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Few words have been abused by physicists more than relativity, symmetry,
covariance, invariance and gauge or coordinate transformations. These notions
used extensively since the advent of the theory of relativity, are hardly ever preci-
sely defined in physieal texts. This gives rise to many misunderstandings and
controversies; the discussion on the significance of the “principle of general covar-
iance” has been one of the best known among them. This polemia started avound
1917 {10] and has been revived during the recent years (cf. Fock [(1] and Ander-
son [12]).

¥ibro bundles provide a convenient framework for discussing the coneepts of
relativity, invariance, and gauge transformations. They have been origivally in-
troduced in order to formulate and solvoe “global”, topological problems. We shall
not be concerned with these here. However, the notion of a {ibre bundie is very
appropriate also for local problems of differential geometry and field theory. The
concept of induced representations of Lie groups may be most easily explained

*) This papor is an expandod and modified version of the notes by H.T, Kiinzlo and P. Sze-
kores of the Joctures given at King’s Collego, London, in Septemnber, 1967.

[20)
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using the language of bundles. The canonical formalism of classical mechanics
assumes the cotangent bundle of the manifold of positions to bo the underlying space.
Classical electrodynamics may be interpreted as a theory of an infinitesimal con-
neetion in a principal fibre bundle with the structure group U(1). A similar inter-
pretation can be given to the Yang-Mills ficld and in general to all fields resulting
from “‘gauge transformations of the sccond kind”.

Every time anyone arguces for the desirability of using new mathematical con-
cepts or methods, people raise the question whether these new concepts are really
necessary. Quite often the answer is no, in the sense that there are no practical
problems that could not be solved without introducing the new mothods, Ior exam-
ple, at the beginning of the development of clectromagnetic theory Maxwell’s
equations were written explicitly, component by component. Any problen of class-
ical electrodynamics can be solved with the help of that system of equations, but
today no one will deny the usefulness of vector calculus. A less trivial example is the
following. With some skill, any result in special relativity may be obtained on the
basis of the physical interpretation and of the form of the Lorentz transformations,
as given by Einstein in his 1905 paper. It is hard to imagine however, that general
relativity could have ever been invented without the four-dimensional, geometrie
picture of space-time, or that it could have been sensibly formulated without using
the concepts of Riemannian geometry. It is our belicf that fibre bundles may play
a somewhat similar role: as they provide a natural framework for a number of phy-
sical theories, they can open ways to new, fruitful generalizations. For the moment,
they help us to clarify a number of fundamental concepts and by doing so, leave us
with more time to worry about the really difticult questions,

In this paper we present the basic information on the local structure of diffe-
rentiable fibre bundles together with some of their applications to physics. In the
Introduction we give a few examples of structures which are fibre bundles accord-
ing to the precise definitions to be given later. We take advantage of these exam-
ples to introduce, in a loose way, a number of terms used in deseribing fibre bundles.
The second chapter contains the construction of the space of quantities of type
a (c.g., tensors, densitics) over a finite-dimensional vector space. The reason for
presenting this construction is that it is analogous to the one that leads from a prin-
cipal fibre bundle to an associated bundie (Scetion 3.6). Chapters 3-6 contain stan-
dard definitions of differentiable manifolds, Lie gronps, (-manifolds, fibre bundleg
and conncctions. This material is presented for the convenienco of o physicist who
may not want to search for it in specialized mathematical literature. Chapter 7 is
devoted to an analysis of ficlds admitting gauge transformations, such as the clec-
tromagnetic or the Yang-Mills ficld. An essential difference between these fields
and the gravitational field in general relativity is stressed, in contradistinction to
what is often asserted. The isomorphism between the Kaluza-Klein theory and the
Utiyama approach to electrodynamics is exhibited and generalized to an arbitrary
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field whose gauge group admits an invariant metric. In Chapter 8 it is shown what

meaning should be attributed to the gencral-relativistic principle of invariance. An
application of fibre bundles to the derivation and formulation of conservation laws

in physics may be found in another paper [13]. @
1. Iniroduction

Bundles are a generalization of the concopt of Cartesian product. An example
from tho history of science will clarify the need for such a generalization.

In Aristotelian physics both, space and time, were absolute, cvery event being
defined by an instant of time and a location in space (cf. Penrose [5]). This is equiva-
lent to saying that space-time E is a Cartesian product 7'X S, where T is the time
axis and 8 is the three-dimensional space. }

In Galilean physics time remains absolute but space is relative. This can be
described by saying that there is a projection map n:E — T which associates
to any event peE the corresponding instant of time ¢ = a(p). T is called the 'base
space. The inverse image of ¢, a7} (t), is called a fibre. Each fibre is isomorphic to

¥

R3
. space- ‘
time vy

T
time t = n(p)

Euclidean 3-space R?, which is therefore called a typical fibre. Such a triple (E, T, =),
with #: E — T being a surjective projection map is called a bundle with base space
base T and bundle space E. In this example all fibres are isomorphic and it is pos-
sible to represent the bundle as a Cartesian produet. However this representation is
frame dependent, that is to say there is no natural isomorphism between the fibres.

The best way of illustrating the concept of naturality which has been connected
above to the physical concept of relativity, is to give an example from vector space
theory. Lot ¥V be an n-dimensional vector space and V* the dual space of lincar
functions on V. V* is also an n-dimensional vector space and is therefore isomorphic
to V, but there is no natural isomorphism. It is necessary to define a basis in 14
in order to construct the isomorphism. On the other hand, the space V** (the dual
of V%) is again an n-dimensional vector space, but this time there is & natural
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isomorphism with V. A precise definition of natural equivalence is given in Chap-
ter 8. Further examples of bhundles:

1) Tangent bundle: Let K be an n-dimensional differentiable manifold and (%)
the set of all tangent vectors at all points of £. Let z:7(F) — E be the mapping
which maps tangent vectors onto the point of E to which they arc attached. The
triple (r(¥), K, a) is known as the tangent bundle of the manifold E. Each fibre
a~Y(p), pe K, is isomorphic to B, which is thercfore a fypical fibre. The isomorphism
is not natural and there are as many isomorphisms from z""'(p) onto R" as there are
bascs at p. Any two isomorphisms are obtained from cach other by applying a mem-
ber of the group GL(n, R) which is called the structure group of the bundle.

If & natural isomorphism between fibres could be defined, e.g., by a parallel
transport (integrable connection),. there would be a natural isomorphism of the
tangent bundle onto the product bundle (£ X F, E, pry). In general relativity this
is not possible: even if E admits of a global coordinate system z = (z') then the
mapping :

T(E)3 X 1— (n(X), (X))e EXR",

where X' = X(2%), is an isomorphism but not a natural one.

2) Bundle of linear frames: Let I (E) be the set of all vector frames at all points of
E. A bundle may be constructed as in (1), the typical fibre being GL(n, R). For let
{e;) be a basis at pe £ and (r) a sccond basis at p. Then r; = ejaj,- with (a’;)
= aeGL(n, R). Thus, there is an isomorphism 7 i— a and GL(n, R) is the typical
fibre. If ¢; is another basis, then r; = ¢a’;. The new isomorphism ri— @ is connected
to the previous one r 1— a by a single matrix transformation, Hence the structure

group is again GL(n, B) and is a typical fibro at the same time. In this case the

bundle is termed a principal fibre bundle.

In Greek physics space-time E = T'x.S has the structure of a product bundle.
In Galilean physics and special relativity this is no longer so, but the bundle of
linear frames (P (), E, =) is a product bundle. In general relativity thero is no na-
tural isomorphism of (P(F), E, =) onto a product £ XF, but it will be shown that
the bundle (P (P(E)), P(E), =) is a product. In this way generalizations of gencral
relativity may be conceived *).

2. Tensors and Tensor Densilies

2.1. Let ¥ be an n-dimensional real veetor space and P (V) the set of all frames of
V;i.e., an clement re P(V) isasct (r;), ¢ = 1, ..., n, of n linearly independent vectors

*) D. D. Ivanenko suggested that this generalization be referrod to as tho “socond relativi-
zation'. :
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r,eV. It can also, with advantage, be regarded as an isomorphism
. R~V
such that .
(g% o @) 1> g =1(9)

Now let aeGL(n, R), then roa is another isomorphism R" — V which again regarded
as o frame in P(V) will be denoted by ra = (r;a’;). This shows that GL(n, R) acts
to the right on P(V): (ra)b = r{ab). ‘

Obviously, this action is transitive and free. (G acts freely on a space M -1ff
a # idg implies ra #r, G acts effectively iff va =z for any x implics @ = ¢d;, .
@ acts transitively iff for any z, ye M there oxists e€@ such that va = Y).

2.2 If a:GL(n, R) - GL(m, R) is & homomorphism, consider the mapping

P(V)xR™— P(V)x R"
defined by
(r, 9) — (ra, 0,-1(9))
for any aeGL(n, R), where o, = o(a). This defines an action of GL(n, R) on
P(V)x R™ which, however, is no longer transitive. Introduce therefore, the quo-

tient space
a(V) = (P(V)x R™)[GL(n,R)

and the canonical map ¢: P(V)x B™ — (V) which maps elements of P (V)x R™
equivalent under the action of GL(n, R) onto the same element of a(V): ¢(r, ¢}
= 1(r', ¢') <> there exists aeGL(n, R) such that ra = r and g,-1(¢q) = ¢'. Finally
define ¢,:R™ — o(V) by . (q) = t(r, ). This map ¢ is bijective.

Proor: (a) By definition any element of ¢ (V) can be given in the form «(r’, ¢') for
certain r'e P(V), ¢'eR™. But for any given re P(V) there is an ae@GL(n, R) such
that r = #'a [by the transitivity of GL(n, B) on P(V)]. Choose ¢ = 0,-1 (¢),
then «(r', ¢') = (v, g) = 1,{q), proving that ¢ is surjective.

(b) Assume 1,(q) = ¢,(¢'), then there exists a such that = ra and thus a =id
(since GL acts freely). Therefore ¢' = o;(q) = ¢, proving injeotivity.

Observe that .

ba © oa'l(q) = L(Ta, Ua‘l(q» = 1(r, q) == tf(q),
ie.,
by © Og=1 == Upn )

Define addition and multiplication with € B by
W @)+ i) = (it (2)
at,(g) = 4lag). 3)

These definitions are independent of the choice of r because of (1). Therefore o (V)
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becomes an m-dimensional vector space. Now let uea(V) and define

@:P(V)—~ B"
by

afr) = 1, Hu).
Denoting the action of a € GL(n, R) in P(V) by 8, (i.e. 8,(r) = ra) one infers

1

%o 6a(r) = 1'7,(1’(1) == ‘ra—l(u) = aa—‘ o ‘r—l(u) =d, o ;(r)n

ie., 5

'1206,, = O'“—lo'u B (4)
(Note that g,-1 = o(a™') = [6(a)]™! = a,”' because o is & homomorphism and
that since ¢, has an inverse it follows from (1) that

1 -1

b = 4 o {g,=1)" or g l=o,-1007")

Equation (4) is nothing else but the transformation law of the tensor density u:
Under a change “8,” of the basis the “components” % of u transform according to
a certain representation o of the linear group. Such quantities  are called quantities
of type a. For example: ‘

(i) o, = 7, = a, the identity representation. It induces a natural jsomorphism
between ¥ and (V). Relation (1) becomes i,,™* = a~%¢, ™' showing that the map
rot, Lix(V)—>Visan jsomorphism independent of r, since

1, -1 o -1
V=17

otV =raoc, t=raa"ly

A 4

J i
id

l'f
B ———— 7(V)

(i) If o is any representation so is a*, dofined by ¢¥ = ‘g,~1 (whero ‘4 is the
transpose matrix of 4). a*(V) is called the space of quantities contragredient lo a (V).
(iii) 0, = (det a)* gives rise to scalar densities of weight w.

3. Differentiable Manifolds

3.1. A manifold is a topological space K which is

(i) locally Euclidean, i.e., for any pe E there exists an open neighl')ourhood Uofp
and a homeomorphism z of U onto an open subset of B (U, z) is called a chart
of E. :
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(il) E is Hausdorff, i.e., for any pair of points p s g there exist disjoint open sets
U3 p, ¥V 2 q. This does not follow from (i); for consider the topological space con-
sisting of two closed halflines (—co, 0] and an open halfline (0, 4 oo), in which the
basis of open neighbourhoods of 0; or 0, consists of all sets of the form (—a, 0] (0, b).
This topology satisfies (i) but any two open sets containing 0, and 0, will contain
a segment (0, ¢)

typical
neighbourhood of 0;

r—esra—— ———

0,

{ —
t ®

-t
~
-

0,

tta— v——
typical
neighbourhood of 0,

(iii) E has a countable basis. Without this condition the topology of R? considered

a8 | (a, B) satisfies (i) and (ii) but does not have a countable basis. This would
e€R

~~

~L

e
s

induce a topology on R? making it essentially 1-dimensional.
(iv) One assumes either that F is connected, or at least that the dimension n is
the same at all points (implied by connectedness). '

A differentiable atlas for E is a collection of charts (U, x;) such that | U; =M

and wherever U; nU; # @, the mapping z; 0 ;"1 2(U; ~ Uj) — 2(U; ~ U)) is
differentiable, of class O, say. Given a differentiable atlas 4, we adjoin all charts
(U, &) such that z; 0 27t a(U ~ U;) - z,(U ~ U)) is differentiable, to form a new

_ atlas A which is maximal or complete. This defines what is called a differentiable

structure on E. A manifold E together with a differentiable structure is called a
differentiable manifold. In general, there isn’t any unique differentiable structure
for a given manifold &.

Let f: E — F be a mapping from a differentiable manifold £ to a differentiable
manifold F (in future we will drop the adjective ‘‘differentiable” which will be
assumed). The map f is then said to be differentiable if for any two charts (U, ),

L ey e o e e
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(V, y) of E and F, respectively, the mapping
yofoa tia(U)y—y(V)

is differentiable. We shall denote by C(F) the set of all differentiable functions on £
(differentiable maps from ¥ to R).

3.2. A category 4 consists of n class of sets B, I, ... ealled the objects of 4 and a class
of mappings between these sets Mor (E, F), ... called the morphisms of £, 1ff:E — F
and g:F — ( are a pair of morphisms it is always possible to construct the morphism
g o f:E —G. This composition is necessarily associative, It is further postulated
that Mor (%, K) is non-empty and always contains the identity morphism id,;: B — K.

Example: The category of differentiable manifolds, The objects are differen-
tiable manifolds, the morphisms are diffcrentiable mappings between manifolds,
Isomorphism in this category is called a diffeomorphism.

Suppose we have two categories & and B and & correspondence C between their
objects and morphism. C is called a covariant funclor if the following situation
arises

f

.

: E F

£

|o

g:05) —2L s oy -C9_ o@y
C@oC(fy=Clgof), Clidg) = ideey.

C is a contravariant functor if we have the following

f

g a

#£: F F

c
g.0m) Y o) L9 _ g
C{fyeClg)=Clg°f), Clidg) = idgg-

Example: Let £ be the category of differentiable manifolds and % the category
of vector spaces and vector-space homomorphisms. Cicnrly C(E) is & vector space,
If h:E—F is a differentiable mapping between manifolds, define A*:C(F) —
— C(E) by h¥f =f o h (feC(I"). Clearly then (ko k)* = h*o k* and (C, ¥) is
a contravariant functor from 4 to %.

3.3. A tangent veclor at o point pe B is defincd as a linear mapping 4:C(£) —~ R
which satisfies the Leibnitz rule at p:

A(f-9) = J(p)A(9)+9(P)A ().

Example: A differentiable curve through p is a differentiable mapping a:
(—1, 1) — E such that a(0) = p. If { is a function differentiable in a neighbourhood
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- of p, then the vector X tangent to the curve at p is defined by

Xth=4 oa 0

t=0

Conversely, given a tangent vector X at p it is always possible to find a differentiable
curve t:hrough P to which X is tangent. Thus it is possible to identify tangent vectors
at p with classes of differentiable curves at p. If (U, x) is & chart at pe U, we define

a natural basis associated with this chart as —aa—' (i = 1, ..., n) defined by
z

o
5‘;(»"7‘)7"6{-

If Aa is any tangent vector p and A (a) = A', then it may be shown that A
=4 e Hence the tangent vectors at p form an n-dimensional vector space de-

noted. 7,(E), the tangent space at p. The dual space 7y (E) of linear functions w: 7 (E)—
— R is called the space of forms or cotangent space at P. ’

If h:E — F is a differentiable mapping from a manifold E to a manifold F we
define h'A € 7y, (F) for any d e 7,(E) by

(W' A) (f) = A(R¥), [feCF)

(the prime is omitted on & where there is no danger of ambiguity) and if wer}  (F)

wo define h*we v} (E) by (p)
(B*w) (4) = w(h'4),

k' corresponds to a covariant functor from the category of pointed differentiable

manifolds to the category of vector spaces and h* corresponds to a contravariant
functor to the same category. ,

E ——— F

’

h
7, (B) ——— Tuy(F) Covariant functor

h*
T (B) —— ¥ (F) Contravariant functor

3.4, Product manifolds

Given two manifolds E, F and an atlas of charts (U,z), (V,y) for E and F

respectively, we can define an atlas in the product topological s isti
pace B X F consistin
of charts (U XV, zX y), where ¢

XYy UXV — Rrim

\
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is defined by (zxy) (p, ¢) = (x(p), y(¢)). This makes EXF into a differentiable ,

manifold.
There is a natural isomorphism x:

1, (BY X 7,(F) = T, (B XF), pekE, qcePF.
Let A be the tangent to the curve ¢ I—> a(t) at p = a(0) and B the tangent to the

curve ¢ 1— b(t) at ¢ = b(0). Then define x(4, B) as tangent to the curve ¢ |— {a(d),

b)) at (p, 9).
Suppose now there is given a differentiable map k:EXF — H. Define h,:F —H

by h,(¢') = k(p, ¢') and hy:E —H by h(p') = h(p’, ¢); then A, and A, are also
differentiable.

Lemva 1: hox(A4, B) = hqA—t—hpB.

Proor: Let fe C(H), then

(hox) (4, B) () = & foh (a0, b)) | _,
d d
= L 1ohm 0|, +5 I A0,
d , . d ...
=& fo,e b0 |,y 5 7 Beo a0 |mo

3.5. Vector fields

There are two equivalent definitions:

1) If 7(E) = U 7,(E), a vector field X is a mapping X:E - t(E) such that

peE
X (p) = X, e,(£). Then for any feC(H) define Xfe C(E) by (Xf) (p) = X,(f).
2) A vector field X is defined as a linear mapping
X:CE)—C(E)
such that X (f, ¢) = f(X(g))+g(X (f)) for any [, ye C(£).

Let %(£) be the set of all vector fields on £. It is a Lie algebra with respect to

the bracket defined by
[X, Y]f‘= X(Yf)—Y (Xf).

If h:E — F is a differentiable mapping and X is a vector field on £, it is not in
general possible to transport it into a vector ficld on £, If X and Y are vector fields
in E and F, the pair (X,Y) is called h-related if for any peE, h(X)) = Yoo 16, if
for any feC(F) and peE we have Y, (f) = (AX}) (f) = X,(fo h) or equivalently
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Yf)o h = X(f &) for any f, or
. R Yf) = X (h¥f).
This can be expressed by the following commutative diagram:

*

C(B) «—— C(F)

X and Y are h-related iff X Y  is commutative.

*

h
C(E) —

C(F)

Lewwa 2: If (X,, Y,) and (X,, ¥,) are h-related, then ([X,, X,], [¥;, T,)) is
h-related.
. PRQOP‘: (YL Xolf) o b = (V(Yof)—Yo(Yif)) o b
= X)((Yof) © B)—X,((Y,f) = B)
= X;X,(fo B)—X X\ (fo B)
= [X;, X1 (fe A).
Lexwa 3t Let h:E — F be a surjective differentiable map and X a vector

“field on E. Then there exists a vector field ¥ on F such that (X, Y) are h-related if

and only if
X (h*C(F)) C R¥(C(F)).

Proor: If, X (k*f) = h*(Yf)e h*(C(F)). ’

Only if: If X (h*C(F)) C h*(C(F)), then for any feC(F) there exists geC(F)
such that X(fe k) = ¢ o h. The function g is unique because % is surjective:
geh=goh=g=yg.

Define Y:C(F) — C(F) by Yf = g. Y is a vector field since

X(fufoo B) = (fro WX (fyo A)-+(foo R)X(fye B)
= (fio k) (¥fo)o h+-(foo h) (¥fi)eh
= ((Yfo+fYf)o k.
Hence Y(f.f,) = fiYfo+/,Yf,. It is clear that (X, ¥) is A-related.

3.8. A one-parameter group of transformations of a differentiable manifold £ is
a differentiable mapping @:Rx E — E denoted by @(, p) = @ (p), such that
D,,, (p) =P, 0 P(p), P, =1idg. Clearly, for any ¢, @, is a differentiable auto-
morphism, or transformation of E. The inverse transformation of @, is then ¢!

= &_,. Honce the transformations {®, te R} form a group.
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If p is fixed the mapping ¢ i— @ (p) defines a curve through p called a trajectory.
The trajectories define a tangent vector ficld in I by

d.
'Xf=‘—u"f°¢t|lm0’

i.e., consisting of the tangent vector to the trajectory through cach point of .

Conversely we may ask, given a vector field X can we define a one-parameter
group where trajectories arc everywhere tangent to this vector ficld. The answer is
that it is possible to do so loeally in the neighbourhood of uny point, i.c., for any
pekE there is a neighbourhood U 3 p, an ¢ >0 and a differentiable map @:(—¢, ¢) %
XU — E such that @, o @, = ¢, ., whenover both sides arc defined, @, = idy
and X is tangent to the curves t — @(q).

Lemva 4: Let 2:E — E be a transformation of the manifold E and Xe y(X)
which generates the local group of local transformations @, Then X is invariant
with respect to A (i.e., X is A-related to itself) if and only if ho @, = D, 0 A,

Proor: If X generates the curve ti— @(p) then (hX),, is tangent to the
curve

Lies ho@(p) = ho® o h™ o h(p)

at k(p); hence hX generates Ao @, o k73, But X is invariant under & if and only if
hX = X or equivalently @, = ho @0 b1,

4. Lio Groups

4.1. Definition, Lie algebra
A Lie group @ is a group which is at the same time a differentiable manifold
such that the group operation

GxG—-aq,
(@, b)r—>a~1b

is a differentiable map.
Denote by y,(8,) the left (right) transiation of @ by the element a€@, i.e.,

yalb) == @b
(su(b)'= ba

A vector ficld X e y(@) is called left (right) invariant iff
v X, = Xg (6.X, = X,,) forall a, bed.

} for all bed. (1)

In order for X to be left invariant it is sufficient that

y.X, = X, for all ae@. (2)
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Then for any beG,
yqu = 7’n7’bxe = }'abxa == Xab'

This proves the existence of a left invariant vector field which is moreover
uniquely determined by its value at e. Therefore the set G of all left invariant vector
ficlds forms a vector space isomorphic to 7,(G).

Since for X, YeG'

(X, Y] = [7ad, va¥] = 7ilX, Y] 3)
(by Lemma 2) @' is a subalgebra of y(G), called the Lie algebra of G. It follows that
the category of Lie groups is related by a functor to the category of Lio algebras.

, h
¢ ———— H Lio group homomorphisms
t
l % l ' _
G———H' induced Lie sgebra homomorphism.

For if X is a left invariant vector field on G and h:G — H a homomorphism, then
h' X is again left invariant.

Example: If Vis an n-dimensional vector space, G = GL (V) the group of auto-
morphisms of V, then @ == End V, the Lie algebra of all endomorphisms of V with
[e,fl=a°f—foa for all «, e End V.

4.2, I-dimensional subgroups of Lie groups ‘

.Every Xe@' generates a global l-parameter group of transformations @,. In
fact, assume P, is defined for |f| < ¢. Since X is left invariant y, o @, = @, o y, for
all ¢ (by Lemma 4).

Now &, (e) = @, P, [e) = D(D,(e)e) = D, ° yw,(u)(c) = Yoy ° P(e) = Dle)Dyfe).
It follows that if @, and @, are defined then so is @, , which shows that @, is defined
for all te R. .

By exp X = ®,(¢) one defines the exponential map exp: & — G which satisfies

k

———r H

exp exp

GI h Hl

From @,(a) = P, 0 y.(e) = v, ° Pe) = aP,fe) and Pfe) = exp tX it follows that
®,(a) = a exp ¢X or -

. ¢t = 6explX‘ (4)
Entircly analogous relations hold also foMright invariant vector fields.
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&.5. %'he canonical form @ on a Lic group @ is a 1-form with values in G* defined by

@,(X) = Ye@ for any ae@ and Xez,(Q)
such that Y regarded as a vector Y,e7,(() is given by
Y, =y, X.
Clearly, @ is left invariant, i.e., y*@ = o and satisfies 6*@ = ad/ -1 ° @.

4.4. Lie groups of transformations (G-manifolds)

A G-manifold is a triple (E, @, ¥) where I is a manifold, @ a Lie group and
¥:G x E — E a differentiable map such that

i VoW, =W, ¥ =idg, (5)

where
¥ (p) = ¥(a, p). (6)

@ is then also called a Lie group of transformations of E. If 4e@’, a vector ficld
A on @xE can bo defined by A, ,, = (4, 0).

The map ¥ is clearly surjective. It follows by Lemma 4 that there is a unique X
on E such that 4 and X are W-related. X is called the Killing vector field corre-
sponding to A.

It can be shown that the vector field X generates &, = ¥,,,,, and could also be
defined by this relation. Then

PG — L(E)

defined by #'(4) = X is clearly a Lie algebra homomorphism and, morcover, if ¢
acts effectively, ¥’ is injective, if @ acts freely then 4 # 0 implies (¥’(4)), # 0
for all pe E (cf. [4], p. 42). Again, Lie groups of transformations form a category, the
objects of which are triples (E;, G;, ¥,), whereas the morphisms are couples (4, g),
where

h:E, — E, a differentiable map,

g:G, — G, a Lie group homomorphism

such that the diagram

E, %G, E,
|
‘ (R, 9) J b ' M
W l
E2XG2 LI E2

is commutative.

FIBRE BUNDLES ASSOCIATED WITH SPACE-TIME 43

Lemva 5: If (B, ¢) is a morphism from (E,, Gy, ¥}) to (E,, G,, ¥,) and X
= P4 and Y = ¥, g4 then X and Y are h-related. '

Pnoor: The morphism property of (k, g) implies according to (7) that ¥,o(k, g)
= ho ¥, and therefore #'(X) =4 o ¥[A =W, o (k',¢)4d =¥;94 =Y by the
definiticn of the Killing vector fields.

Examples: (1) If U is a differentiable manifold and @ a Lie group a trivial
@G-manifold is defined by (U X G, @, 8), where

‘ S (UX@G)XG - Ux@
is defined by
((p, b), a) 1~ (p, ba).

(2) (¥,-1, ad a) is an example of an automorphism of (E, G, ¥), where ada(b)
= aba~!. In fact, the diagram (7) is commutative since by (5) and (6)

o (ad g, ¥,-1) (b, 9) = ¥(ada(b), ¥,-1(p)) = Pape-1° ¥y-1(0) = Po-1(p)

= Wa" ° le(P) == ![Ia_l ° gl(b: P):
ie.,
Yo(ada, ¥,-1) = ¥,-10¥.

5. Bundles

5.1. A bundleis atriple (M, E, =) consisting of two manifolds 2/ and E and a sur-
jective map n: M-— E.

M

v,\‘

E

The category of bundles consists of such triples and morphisms (f, 2) called bundle -
homomorphisms which are couples of maps

f:M, — M,,
h:E, — E,

" such that the diagram

.

B, > E,

is commutative.




44 A. TRAUTMAN

If UCE is an open subset, (z~'(U), U, ﬂ["—l(u)) is called a sub-bundle of (M, E, n).
The simplest examplo is the carlesian product bundle (B X F, E, n) of two manifolds
E and F with z = pry (first projection) defined by xn(x,y) = = for all e X, yePF.

5.2. In gencral the counter images z~!(z) of points z€ £ need not be isomorphie. If
they aro, one spoaks of a fibre bundle. More precisely, a fibre bundle is a locally trivial
bundle, i.e., there oxists a manifold F, called the typical fibre, such that for each zeE
there exists a noighbourhood U of # such that the sub-bundle (z~*(U), U, a[ -1)0))
is isomorphic to the product bundle (U XF, U, pr).

F, UxF F

#~Y(U)

UxF

E]

3

= >
P N R

U/ E

The simplest non trivial example of a fibre bundle is probably the Mébius strip,
a bundle over the circle 7'.

A cross seclion of the bundle (M, E, =) is a differentiable map @:F — M such
that mo @ = id,;. It could also be defined as an E-bundle morphism from the tri-
vial bundle (¥, E, idg) into (M, K, n).

By a local cross seclion we mean & cross section of a sub-bundle (z~}(U), U, =).
A local cross section exists in ov cry fibre bundle.

z = U

5.3. Principal fibre bundles

Definition: Let Pand ¥ be manifolds and @ a Lie group. Then (P, B, G, n, y)
is called a principal fibre bundle if

() (P, E, a) is a fibre bundle with typical fibre G,

(ii) (P, G, y) is a G-manifold (G acting on P to the right),

(iii) there exist local bundle isomorphisms which are at the same time @-manifold
isomorphisms, i.e. for any x€ E there is an open neighbourhood U 3 z and a diffeo-
morphism % such that

(a) % is a bundle isomophism, i.e., the diagram

a~YU) Ux@G

U

is commutative;
(b) % is a G-manifold isomorphism (cf. Section 4.4); the diagram
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. hxid
A~ (U)XG ——— (Ux@)x@G

'pl é

h
a N0y ————— Ux@
or 3
a gy —— Ux@
Ya (id, 8,)
h

Uy ———  Ux@

commutes for any a € .

The general requirement for such composite structures is that the morphisms
with respect to one category must also be morphisms in the other category.

From (iii) it follows that (i, #) is a bundle homomorphism of (P X4, P, pr,)
into (P, E, n) and that @ acts frecly and transitively on the fibres of P. In fact, let
rea !(x)C P for zeU and assume that k(r)=(x, b), then =xn(r) = priok(r)
= pry (2, b) = 2 by (a), but with the help of (b) it follows that

7 (ya(r) = pry o b o y(r) = pry° (id, 8,)  h(r)
= pry(p, &b) = ;
80 G leaves the fibres n~!(z) invariant. Now ( acts transitively and freely by right
translations on itself and therefore on »~(x) since every fibre is isomorphic to &
by ().

A principlo fibre bundle is ¢érivial iff it has a cross section.

Proor: Iff:P— EX@ is an isomorphism, then @:E — P defined by &(x)
= f~Y=, x(x)) is clearly a cross section for an arbitrary function y: £ —@. Conver-
sely, if @:E — P is a cross section, then for any r e #71() there is a unique a €@ such
that y,(® (%)) = r since the action of @ on n~{x) is transitive and free. Define f(r)
= (p, a)e E x@. This is differentiable and bijective since it is so on each fibro se-
parately.

5.4. Tt is clear how to define morphisms in the category of principal fibre bundles:
a triple (h, g, f) is a morphism of (Py, Ey, Gy, m;, v) into (P, By, Gy, my, v,) if (B, g)
is a @-manifold homomorphism of (P,Gyy,) into (P,G,y,) and (4, f) & fibre bundle
homomorphism of (P,Eyx,) into (P;E;n,) and the diagram

7T
PxG, 2 P, s g

o | L

PyxG, —2+ P, —» E,
is commutative, ’
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In many cascs the base manifolds of several hundles are the same; then it is
convenient to restrict oneself to the category of bundles with f = id,.

If then, in particular, ¢ and k are surjective maps, P, is called an extension of
P,. (An important example from physics is the spin hundle which is an extension
of the bundle of Lorentz frames over the spacetime manifold; here g:SL(2, C) — L.
On the other hand P, is called a reduction of P, if By = E,. f = id;, & and g are
injective and h is morcover regular (i.c.. ki1, (P) —> 7,,(]%) is injective for all
p eP,; the regularity of g follows already from the group structure.)

5.5. Exam ple: Bundleaflinear framesof an n-dimensional differential manifold E.

Let P(E) =2 \J P(v.(#)) (of. Seetion 2.1), There is an obvious projection

rels

71 P(E)— E which associates to a frame the point of £ wherc it is attached. A na-
tural differentiable structure on P(E) which changes the latter into a differentiable
manifold and 7 into a differentiable map can be defined as follows: Let (U, x)
be'a chart in E and e:UU — P(FE) the map associating to yel the natural basis
e(y) = (e (1), - €,(y)) with respect to the coordinate system z. If now r
=(ry, ..y T,) €7} (2), then there exists a unique a(r)e(L(n, RB) such thatr = e(z)a(r)
(namely the matrix @ = (a%)) such that r; = ej(x)aj;). Now require that the map

a~Y(U)— UxGL(n, R),
i (e (r), a(r)),

. i =
which is clearly bijective, be a diffeomorphism. (GL(n, R) has a natural manifold
structure as an open subset of R™.) Tt can be checked that all charts a YU)~Ux
xGL(n, Ry— R"*" form an atlas which changes P(E) into a differentiable mani-
fold (of dimension n--n?). It has been already established that P(E) is a locally
trivial bundle. The remaining properties (i) and (iii) concerning the action of

GL(u, R) on P(E) are also casily verified. Thus P(E) is a principal bundle over E -

with structure group GL (n, R).
5.6, Associated fibre bundles
Let (P, E, G, p, ) be a principal fibre bundle and F & manifold on which ¢
acts to the left, i.e., ’
a:GxXF~F, o,lq)=aa,q)
with a € G, g€ F, such that o, © 7, = 0,, 0, = idp
Let ¢, = 0,-1 for all aef?, then (FGo) is a G-manifold (where @ acts on F to the
right). Now consider the action of ¢ in 2 x F defined by
pi(PXF)xXG@ — PxF,
where )
(r, g, @) 1= (yalr), 0,-1(q))

and form the quotient set M = (PxJF)/@ with the canonical map wPxXF—>M.
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A map g such that

$
PxF —— MU

\ /
noprl

E

is then well defined because i(r, g) = i(r’, ¢') iff there exists aeG such that r’

= 9,(r), ¢ = 0,-1(q)- . .
To introduce a differentiable structure on 3 let & be a local isomorphism from
x~Y(U) « P onto Ux@ for any open U = E and consider the diagram

hxid
a~Y(U)xF (Ux@)xF = Ux(@xF)
. idxo
k
. Mo~} U) —~-—m-—mmm -~ UxF

There follows the existence of a bijection k which makes this diagram commutative.
(The construction is entirely analogous to the one in Section 2.2: let ¢ (q) == «(r, ¢
and show that ¢, is bijective, noting that & acts transitively and freely on the fibres
of P.) A topology and differentiable structure on M can then be defined by requiring
that & be a diffcomorphism for any choice of the local automorphism k. So (MEg)
becomes a fibre bundle called the bundle associated with P, with standard fibre F.

5.7. Example:Let (P (), B, Gl(n, R), , 3) be the bundle of linear frames over E
and ¢:GL(n, R) — GL(m, R) a differentiable homomorphism. Then (R"GL(n, R)a)
is a left GL(n, R) manifold. The associated bundle with standard fibre R™ can be
interpreted as follows

(P(E)X B™)gren, my = (U P(zENX B™) oL,

zel
= UF(P(TI(E))X B e, = UEU(T;(E)) = o(E).
‘Ie Y XE,

As each fibre is the space of quantities of type o over 7,(K), a cross section of o(E)
is called a field of quantitics of type o over the manifold E. If in particular m = n
and o = 1 = idgy, py then v(H)is called the tangent bundle. Clearly, 7 is a covariant
functor from the category of differentiable manifolds into the category of (vector)
bundles.
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3

5.8. The “transformation law” of cross scctions in a general associated bundle can be
derived in complete analogy to those of tensor densitics over a vector space in
Section 2.2, Let (P, E, @, n, ¥) be a principal fibre bundle, (F, @, ¢) & G-manifold

and (M, E, g) the corresponding associated bundle. Denote by C (M) the set of all
cross sections of M. If fe C' (M), a map

_ [:P>F o)
can be defined so that :
idxf
————= PxF
% J ¢
b ! M

is commutative, (Recall that ¢ :F — Foy = @7 '(n(r)) is bijective). Then it follows
for any re P and a € @ that

Fovar) =ty ofom °.,(r)

" =g-104 Vofon(r) =ag,-1 of(r),

ie, | K
f°ipa=da—1°7=(\;a°z (2)
This means that :
Pxg —Y P
Fxid ] (3)
Fxq 7 F

commutes, expressing the fact thatfis a morphism in the category of G-manifolds

mapping P into F'. Conversely, if such a morphism f: P - F is given, a cross section
J& C(M) can be defined by

flz) o y,of(r), where ren ()

The cross section f is well defined because in view of (2) for any other choice ¢
= y,(r) € n~}(z), one obtains

b, of(f') = bygl) °.7° vo(r) = bvg(r) © Oy -1 °f(r) =t °ﬂ7‘).
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This establishes a 1-1-correspondence between the cross sections of M and the
G-manifold homomorphisms from P into F:

C (M)« Homg(P, F).
5.9. Jfthe manifold F is a vector space on which @ acts as a group of vector space
automorphisms the associated bundle is called a vector bundle; C{M) and Homg(P, F)

can then be given a natural vector space structure and fi— f becomes an isomor-
phism of the vector spaces C(3) and Homg(P, F).

Example: Induced representation

Let P bo a Lio group, & a olosed Lic subgroup of P, then (P, @, §) with §,(b)
= ba for all a € G, b € P is o G-manifold. The set £ = P[@ of left cosets can be given
the structure of a differentiable manifold, and (P, E, G, =, 6) becomes a principal
fibre bundle.

G @ qd

E

If now F is any vector space and ¢:G — GL(F) a Lie homomorphism (a repre-
sentation of @ in F), then (¥ G 6) becomes a G-manifold. Let M = (PxF)/@ be
the corresponding associated bundle, then there exists a vector space isomorphism

~ : C(M)— Homg(P, F). ‘
Let fe Homg(P, F), i.e., fi:P —F such that o 8, = o,-10f for all ae @, then if
b e P it follows that o y,-1 € Homg(P, F) because y,-1° 8, = 8, © y,-1. Since
(F +87) o 7o-1(0) = (aF +£7) (b=1)

= af (b~10)+Bg(b ")

= af o yp-1(c)+-Bg © yp-1(c) for all ce P,
the map w,:Homg(P, F) — Homy(P, F), where w,(f) = f° y,-1 is linear, and from
Forp-1) o 41 = foy,_1,-1 it follows that w,° w, = w,, for any a,be P.

Therefore
w: P — GL(Homg (P, F))
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is a representation of P, said to be induced by the representation of the Lie sub-
group G < P,

5.10. A transformation @:E — E of the base manifold can be extended to an
automorphism (@, idg, @) of the bundle of linear frames P(£) as follows: Identify
re P(E) with the isomorphism

T:R" - rn(r) (E) (4)

defined as in Section 2.1 and put () = T,m(P) o7, where 7, (P) is the isomorphism
the space tangent to E at ={r) onto the tangent space at @(x(r)) induced by @
of (cf. Section 3.3): .

r ' Tagn (P
B — Tatr) (E) _LA—)" To (s(n) (E)

P ()

The morphism properties of (@, idg, ®) according to section 5.4 are now easily
verified:

Pod, =0,°D, (5)
To® =Poax, (6)

also
I (DO‘[/=¢°W, (7)

which follows from the covariant nature of the functor 7.

Now suppose that X is a given vector ficld on E, &, the generated (possibly
local) group of transformations. Then the extension @, of @, is by (7) also a group
of transformations and thus induces a vector fild X on P(). It is clear that X
and X are m-related. Moreover, X is invariant with respect to d, (by Lemma 4).

Let f be a tensor ficld on E, i.e., a cross section f e C(o(E)), where o(E) is a bundle
associated to P(E) (cf. Section 5.7). An fe Homyg(, n(P(E), R™) corresponds to f
that is a set of m real functions on P(%). Therefore

XF:P(E)— R"
makes sense and since moreover X is invariant under 6, it follows that .
(Xf) © 8, = 0,-1 2 XT,
so that X/ Hom, o 1y (P (E), B"). This finally implies that there exists an clement

Ly feC(o(E))such that E:f = X[ £,fiscalled the Lie derivative of f with respect
to X.

b AT
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6. Counections

6.1. Affine spaces

Let E be a set and (V, 4-) an n-dimensional vector space regarded as abelian
group. The triple (E, V, 4-) is then called an affine space if V acts on E freely and
transitively, i.e., if p, ¢ € E there exists a unique vector u € V such that ¢ = u+p.
Ife = (e ... ¢,) is & basis of V and o € E, then (o, e) is a basis of E in the sense that
any p € E can be written as :

p == ¥'(p)e;+o.
The map x: £ — R"s induced in such a way by a basis (o, ¢) is obviously bijective
and can be used to introduce an (n-dimensional) differentiable structure on £. The
structure does not depend on the choice of (o, ¢) and (E, ) is a global chart.

If e(p) is the natural basis of 7,(E) associated with the chart (¥, z), then the lincar
map 1,(E) = V defined by the extension of ¢,(p) I ¢; is a natural isomorphism (i.e.,
is independent of the particular choice of (o, €)). All tangent spaces can therefore
be naturally identified with ¥V or there exists a teleparallelism over E. In other
words, the bundle P(F) of an affine space £ may be identified with the product
ExP(V).

Given r € P(V), define H, = P(E) as the set of all bases parallel to r.

: | Pw)

P(E) H

E
Clearly, H, is a submanifold of P(E),

w:H, — E is a diffeomorphism

- and for any a € @L(n, R)

(Sa(IIr) == Ilda(r)'

Such a “global slicing” of P(E) can not be introduced over an arbitrary manifold E
but gencralizations are possible in two ways:
(a) an “infinitesimal parallelism” can be defined over an arbitrary manifold Z;
{b) a connection can also be defined on an arbitrary principal fibre bundle P.
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6.2. Connections on a principal filre bundle

If (P, E, G, n, y) is a principal bundle, the (differentiable) assignment to each
r € P of a subspace I, of 7,(P) such that

(i) m: H, — 7,,(E) is a (vector space) isomorphism,
(ii) yo(H,) = Hyyn , n

is called a connection on P.

In addition to the “horizontal subspace” H, which has dimension n = dimkF,
a “vertical subspace” V, may be dofined as the set of all vertical vectors, ie., all
vectors tangent to the fibre through r.

Since the fibres are diffeomorphic to ¢ it follows that dimV, = dim@, so that
dimz,(P) = dimH, +dimV,.

Assume now that X eV, ~ H,, then zX = 0 since X is vertical and therefore X = 0
gince 7 is an isomorphism. This proves that 7,(P) is a direct sum of H,and V, 8o
that any X € 7,(P) decomposes uniquely:

X = verX+horX,
Since @ acts fresly and transitively on the fibres of P it follows that the map

v G — 7(P)
defined by
L pd =4,
where p'4 is the Killing vector field corresponding to A, is a bijection onto v,
(cf. Section 4.4).

6.3. Conncction form

Given a connection on P, a 1-form o with values in G can be defined by w,(X)
= .~ (ver X) for all X e 7,(P) which completely describes the connection. It is
called the connection form and has the properties

(AY Xell, <> o(X) =0,

(B) o(y'd), = A forany AeC’,

(©) viw = ad,—10 for any aed.

Proor: (A) and (B)are immediate consequences of the definition. Fromm oy, = a
and (1) it follows that p, o ver = veroy, and y, ° hor = hor o y,. Thus

v.X =y, (verX4horX) =y, (verX)+y.(horX)

is a decomposition into vertical and horizontal components.
If X € H,, then y,o(X) = o(p,X) =0 = ad,-1{«(X)) by (1), so that (C) holds
trivially in this case.

T T g g P mpr g T e o e A
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Now recall from Section 4.4. that (y,, ad,-1) is an automorphism of (P, @, y).
Therefore the diagram

ad; -1
GI____~___)GI
w| v o
Kill. veet, ———— Kill, vect.

comm\}tes (by Lemma 5); moreover (3) means that woy’ = id; now (y,e) (y'4)
= o(y,op’'dy=wop oad,..14 = ad, 1dory ooy’ = ad,_10r pio =ad,~; o p'~!
= ad, ! o.

Conversely, any given &'-valued l-form on P satisfying (B) and (C) is the
connection form of a unique connection on P. (Define: H, = {X € 7,(P):0(X) = 0},
then properties (i) and (ii) of the definition in 6.1 are easily checked.)

Principal bundles with connections form a category with morphisms defined
in a natural way: in addition to the requirements related to the principal bundle
structure one demands commutativity of the diagram

. (Py) 2 » G
h g

” '

T(Py) > G,

where the notation is like that of Section 5.4.
6.4. Curvature form
If « is & k-form on a principal bundle P, the horizontal part of « is defined by
(hora),(Xj, ..., X;) = a,(horX], ..., horX,) (2)
for all X, .., X, € t,(P).. For the connection form by the definition hor w = 0, but

" hordw # 0, in general. The 2-form

£ = hordw (3)

is cfl"C(‘l tlfo curvature form of the connection on P. It vanishes if and only if the
connection is lrivial, i.e., completely integrable or in other words, there is & complete
parallelism. Outline of proof: connection integrable &L horizontal subspaces are
surface forming <emics) (X, Y horizontal = [X, Y] horizontal).

\,
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Assume that this holds, then
2(X,Y) = do(horX, horY)
=-%[ﬂmrX)@MhorY”-%horY)pnﬂmer}—m(UmrX,horYD]*L

The last term vanishes according to the assumption that in the first two terms the
@'-valued function o(horY), resp. »(horX) vanishes everywhere along the stream-
lines of hor X, resp. horY, thus the derivatives also vanish and 2 = 0. Conversely,
if @ = 0, then in particular, for horizontal X and ¥
0=22(X,Y) = Xo(¥)~Yo(X)~o([XY])
= —a((XY]).
Thus [XY] must be horizontal.
The proof of Bianchi's identity

hordQ = 0 (4)

is similar.

6.5. Linear conneclions

A linear connection over o manifold E is a connection on the bundle of linear
frames P(E). The structure group is GL(n, R), its Lie algobra GL'(n, R) the Lie
algebra of endomorphisms of E* diffcomorphic to ™. Thus the connection form w
is essentially a collection of n® real valued 1-forms.

Another 1-form with values in " can be naturally defined on P(E) by

0,X)=r""aX) forany Ye 7,(E), (5)
where r € P(E) is regarded as a vector space isomorphism as in Section 5.10. This
1-form is called the canonical form of P(E) and has the (obvious) property

O(X) = 0 = (X) =0, (6)
whereas for X eV,
w(X)=0<X =0.

This means that

O,.H - R",

w:V,— R"
are both isomorphisms and hence (o, 0,) is a basis of 7(P(E)). Therefore a complete
parallelism is defined on P(£) or in other words, the bundle P(P(E)) is & product
bundle.

*) For the proof of tho genoral relation

do(X,Y) = -12- (x (@(Y)=Y (0(X)) —a((XY))

soe o.g. (4], p. 36 or [6], p. 103.
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Exam ple: Increasing complexity of space-time structure:

: product
P(P(B)) P(P(E)
product not product

P(E)
produoct P(E) P(E)
bundle
8
product
bundle B B E
Aristotelian  Galilean General ?
space-time and special  relativity
relativistic

space-time
6.6. Covariant differentiation
Let M be a vectox; bundle associated with (P, E, G, =, ). Suppose f:E — M
is a cross section and f: P — F the corresponding element of Homg(P, F). Since F
is a finite dimgnsional vector spaco, the F-valued 1-form d} on Pis well defined.
It satisfies yydf = o,~1df (cf. (5.2)).
In analogy to the isomorphism between C (M) and Hom (P, F), established in
Section 5.8, there is a bijective correspondence between k-forms a:A¥(E)— M*)
(vector bundle homomorphism) and horizontal k-forms of typecon P, a: A¥P)—F

(vector bundle homomorphism and @-manifold homomorphism, (¥; A ... A Y}) =0
if any horY,; = 0) such that the diagram

prxa

NK(P) PXF
N ‘

NE)

is commutative,

*) A¥(E) is the bundle of k-vectors over X,

B £ A R et '+ st iR TSR TP N
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The covariant derivative Vf of any fe C(M) is now defined as the unique 1-form
field ’
vitwE) M
corresponding to
Vf = hordf:7(P) > F. (1)
To caleulate 1’/7 let Yer,(P); then
hordf(¥) = df(hor¥) = df (¥)—df(verY).
There exists an AeG’ sach that A = w(Y) and verY = y 4. Now regard 4 as
element 4,e7,(G), then
df(verY) = dfly,d,) = W, A)f = A.(Fe v,
but foy, = 3-f(r), where &(a) = 0,-1and “-” denotes the action of GL(F) in F;
thus
df(verY) = Afo)-F(r).
But o+¢ = idg, therefore
0= A,(50) = 5(e) 4,(0)+4,(0) a(e) = 4,(0)+4,(d),
and moreover, 4.(0) = 57 o(exptA)| 1 =0 =0'(4), so that
df(verY) = ~A o) f(r) = —d'° o(¥):f(r),
or _ _ 4
vf= d?— (0’ o w)-f. - (8)
Usually one expresses everything in terms of a local cross section ¢: § — P of P,
For given e let

f,=f°e:E—>1" (9)
T, = e¥(o' o w):1(E) > GL'(F) (10)
[’;tfe = e¥* ,ﬁ; . (11)
then ‘ )
v.f =df.—T, /. (12)

If ¢': E — P is another cross section, there exists a function a:E — @ such that
the diagram

commutes. P
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Then the transformation law for fe C (M) becomes
f0) =T o €p) =F o vy @@) = & F () = y-1:F o e(p)
= da_l.fs(p)l i'e' fa’ = Ua"‘l.fe' (13)
For I' we have I, = ¢'* (0 © ) = ¢’ (¢, a)*p*w; let X € 7,(E), then

. Pc:(X) =g IP*(D(CX, aX) = 0’ ° (ad'a(p)-—lw(eX)—{-(7)¢(p)(aX)),

" where @ is the canonical form of GL(n, R) (cf. Section 4.3).

Denote S = goa:B — GL(F) c GL'(F), then
oo a'd'a(p)" = (o° a'da(p)—'l)' = n’d,doa(p)—l °og = 8d's(p)_1 o g
because ¢ °ad, = ad,q ° g, and

(B, (2 X)) = Gy (@X)],(0) = (Yo(p-10X) (0)
= X(0° yo-1°a) = 8(p) ' X(8) = 8(p)~' dS(X),
where o’(4) = A4,(0) and the definition of @ in Section 4.3 has been used.

This finally gives us the transformation law of I', the Christoffel symbols for
quantities of type o¢:

I, =8"1I.848"1d8s. - (14)
The curvature
R, =¢e*(0' o ), : (15)
satisfies the sirﬁpler transformation . law
R, =8"'R,S, (16)

where S now denotes the operation of o °a on 2-forms, (The second term vanishes
as a consequence of the horizontal character of £2.)

7. Uliyama Thoory of Gauge-Invariant Classical Fields

7.1. Consider a principal fibre bundle P with structure group SO (2), over (Min-
kowski or Riemannian) space-time E. Assume that there is a connection on P
characterized by & connection form w. Consider the representation (homomorphism)

a( cos sina) g

—sina  cosa

(This requires an obvious generalization of the preceding considerations to complex
spaces.) The Lie algebra of SO (2) consists of matrices of the form (_? 8) witha e R,

and o’(_2 §) = ia. Therefore if we construct the associated bundle M with standard
fibre U defined by ¢ and wish to use real forms, we have to introduce 4 and F by

a:80(2) — U(1) given by

W Y IAPV~  = # 3 L s oo s ea— g ¢ sewis as gy



58 A. TRAUTMAN

td =TI = e*c' ° w); iF=R=e*(a'°Q) M

for any local cross section e e C(P).
If
S:E—U(l), 8(p)=em

describes a change from the local cross section e e C(F) to e, then a cross section

- fe C(M) transforms according to (6.13) which becomes

[ (p) =e P f(p), 2

whereas the transformation laws of 4 and F follow from (1) and (6.14) and (6.16): ~

A= A-dy; F=F. (3)

If we interpret f as a field describing charged particles, 4 as the electromagnetic
potential and F' as the electromagnetic ficld, then (3) is the gauge transformation
law. The structure group being abelian, the relation between the connection and
curvature and the Bianchi identity become respectively

) F=d4 and dF =0%) (4)

with obvious interpretations in the electromagnetic theory. Moreover, the covariant
derivative in the (complex) bundle associated to P by ¢ may be written as

vif = (@, —id)f (5)

(by (6.12)) and this formula \muy be used as a basis for introducing interactions
between charged partieles and the electromagnetic field. 4 representation g,:80(2)
—> U(1) of the form a,(. 057 5Ny = ¢™ will lead to another associated bundle.
Its cross sections may be interpreted as ficlds deseribing particles whose charge is n
times that of particles deseribed by the field f. The rélation between the gauge
transformations of hoth kinds is now clear; the structure group SO (2) is the group
of gauge transformations of the fivst kind, whereas the group of gauge transformations
of the second kind acts, in an obvious way, in the set of all cross sections of P.

According to 12. Utiyama [7] one can cousider more general fields, admitting
gauge transformations corresponding to changes of cross sections in a prineipal fibre
bundle with structure group . Tor example, if @ = §0(3), one obtains the Yang-
-Milis field [8]. It is casy to write the analogues of equations (3), (4), (5) for this
general case.

It is sometimes asserted that the general theory of relativity may also be abtain-
ed in this way, by taking (/ to he the Lorentz group (or the Poincaré group, ac-
cording to some authors; cf. T. . B, Kibble [3]). This is not quite the case. The
structure group of the bundle of linear bases of a Riemannian space-time may be

*) This follows from the structuro equation if it is noticed that all Lie brackets and structure
constants vanish for an abelian group (cf. [4], p. 77/78).
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reduced to the Lorentz group L; therefore the Lorentz bundle L(F) (= set of all
“tetrads” in space-time E) is a principal bundle over E, with structuve group L.
The usual affine connection considered in GRT is indeed a conneetion in L (E).
However, in addition to its general bundle structure, the bundle of lincar bases P(E)
(and also L(F), as its reduection) has a property that is not shared by other prineipal
fibre bundles. Namely, the following is true: a principal fibre bundle /> over an
n-dimensional differentiable manifold E and with structure group GL(n) is (bundle)
isomorphic to the bundle P(E) of linear bases of F it and only if there exists an
R-valued 1-form @ on P of type 7, and such that @(X) == 0 < a’X = 0. (Exercise:
prove this theorem. Hiut: on P(X), @ is the canonical form defined by (6.5), some-
times nlso calicd the “soldering form™ of PP(X); the bundie I’(E) is “soldered” to E
rather than being loosely conneeted to K, as gencral principal hundles are). Note
also that for any manifold E, one can introduce the product bundle EXGL#).
In general, there not only isn’t any natural isomorphism of P (£)on E xGL(n), but
no (global) jsomorphism whatsoever (e.g. if ® is a 2-sphere). It is possible, and
this has been done by Utiyama, to cousider principal fibre bundles over space-time
with Lorentz structure group, completely unrelated to P (%) or L(E).

7.2, Isomorphism between the Kaluza-Klein space and the Utiyama phase space

A disadvantage of the Utiyama approach to clectrodynamics is that it does not
provide a natural method of deriving the other half of Maxwell equations (i.e.,
other than dF = 0). The full set of Maxwell equations is known to follow from
a simple action principle in the Kaluza-Klein theory, or one of its modifications
(of. T. Kaluza [2], A. Einstein, and P.G. Bergmanu [1]). It is interesting to know
that, in fact, there is a definite isomorphism between the Utiyama theory and the
Kaluza-Klein five-dimensional theory*). This isomorphism may be extended to
o large class of theories with gauge invariant fields. In other words, for any such
theory it is possible to construct a multidimensional Riemannian space which bears
the same relation to that theory as the Kaluza-Klein space to electrodynamics.

Let @ bo a Lic group possessing an snvariant meiric h, i.e., a symmetric non-
-degenerate covariant tensor field of second order defined on ¢ and invariant with
respect to both left and right translations. For example, if G is semi-simple, then
one can define & by h(d4, B) = Tr(Ad, o Ady), where Ad(C) = [4,C], 4, B, C
belong to the Lie algebra of @ and e is the unit of G. An abelian group such as T,
also has an invariant metric. Given a principal fibre bundle P with structure group
G over a base manifold E (space-time) with a Riemannian metric g, one can define
& Riemannian metric y on P ag follows. Let X et (P) and write y(X), 4(4), eto,,
instead of y(X, X), k(4, 4), eto. We put

yr(X) = gn(r)(n(X))+he(w(X))'

*) The existence of such an isomorphism has been independently recognized by Engolbert

8ohucking and Wiodzimierz Tulozyjew.

.
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It follows from the properties of & that y is non-singular and invariant with respect
to G,
yy =y for any ael.

To any Ae@ there corresponds a Killing vector field v'A4 of the metric y. In
particular, if ¢ = SO(2) so that ¢/ can be identified with R and & may be taken to
be the Euclidean metric on R (possibly with a numerieal cocfficient), then ¢ on P
is the Ricmannian metric of the five-dimensional Kaluza-Klein theory. 1t is also
clear how one can construct a principal fibre bundle from the Kaluza-Klein space.

This construction, when applied to the theory of a gencral field arvising from
gauge invariance, leads to the following possibility. One can formulate an action
integral of the form fR where R is the Ricci scalar density calculated from the

Q

nmetric y and 2 C P. By varying this action with due care not to spcil the inva-
riance of y with respect to G, one can obtain a set of field equations, analogous to
the Einstein-Maxwell set that one gets in the Kaluza-Klein theory [9].

8. Relativity and Naturality

We shall now say more precisely what is the meaning of the statement that the
bundle of frames P (F) in special relativity is a product bundle whereas in general
relativity it is not.

To do this we need the notion of nalural equivalence. Let 4 and B be eategories
and G, €, — two (covariant) functors from + to B. The functors may be thought
of as “‘gencral constructions’ performed on objeets of <t and yielding certain objects
of B. In certain cases these constructions may be cquivalent to each other. Namely,
one says that there is natural equivalence between €, and C, if, for any object B
of #, there exists an isomorphism T (E):Cy(E) — Cy(E) such that the following
diagram is commutative:

Cy(h
C\(E) 1()_" C\(F)
T(E) l T(F)
C(F) s CW(F ,
« Go(F) A, 2 (F)

where h:E — F is any morphism in <t.

An example of a natural equivalence was mentioned already in the Introduction:
if £ =3 is the category of finite-dimensional veetor spaces, C; — the identity
functor and C; — the functor of taking the double dual, then the usual embedding
of ¥V into V** establishes a natural equivalence of C, and G,.

Now, any physical theory of space and time has a starting point a as certain cate- .

gory. Its objects are models of space-time in that theory and the morphisms are
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mappings preserving the structure inherent in the theory and based on physicaf
hypotheses. For example in special relativity the category in question is that ol
affine spaces Aff, whereas in general relativity it is that of differentiable mani-
folds “DIff. For the purposes of physics it is usually enough to consider only the
invertible ones as morphisms, i.e., isomorphisms. When this is done, P’ (cf. Sections
5.5 and 5.10) becomes a functor from Diff into the eategory of fibre bundles, Bun.
In the category Aff (which is a subcategory of Diff, if one forgets the vector space
associated to an affine space) in addition to I, there is the functor P’ defined by

P'(E,V,+) = (EXP(V), E, pr).

Tt is quite easy to see that the functors P and P from Aff to Bun are naturally
equivalent and that nothing of the sort is true if Affis replaced by Diff. The natural
isomorphism

T(E):P(E)— EXP(V)

allows one to identify P(E) with EX (V) and so P(E) for an affine space E be-
comes a Cartesian product.
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SYMMETRIES INDUCED BY CONSERVED VECTOR CURRENTS
IN THE THEORY OF ONE SCALAR FIELD

J. T. LOPUSZANSKI

Institute of Theoretical Physics, University of Wroclaw, Wroclaw

Let us consider a quantum theory of one sealar, real, local, Poinearé covarinnt
field with massivo ona-particle states and unique vacuum. The asymptotic ficlds
are assumed to bo irroducible. Qur conjocture is that under some technienl assunpt-
iona the “charge’ of every roal, locally conserved local Poincaré covariant (pscudo)
vector current rolativoly local to the original ficld appearing in this theory —
vanishes, Tho only symmetry groups ouc can find are generated by global,
solf-adjoint, Poincard invariant operators. Our arguments can be extended to
a thoory of one complex scalar ficld. In this case tho only admissible symmetry
induced by a current can ho the gauge transformation. Incidentally we show that
& similarity transformation which links two real fields together can be replaced
by a unitery transformation. Although the complex field wo started with does not
necessarily satisfy the supersclection rulo we may define another irreducible
field which has the same asymptotic ficlds as the former and fulfils the super-
selection rule requirements.

1. Int-roduc(idu

In many papers concerned with the symmetry problems in quantum ficld theory
(e.g. Goldstone’s Theorem and miscellancous topics related to it) one may find
investigations of an algebra of quasilocal obscrvables and a conserved (pseudo)
veetor current j, () local with respect to the elements of the algebra and to itself
(see, e.g., [1], {2], [3]). It is well known that the necessary condition to get a properly
defined “charge” (which in turn gives rise to a one parameter symmetry group of
the theory undor consideration) is tho local conservation of the current j,. If the
energy-momentum spectrum has a mass gap then this condition is also a sufficient
(no — 8o called — ‘‘Goldstone particles”). The theorems proved up to now
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