LB Ey) = U L(Eys,Ey).
zeM
To a section & of F(my,my) there corresponds the morphism b of vector
bundles, 4: E; — E,, defined by A/E;, = h(x), for any x € M. To simplify the
notation, the total space of Z(f;*my, fofms), where m;: E; — M, (i = 1,2) are
two vector bundles and fi:N— M, (i = 1,2), is written as Zy(£;,E,). If
X:M,— E; and h: N — L (E;,E,) are sections of 7r; and L(fmy, fofms) re-
spectively, then (X,4) is a section of f;m,, defined by (X, h)(x) = KX ofi(x)},
for any x € N.
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3. Invariance

DEFINITION 1. Let F be a set and f a permutation of F. An element x € F is said
to be invariant with respect to fif f(x) = x. The element x is called an invariant
of a group G of permutations of F, if for any fe€ G, f(x) = x.

All the notions of invariant quantities and the ideas of ‘covariance’ used
in theoretical physics can be reduced to the simple terms defined above.
To do this in any particular case we have to select an appropriate set F
from the scale'™! of sets that can be constructed over any set E. The action
of a group G, initially defined in E, is extended in a natural way to the sets
of the scale. However, in some instances, the set F may be placed in the scale
higher than we are willing to go: it is then convenient to use the notion of
equivariance, which can be introduced on a lower level.

DEFINITION 2. Let f and g be permutations of the sets M and N respectively.
A map h: M — N is said to be equivariant with respect to (f,g) if goh = hof.

Clearly, the notion of equivariance coincides with that of invariance
in the set F = F (M,N) of all maps of M into N, the action of the pair (f,g)
on he F being given by A»>g~tohof.

In differential geometry and the part of theoretical physics that uses
differential-geometric models, it is often possible to reduce the problems
of invariance with respect to mappings to those of invariance with respect
to infinitesimal transformations. To clarify the relation between invariance
under finite and infinitesimal transformations, consider first the simple
example of a function invariant under a one-parameter group of trans-
formations.

A mapping of RXx M into M denoted by (¢,x) > &,(x) defines a one-para-
meter group (§;) of transformations of M if & = idy and &;0&, = &4,
for any t,s € R. The group (§,) induces a vector field X: M — TM, and

d
o] = a_tfo & t=0
is the Lie derivative of the function f: M — R with respect to X. Conversely,
any vector field on M generates a local, one-parameter group of local trans-
formations of M. Subsequently, to simplify the language, X will be said to
generate a one-parameter group of transformations although the group is
defined only locally, in general. For any function fon M,

d% fob =oxfok) = (@xf) ok

so that invariance of f with respect to &, for all R, is equivalent to the
infinitesimal invariance of f under X,

axf= O.
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Let (¢;) and (77,) be two groups of one-parameter transformations, generated
by the vector fields X on M and Y on N, respectively. If i: M — N is a
mapping, x € M, then the vector.

Y oh(x)—Th o X(x)

is tangent to the curve ¢ » n,0h0&,7*(x) at t = 0. A mapping V: M — TN
such that 7y o V' = h is called a vector h-field."**! An example of a vector
h-field is provided by Yoh—Tho X. It is easy to prove

PROPOSITION 2. For any mapping h: M — N the following three conditions
are equivalent.

(a) h is equivariant with respect to (§,m,), for any teR;

(b) the vector fields X and Y, induced by (&,) and (n,), are h-related, i.e.

ox(f oh) = (2xf) o

for any function f:N —R;

(©) Yoh—ThoX = 0.

Let (&;,7;) and (£,,{;) be one-parameter groups of automorphisms of the
bundles 77: £~ M and p: F > M, and let X, Y, and Z be the respective genera-
tors of (&), (), and (). If h:E— Fis a morphism, p o/ = =, then so is
hy= {;ohon, 1, for any t€ R, and the curve ¢ »» h,(y) is vertical for any
y € E. Therefore, the range of Zoh—Tho Y may be restricted to ver F.
In the special case when 7 = id, h: M — F is a section of p, and

(a) if X = 0, then Z o h is the variation of h;

(b) if F is a differential prolongation™® of M, and Z is the appropriate
lift of X to F, then

0xh = Tho X—Zoh

is the classical Lie derivative of h with respect to X.

For our purposes, it is convenient to have a somewhat more general
notion of a Lie derivative. Let (;,7,) again be a one-parameter group of auto-
morphisms of the bundle 7:E— M and let p:F— M be a vector-bundle,
differential prolongation of the manifold M. To the one-parameter group
(&) of transformations of M there corresponds the lifted group (&,(;) of
automorphisms of p; this group is uniquely determined by the generator
Y of (). By definition, the Lie derivative of a morphism 4:E— F with
respect to Y'is

d
ayh“—:d""‘tg;lohont i=0, (2)
and we also have
PROPOSITION 3. The morphism h: E — F is equivariant with respect to (;,{;)
Jor all t e R, if and only if 0yh = 0.

Ci
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4. Jets and prolongations

In order to compute the curvature tensor at a point of a Riemannian space
it is not enough to know the metric at that point and not necessary to con-
sider the metric tensor field all over space. The information needed in this
case coincides with that contained in the second jet of the metric tensor
field at the point. With a system of local coordinates, the jet in question is
determined by the values of the components of the metric tensor and their
first and second derivatives. A jet bears a similar relation to these numbers
as does a tensor to its components with respect to a local frame. When
questions related to invariance are considered, it is desirable to distinguish
between a geometric object, such as a tensor or a k-jet, and its components,
which are simply real numbers.

General and precise definitions of jets may be found in the literature.!8.114]
To fix the notation, we recall the construction of the bundle E = J*(E) of
one-jets associated with a bundle m:E~— M. In the set of pointed local
sections of =,

U ={G2y:U>E xeU},
consider the equivalence relation S defined by
(xp) = (,y)mod S« Ty = T,y
Let j be the canonical map of I, on the quotient E of I', by S,
jl,—E=T,/S.

The set £ admits a natural structure of differential manifold such that the
projection p: £ — E, p{j(x,y)} = ¥(x) is differentiable and # = mop: E—~ M
is a differentiable bundle. The elements of E are called one-jets of 7 and
7. E — M is the first jet prolongation of w: E — M. To any local section y € I,
there corresponds its first jet prolongation ¥ € I';, defined by 7(x) = j(x.).
In a similar manner, one defines the bundle of two-jets, #: E — M, 5: E—~E, 7,

etC.T —_—
To make jets more familiar, consider two affine spaces M and N, let M

i
and N be the corresponding vector spaces of translations, and take 7 to be
the product bundle, £ = M X N. A section y of 7 can be represented by a
function f: M — N, with
Y(0) = (%, f).

The bundles of one-jets and two-jets have as their total spaces, respectively,
5 e
E= MxNxZM,N),

_ 3 e >
E = MXNxZ(M, N)x LM, N),

In §§ 5 and 6 pull-backs by p and p will frequently occur. It is convenient to neglect
in the formulae and write % instead of kop or hOp OB, etc.
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and the jet prolongation of y may be described by

P(x) = (%, [0, [/ (D),
Fx) = (x, f), 100, [ (),
where
—
fM—Z (M, N)
is the first derivative of f, and so on.

Any automorphism # of = can be prolonged, in a natural way, to an
automorphism 7 of # and to an automorphism 7 of 7. The mapping 7: E—~E
is defined by

{jCey)} = noyo§ Tt odx),
so that
foyoé t=noyol,

and similarly for 7. If n; and 7, are two automorphisms of 7, then n; o7, =
7, 0 j. Therefore, if (1,) is a one-parameter group of automorphisms of ,
then (7,) bears a similar relation to #. This makes it possible to prolong any
vector field ¥ on E, projectable with respect to m, to a vector field ¥ on E,
p-related to Y. Namely, if ¥ generates (), then Y is the vector field induced
by (7). In addition, we can associate with Y a vector p-field ¥:E— ver E
defined as follows. ¥{j(x,y)} is the vector tangent to the vertical curve
13> 0y o0&~ Y(x)at t = 0. Similarly, ¥: E — ver Eis defined by reference
to the vertical curve ¢ » 7,0 0 &~ 1(x) in E. It follows directly from the
definitions that

Yoj=Yoy—TyoX
and. .

Yoy = Yoyp—TpoX.

For any bundle =:E-> M, consider the vertical bundles ver E of = and
ver E of 7, and construct the pull-backs p*(ver £) and

FLHTM, ver E) = L{p*(hor E), p*(ver E)}.
Let 5 E, put y = p(7) and x = =(y), and consider G.f)e{PIx L (T:M,
ver, E) = fibre of L5(TM, ver E) over 7, where fis given by
fw) = u(g,, ueT,M,
g:M — R is a function vanishing at x, and v, € ver, E. Let v be a vertical
vector field on E, containing vy, i.e. such that v(y) = v,. The map 7,
i(7,f) = (g omu(y),

can be extended by linearity to a morphism of vector bundles over E Let
s = (Tp| ver EY', where the prime has the same significance as in eqn M,
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with p: E— Ereplacing &£: M, — M,. The morphisms i and s yield a generaliza-
tion of the jet-bundle exact sequence, well known in the theory of vector
bundles.!**

PROPOSITION 4. For any differentiable bundle 7: E — M, there is a canonical
exact sequence of vector bundles over E,

0 —> L(TM, ver E) > ver E-> p*(ver E)—>0, 3)

where p is the natural projection of E = J(E) onto E.

Let 4 be a morphism of =: E— M into the bundle A*T*M of k-forms over
M. For any section y of m, hoy is a field of k-forms on M and its exterior
derivative d(hoy) is a field of (k+1)-forms on M. There exists a unique
morphism

Dh:E— AF+1T*M
of bundles over M, such that
Dhoy =dhoy),

for any section y:M — E. Similarly, if 2 is a morphism of #:E— M into
AFT*M, then there is a morphism Dh:E—>A**T*M, such that Dhoy =
d(h o).

5. Lagrangians and the Euler map

Using the idea of jet, we can define a Lagrangian without having to introduce
local coordinates. Clearly, what is usually called a Lagrangian density
depending on derivatives up to mth order is, in fact, a morphism of the
bundle of m-jets into the bundle of n-forms, where # is the dimension of the
base space. For simplicity, we shall restrict ourselves to first-order Lagrangians.

DEFINITION 3. A Lagrangian system (m,L) consists of a bundle r: E— M and
a morphism (‘Lagrangian’)

L:E— A"T*M
of bundles over M, n = dim M. The function from T'; to R, defined by

¥ »fL oY,

where U is the (relatively compact) domain of the local section y € I'S, is called
the action of (w,L).

The classical rule for a change of variables in a multiple integral may be
written as

fLog?::f&,,oLo'foE‘l, @

U H{p]
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where &: U—&(U) < M is a diffeomorphism and &, is the ‘Jacobian’ morphism
mduced by & in the bundle A"T*M,

EfdxA. . AdX") =d(x*0& DA, . Ad(x 0 &),

To arrive at the Euler-Lagrange equations associated with (L), we
consider the one-parameter group (,) of vertical automorphisms of ,
generated by a vector field Y. The ‘varied’ local section y, = 5, 0y has the
same domain as y, and

d
& Lonoy
v

= f< Y, ver Ly oy, 3
t=0
u

where ¥ is the jet prolongation of ¥ to E.
Let VL:E~ Zy(ver E, A" *T*M) be the composition of morphisms

E vt Pover B, A'T*M) _ " | oL (TM,ver E), A"T*M)
1y Pr(ver E, A*1T*M),
where i* is the adjoint of the morphism ¢ occurring in the exact sequence (3)
and | is an obvious extension of the canonical inner product
1 TMX A*T*M — A*-3T*M.,
The difference
(Y, ver Ly— DY, VLy:E~ A"T*M

vanishes for any y € E such that ¥(3) = 0. (Compare footnote in § 4.)
This implies the existence of an Euler-Lagrange mapping

[L]:E— Ly(ver E, A"T*M),
which is a morphism of bundles over E and is such that
(¥, ver Ly = DY, VLy+<Y, [L]) ©)

for any vertical vector field ¥ on E.
If Y vanishes on the boundary of y(U), then eqn (5) becomes

d —
a;fLoﬁtOV

U

=f<Yoy,[L1 o,
=0 o

and there follows the classical result that the Euler-Lagrange equations -

[L1o5 =0

are necessary and sufficient for the action to be stationary at 7.
The Euler map [ 1:L»> [L] has a simple behaviour under automorphisms

(o e T o 7 B <
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of 7. For any such automorphism #, the Euler-Lagrange mapping associated
with the transformed Lagrangian §3* oL o4 is given by

[é3* oLod] = L(vern, &Y o[L] o, Q)

. where Z(ver 7, £3') is an automorphism of the vector bundle Zz(ver E,

A™T*M), induced by 7.

The set of all Lagrangians on # has a natural structure of vector space;
the Euler map is linear and its kernel contains all ‘exact’ Lagrangians, i.e.
Lagrangians of the form

L = DK,
where
K E— A" 1T*M

is'a morphism of bundles over M. It should not be difficult to relate the
quotient Ker[ ]/Im D to the topological invariants of the bundle .

For a classical, mechanical system with n degrees of freedom, = = pry
and E = Rx Q, where Q is an n-dimensional differential manifold (con-
figuration space). In this case, both ver E and E may be identified with
RXTQ, and

VL:RXTQ—>RxT*Q,

if smoothly invertible, is called the Legendre transformation. The ‘accidental
identifications’ inherent in the Lagrangian formulation of classical mechanics
account for much of the simplicity of this theory, as compared to the classical
theory of fields.

6, Symmetries, invariant transformations, and conserved quantities

Roughly speaking, a symmetry of a physical system is a correspondence
associating to any possible history of the system another such history of the
same system. This definition is too general and not precise enough to be
useful. Before giving a description of symmetries adapted to the Lagrangian
formalism presented in the preceding section, let us consider the simple
case of a classical mechanical system with » degrees of freedom.™®!

Let O again denote the configuration space. The cotangent bundle
t%:T*Q — Q (phase space) carries a canonical one-form a:T(T*Q) — R
AT(T*Q) = poTr). The two-form f = d« is non-singular and defines

4 symplectic structure on T*Q. For any function G on T#Q there is a vector
field G* on T*Q such that

G* 1 B = dG.

H is the Hamiltonian function, then H¥ generates the one-parameter group
of motions. Let (y,) be another one-parameter group, generated by a
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vector field Z on T*Q. The curve ¢ »> p,0¢(p) is a motion of H ¥ for any
peT*Q,if and only if

Ps O Pr = @ O Yy ®)

Therefore, Z generates a one-parameter group of symmetries if eqn (8)
holds for any s,t € R, or equivalently if

62]{is = 0.

On the other hand, a function G is a conserved quantity, or a constant of
the motion, if

Gog, =G forany te R,
ie. if

3H$G — 0.

From the antisymmetry of the Poisson bracket, 04#G = {H,G} = —0¢tH,
it follows that the group (y,) generated by the vector field G*, corresponding
to a conserved quantity, preserves the value of H,

6G#H = 0, (9)

and, therefore, may be referred to as a group of invariant transformations.
Moreover, the group () is symplectic, d#f = 0, and eqn (9) implies that

EG#H# bt 0-

Invariant transformations are symmetriest but the converse is not true,
as may be seen by considering the group generated by G*, where G is a
function canonically conjugate to the Hamiltonian, {H,G} = 1.

An important feature of the Hamiltonian formalism of classical mechanics
is that it allows all conserved quantities and symmetries to be described
and easily found. In the Lagrangian formulation, it seems natural to
restrict oneself to point transformations, i.e. to those automorphisms of 7Q
that arise by lifting of a diffeomorphism from Q to the tangent bundle.
Clearly, in general, the class of point transformations does not contain all
symmetries. As an example, consider a particle constrained to move along a
line so that Q = R and 7Q = R The one-parameter group y,:7Q0 — TQ
defined by v4(g.9) = (¢s4s), With '

gs = g Cos s-+g sin s }
4s = —qsin s+ cos s)’

(10)

describes a symmetry of the Lagrangian L(g,4) = $(¢®*—4¢%) because it maps
the solution
t»> acos (t—t,) (11

+ Abraham!'® uses the word ‘symmetry’ in a narrower sense: essentially for what we
call an invariant transformation.

Z
.
.
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of the equation of motion into the solution ¢ »> a cos (¢+s—1,). The map
(10) is not a point transformation and as a result it transforms the Iift
é:R— TQ of a curve c:R— Q into a curve y; o ¢ that is not a lift, unless ¢
happens to be of the particular form (12). A small perturbation of the
Lagrangian will not only break its symmetry under eqn (10) but also make it
impossible to apply, in a meaningful way, this transformation to solutions
of the equation of motion.

After this digression, we return to a more general case and consider a
Lagrangian system (7r,L).

DEFINITION 4. An automorphism v of w, w o = § o m, is said to be an
invariant transformation of (m,L) if, for any local section y & I, the value of the
action is invariant by ,

fLO?::fLOnoyoE’l. (12)
U W)

By comparing eqn (12) and eqn (4), and taking into account the arbitrariness
of y, we obtain

PROPOSITION 5. A necessary and sufficient condition for an automorphism
n of m to be an invariant transformation of (m,L) is that L be equivariant with

respect to (§4,7),
L0ﬁ= 5* OL. (13)

This, in turn, implies that the Euler-Lagrange mapping [L] itself is
equivariant with respect to a prolongation of the invariant transformation.
By comparing equations (7) and (13), we obtain

[L] = L(ver néx) o[L]o7. (14
This holds also in a more general case, when L, instead of being equivariant

with respect to (£4,7), changes by an exact differential. To cover this situation,

we introduce
DEFINITION 5. An automorphism v of w is called a generalized invariant trans-
formation if there exists a morphism K:E— A" T*M of bundles over M

such that
ExloLo#f+DK = L. (15

Remembering that [DK] = 0, we see that eqn (14) holds for a generalized
invariant transformation » and, therefore,

if[L]oy =0, then [LJonoyof =0,

thus proving
PROPOSITION 6. A generalized invariant transformation is a symmetry.
Consider a one-parameter group (n;) of automorphisms of =, generated
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by the vector field: Y on E, and let X be the vector field on M induced by
(&), with w o5, = &, o, For any local section ¥ we can write

d
Ox(Loy) = a;.f;*l oLoy &,

t=0

d o
=g fwoLlofontoyoad,

t=0

= (6,,L)o;7—-<):’oy=/, ver L o),

where 9yL is the Lie derivative of L with respect to ¥ defined by eqn (2).
The last equation imples that

o;L = D(X11)4+( ¥, ver Ly,

where the notation is that of § 4. A computation analogous to the one
that led to eqn (6) gives the fundamental formula

OyL = D(X 1LY, VLY)+<T,[L]>. 16)

If (n,) is a group of generalized invariant transformations, then, according

to Definition 9, there exists a morphism Z: E — A"~ 1T*} such that
Oy L+ DZ = 0, (17
and eqn (16) becomes
DX L4<F,VLy+2)+< ¥ [L]) = 0.

This proves

PROPOSITION 7. Let (33;) be a one-parameter group of generalized invariant
transformations generated by Y and characterized by eqn (17). If v is a solution
of the Euler-Lagrange equation, [L] 0§ = 0, then there is a conservation law

dJo9) =0
Jor the current
J= XL+ VL>+Z

associated with (5,).
The Noether-Bessell-Hagen equation (17) is equivalent to a system of
partial differential equations of the first order, linear and homogeneous

in (¥,Z). The set of solutions of (17) forms a Lie algebra with a bracket given

by
[(Y1,Zy), (Y5,Z5)] = (Y5, 1y, 9Y1 Zz—arzzl)—

The structure of this Lie algebra is an important characteristic of the
Lagrangian system.
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