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1. Introduction )

In differential geomefry and theoretical physics one offen considers bundles
with a Riemannian space as the typical fibre. Since bundles are usually described
by an adjective referring fo the structure of the fibres, we propose to call these
Riemannian bundles. This notion generalizes that of a Euclidean vector bundle
exemplified by the tangent bundle of a Riemannian space. Both vector and Rieman-
nian bundles are special cases of what we call A-bundles, i.e., bundles with' fibres
belonging to a category 4 of differential manifolds (cf. Sec. 2). Morphisms of
A-bundles are defined in Sec. 3 and a simple example is given to show that an A-
bundle may be trivial as a (differential) bundle without being isomorphic to a product
in 4. The construction of 4-bundles associated to a principal bundle is carried over
from the theory of vector bundles (Sec. 4). The last section is devoted fo the problem
of completing the structure of a Riemannian bundle to that of a Riemannian space.
The Riemannian space of the Kaluza-Klein theory of electromagnetism is a particular
case of such an extension [1]. )

All the objects and morphisms considered in this paper belong to Man, the
category of real, finite-dimensional differential manifolds of class C®. To alleviate
the language, the adjective ‘differentiable’ is omitted, except in places where this
could lead to misunderstanding. We use, with minor modifications, the prevalent
terminology and notation of differential geometry [2—4]. Some of the ferms and
symbols used in this paper are explained in the following paragraph.

A bundle (E, X, n) is characterized by the surjective  projection z: E—X;
a convenient abuse of language consists in referring to E as the bundle over X.
The tangent functor is denoted by 7. The kernel of T7: TE-TX is the vertical bundle
ver E over E, consisting of vertical vectors, i.e., vectors tangent fo the fibres of E.
The quotient of TE by ver E is the horizontal bundle hor E over E. The fibre of hor £
over pek is the vector space hor, E=T, E/ker T, n. The inclusion i of ver E in TE,
together with the canonical surjection s of 7E on hor E, yields the exact sequence of
morphisms of vector bundles over E

o ‘ 0— ver E— TE > hor E—>0

[667]
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Moreover, 7' factors through hor E, Tn=t0s, and, for any p eE, tihor,Eisa linear" ~

_isomorphism onto T,(» X. A Riemannian space (X, k) is defined by a function &

on the tangent bundle 7X of the manifold X, k being such that k,=k|7, X is a non- -
degenerate quadratic form on the tangent space 7. X at xe X, The signature of k.
is assumed to be the same all over X but otherwise arbitrary, so that the adjective
“Riemannian’’ means here what is often referred to as f‘pseudo—Riemannian‘". The
vector space associated to an affine space E is denoted by E: the additive group of E
acts freely and fransitively on E. For an affine space E, the tangent bundle may and
will be identified with the product ExE. -

2. Definition and examples
DerinttioN. A bundle (E, X, ) is called an A-bundle, where A is a subcategory
of Man if ; ~ .
(a) the typical fibre Y of E and all fibres E,=n"" (x), x€ X, are objects of 4, and
(b) for any x’ € X there exists an open neighbourhood U of x’ and a differential
isomorphism (“‘diffeomorphism”) ¢: Ux Y—n!(U) such that, for every xeU,
the map y 9. ()=¢(x,») is an d-isomorphism of ¥ on E.. : ~
' By taking for A the category of Riemannian spaces, the category of Euclidean
spaces, the category ¥ of vector spaces or the category EV of Euclidean vector
spaces, one obtains, respectively, the notion of Riemannian bundles, Euclidean
bundles, vector bundles or Euclidean vector bundles*).

In particular, with a Riemannian bundle (E, X, 1) there is associated a Riemannian
space (Y, 1) and the fibre metric g:ver EoR such that, for any xe€ X, there is’
a local trivialization ¢: Ux Y—n=* (U), xeU, satisfying go To.=1. Clearly, if E
is a Riemannian bundle, then ver E is a Euclidean vector bundle over E, but the
converse 1is not true. '

Example 1. A Galilean space is an affine space E together with a positive-
definite scalar product defined on a vector subspace Y<E, of codimension 1 in E.
The quotient space X=E/Y is affine, X=E/Y, and the canonical map n:E—X
defines a Euclidean bundle with typical fibre Y. In Newtonian mechanics, E is four-
dimensional and X is called the absolute time [5]. '

Exam'ple 2 IfEisa bundle over a Riemannian space‘(X , k), then hor E has
the structure of a Euclidean vector bundle over E, defined by kot

Example 3. The tangent bundle TX of a Riemannian space X is a Euclidean
vector bundle. The subbundle E of TX, consisting of all tangent vectors of unit
length, is a Riemannian bundle over X with a space of constant curvature as the
typical fibre. In particular, if X is a time-oriented (n-+1)-dimensional Lorentz space
[6], then there exists a subbundle E,<E, consisting of future'—pointing, time-like
vectors of unit length. The bundle E; over X is Riemannian and its typical fibre is

*) Some authors use the term ‘Riemannian vector bundle’ for what we call a Buclidean vector
bundle; [cf. 2, vol. 11, p. 315}
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the n-dimensional Lobatchevsk1 space This bundle plays a role in relativistic
kinematics.

Example 4. Let (E, G, X, x, y) be a principal bundle with structure group G
and projection 7: E-X. The Lie group G acts in E on the right, v (p, @)=y, (p)=pa,
We=1d, W,0Wy=,,, where peE and ae=a, beG. The left and right translations
in G are denoted, respectively, by y and 6:y, (b)=ab=4, (a). The map W, G—
—E, () defined by y, (@)=pa is a differenfial isomorphism and may be used to
transport any tensor field from G to E,(,). From

Ypa=Wp©Ya

it follows that the image by w, of a left-invariant tensor field on G is independent
of the choice of p within the fibre E, ). On the other hand, if the field on G is right-
invariant, then by virtue of

WO W,= %05

the transported field is invariant with respect to the action of G on the fibre. Therefore,
a biinvariant metric tensor field on G, such as the one given by the Killing form on
a semi-simple Lie group, defines on E the structure of a Riemannian bundle, invariant
with respect to the action of G.

3. Morphisms

DerINITION. Let (E, X, 7) and (E’, X', n’) be A-bundles; the differentiable
‘map F:E—~E’ is called an 4-bundle morphism if there exists a differentiable map
J: X—>X" such that F restricted to any fibre E, is an A-morphism of E, in E} -

This definition makes the class of all A-bundles into a category, denoted by
AB. If X is a manifold and Y an object of 4, then (XX ¥, X, pr,) is an A-bundle,
called the product A-bundle. Any bundle 4B-isomorphic to such a product is called
a trivial A-bundle. The following example shows that a Euclidean vector bundle
may be a product bundle without being trivial in the category EVB. This gives
rise fo new problems of classification.

Example. Let x—>%¥={x"eR:x'—xe Z} denofe the canonical map of R
on the one-dimensional torus T=R/Z and put E=TxR>? The manifold E may
be given the structure of a Euclidean vector bundle over 7 by introducing in the
vector fibre E;={(%, y, z): y, z€ R} a scalar product defined by the quadratic form
in yand z:

2yz cos 2nx-+(y*—z*) sin 27x.

E is not a trivial EV-bundle because the “null” subspace {(%, t sin 7x, ¢ cos 7x): x,
_ te R} is homeomorphic to the Mobius band.

A functor &: 4,54, from one subcategory of Man to another can be extended
to the functor PB: A, B>A4, B of the same variance as ®@. A similar proposition
is true for functors of several variables. If ¥: 4 2—+A; is another functor, then so is
Yo® and (Po (15) B=YRBo ®B. For example, any vecfor functor, such as duality
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or the tensor product, extends to: a functor on the category of vector bundles; the
funcfor TR is equivalent, by a natural fransformation, to the functor ver which
ssigns the bundle ver E over X to the bundle E over X. If & is the Cartesian product
anifolds, then @B is the Cartesian product of bundles.

4, Assoclated bundles and connections

d of constructing 4-bundles is described by the following
(E,G.X.ny) is a principal bundle, Y an object of A and
m of the group G into the group of A-automorphisms
soclated to E by the representation o, may be

isfruction of the associated bundle [2].
(p,p)a’ =(pa ', 6,(») and let  be
pace E£,=(Ex Y)/G. The manifold E,

: ’, L E X is. well defined by
(y) ‘K(p, y) If ¢: UsE is a local
x), y) is a differential isomorphism of
on K, of Y onto E,, =n"*(x) can be used to make
of 4 by requiring that Koo be an A-lsomorphlsm By taking
section ¢/, defined in a neighbourhood of x, one obtains the same

A 'korzzonz‘al di ifferential system on a bundle (£, X, r) is a splitting of the sequence
(1 deﬁned by a VB—morphlsm

h:hotE—~TE, soh=id,
or, equivalently, by the ¥B-morphism

v:TE—-verE, woi=id,
with

voh=0 and iovdhos=id.

A horizontal differential system on E defines the structure of an almost product

manifold [7]. The vector space % (hor, E) is called the horizontal subspace at p € E;
v is the vertical projection corresponding to /.

The action of G in the principal bundle E extends to TE. Because of noy,=7,
the action of G in TF induces an action of the group in both ver E and hor E. The
corresponding maps are denoted, respectively, by ver y, and hor y,,

iovery,=Ty, o1, ‘hory,os=s0Ty,.

A connection in the principal bundle E is a horizontal differential system % on
the bundle E, equivariant with respect to G,

hohory,=Ty,oh.

e on Eax, because if q (x) g (x) a, then x, (0 =Kq(x) 00,4 and o, is an -
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The corresponding vertical projection is also equivariant,
@ o Ty, =Very,ov.

The canonical map x of E X ¥ onto the bundle E; associated to E induces vector
bundle morphisms: ver x of ver EXTY onfo ver E, and hor x of hor EXTY onto
hor E;. More precisely, the triple (ver %, Tk, hor k) defines a morphism of the exact
sequence '

0~ ver EXTY > TEXTY 5> hor EXTY —0

on the sequence ;
loii S,
O—>verE,—>TE,—>hor E,—0.

If the i)rincipal bundle E has a connection /4, then a bundle E, associated {o E
can be endowed with the horizontal dlfferentlal system hy:hor E,>TE,, 5,0 h,=id,
defined in a natural ‘way by A, '

hyohorx=Tx o (hxid).

5. Riemannian metrics ‘on’ Riemannian bundles

Let (E, X, n) be a Riemannian bundle with fibre metric g; a Riemannian mefric §
on E is called an extension of g if §oi=g. We shall also say that the Riemannian
metric g is compatible with: the structure of the Riemannian bundle E. An obvious
question to ask is whether any Riemannian bundle admits a Riemannian extension.
To show that this is so, consider a horizontal differential system 4 on E, the correspond-
ing vertical projection v and a Riemannian mefric k£ on X. The formula

3 §=koTntgowv

defines an extension of g. Since for any paracompact manifold X and any bundle E
over. X there exist both a Rlemanman metric on X and a splitting of (1), we obtain
the following

PrOPOSITION 2. Any Riemannian bundle over a paracompact manifold admits
a Riemannian metric compatible with the structure of the bundle.

§ ~Example. A horizonfal differential system / on the Galilean bundle E is called
f an ether. The scalar product on Y defines the fibre metric g: ver E->R. The absolute
§ time X may be measured by means of k= —7®7, where 7€ E* is a form whose
§ ‘ kernel coincides with ¥. The Lorentz metric on E, given by Eq. (3), constitutes an
| essential element of pre-relativistic electrodynamics. If £ is invariant with respect
| to E, then the ether is said to be rigid and g is the Minkowski (flat) metric.
. According to Proposition 1, if (Y, ]) is-a Riemannian-space and ¢: G>Aut ¥
 is a homomorphism of G into the group of isometries of ¥, /o To,=I, then the
~~ b\:bundle E, associated to (E, G, X, 7, v) admits a fibre metric g determined by
"goveric lopr,. Moreover, if (X, k) is a Riemannian space, E has a connection
hand v, is the correspondmg vertical projection on E,, then

kOTn: s tgou,
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is a Riemannian metric on E,. For example, if (a) X is an n-dimensional proper
Riemannian space, (b) E is the bundle of orthonormal frames of X, with the Rie-
mannian connection ki, {c) I is the canonical metric on Y=R", and (d) ¢ is the
defining representation of G=0 (n) in R", then E, may be identified with 7X and
Eq. (4) gives the natural Riemannian metric on the tangent bundle of the Riemannian
space [8].

The bundle associated to (E, G, X, n, ¥) by the representation of G by left
translations can be identified with E itself. In this case, the map k coincides with
y: EXG—E and very:ver EXTG-ver E composed with the obvious injection
EXT,G-over EXTG determines the isomorphism A:ver E-EXT,G of vector
bundles over E, equivariant with respect to G,

) ' Aoverip,=(y,XTad,)o A

where ad, (b)=a~! ba. If v is the vertical projection corresponding fo a connection
in E, then w=pr,olov is the connection form and Eqgs. (2) and (5) imply

woTy,=Tad,om.

If [ is a left-invariant metric on G, then the fibre metric g defined by govery=
=lopr, is equal to lopr,o . If, in addition, / is right-invariant, then JoT ad,=/
and the extension §=koTn+low, called by Gray [7] the natural metric on E, is
invariant with respect to G, §o Ty, =§ for any aeG. If (X, k) is interpreted as space-
time and G as the ‘gauge’ group in a theory of the type considered by Yang, Mills
“and Utiyama [9], then (E, §) becomes the analogue of the five-dimensional Rieman-
nian space introduced by Kaluza and Klein to describe geometrically the electro-
magnetic field.
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