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Abstract. The purpose of the paper is to present a rigorous derivation of the
relation between conservation laws and transformations leaving invariant the action
integral. The (space-)time development of a physical system is represented by a
cross section of a product bundle M. A Lagrange function is defined as a mapping
L: M — R, where M is the bundle space of the first jet extension of M. A symmetry
transformation is defined as a bundle automorphism of M, carrying solutions of the
Euler-Lagrange equation into solutions of the same equation. An important class
of symmetry transformations is that of generalized invariant transformations: they
are defined by specifying their action on the Euler-Lagrange equation. The genera-
tors of generalized invariant transformations are solutions of a system of linear,
homogeneous partial differential equations (Noether equations). The set of all
solutions of these equations has a natural structure of Lie algebra. In a simple
manner, the Noether equations give rise to differential conservation laws.

1. Introduction

The nature of the connection between symmetries and the existence
of conserved quantities is an intriguing physical problem. The theory
of this connection, as it appears in classical physics, constitutes one of
the most beautiful chapters of mathematical physics. The fundamental
work on this problem was done by EMmy NoETHER in 1918 [1]. Since
then, a rather large number of papers have appeared on this subject.
They contain either generalizations of Noether’s results [2] or their
application to particular physical theories. Little work has been done
on a precise statement and proof of the basic theorems relating properties
of invariance to conservation laws.

The formulation that these theorems have been given until recently
can be summarized as follows. To alleviate the exposition, we make here
a number of simplifying assumptions. Let n and N be positive integers
and consider a physical system whose history (space-time development)
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may be represented as a mapping?! of R* into R¥. The equation of motion,
L4=0, 4=1,...,N,

of the system is assumed to coincide with the Euler-Lagrange equation
corresponding to a Lagrange function L: R* x R¥ x R*¥ - R. A trans-
formation of R® x R¥, which may be written as

' = &(x, y), Yy =ny, (1
is said to be an invariant transformation for this system if it preserves
the value of the action integral [ L da. Given a continuous group of
invariant transformations, one considers the ‘infinitesimal’ mapping

¥ =x+0x, ¥y =y+0y.
The invariance of the action integral, evaluated for f: R* — RY, gives

LASf, + G =0, @

oxt
where

0fa=0ys — aij ot
— Loai+ a 6fA, i=1,...n

and everything is computed at y = f(z). For any f satisfying the equation
of motion, there is a differential conservation law 0 T%/dx* = 0.

Eq. (2) may be looked upon as the equation from which invariant
transformations can be determined by solving it with respect to (dz, dy)
and then reconstructing the group. However, one is faced here with a
somewhat unusual problem: Eq. (2) is supposed to hold for arbitrary
mappings f: R” - R¥Y and as such does not lend itself to treatment by
the methods used for partial differential equations. Even if a solution
(0, dy) of Eq. (2) is found, it is not obvious what is the behavior of the
fields, of the action and of the equations of motion under finite trans-
formations generated by (dx, dy). In any case, it is clear that trans-
formations of the form (1) are too general to be applicable to mappings
(fields). For example, a rotation around the origin in R? by an arbitrary
angle = k7 maps the graph of the function f (z) = 22 into another parabola
which is not a graph of any (single-valued) function on R.

U In this article, we adopt the following notation and terminology: A map is
understood in its set-theoretic sense; if f: £ — F and g: F — G are maps, then
g of:E — ¢ denotes the composite map; a bijection is a one-to-one map onto. By a
manifold we mean adifferentiable manifold of class C* and the adjective differentiable
always refers to that class. A mapping is a differentiable map from one manifold
into another. A transformation is a bijective mapping whose inverse is also a mapping.

The ‘number spaces’ R, n = 1, 2, . .., arc assumed to have their natural manifold
structure. If M is a manifold, then a mapping from M into R is called a function.

18 Commun. math. Phys., Vol. 6
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It is the purpose of this paper to give a precise characterization of
invariant transformations and of their relation to conservation laws. In
order to avoid the ambiguities of the infinitesimal language, we use
exclusively the method of one-parameter groups of transformations. For
simplicity, we restrict ourselves to the number spaces R” and their
mappings. Everything under consideration being of a local character,
this restriction does not lead to any loss of generality. In Section 2 are
summarized the essential facts about one-parameter groups of trans-
formations of R”. Section 3 contains some elementary information on
bundles, their homomorphisms and extensions. A history of a physical
system may be thought of as a cross section of an appropriate bundle,
space-time (or time) serving as the base. If the set 1" of cross sections
under consideration is large enough, then the only maps that transform
elements of /" into cross sections are automorphisms of the bundle space
(Lemma 1). In Section 4, it is shown how a differentiable automorphism
of the bundle R* x RY over R® may be extended to an automorphism
of the bundle R” x R~ x R”Y over R~ In other words, the transforma-
tion properties of derivatives of mappings are obtained from the trans-
formation properties of the mappings themselves. Section 5 contains the
definition of symmetry, invariant and generalized invariant trans-
formations and also the derivation of some of their properties (Lemma 3).
In Section 6, we present a system of partial differential equations whose
solutions generate groups of generalized invariant transformations
(Theorem 1) and write down the conservation law corresponding to any
such solution (Theorem 2). The last section contains a few examples
which are intended to show the connection of the formalism developed
here with other approaches to the same problem.

2. One-parameter Groups of Transformations

A family (&));cg of maps &;: R* — R" is called a one-parameter group
of transformations of R if y: R*+1— R, defined by x(f, x) = &;(x), is
a mapping and

& (i id , (3)

Eof =&, forany ¢, sER. 4)

It follows from (3) and (4) that &, = &1; therefore, for any ¢, &, is a
transformation of R™. The curves { — y(t, z), x € R", are called trajectories
of the group. Through any point x £ R" there passes exactly one trajec-
tory of the group. Denoting g—f (¢, z) by % (@), one can write the vector

field tangent to the trajectories as
d&

X = .
dt|t=0
The vector field X is said to be induced by the group (&;). Differentiating
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both sides of Eq. (4) with respect to ¢ and putting s = —¢, one obtains
the differential equation of the trajectories
L —Xog, )
Conversely, if X is a vector field on R?, i.e., a mapping of R” into R, then
the set of solutions of (5), each solution being defined in some neighborhood
of an  ¢R” and for sufficiently small ¢ ¢ R, defines a local, one-parameter
group of local transformations of R™ [3]. One says that this local group is
generated by X, or that X is its generalor. Subsequently, to simplify the
language, we shall often say that X generates a one-parameter group
of transformations although the group is defined only locally, in general.
A function ¢ on R is called ¢nvariant with respect to the group (&,)
if it is constant along the trajectories of the group, i.e., if @ 0 &, = a for
any ¢t € R. Let X (a) denote the value of the vector field X = (X?) on the
function a,

X@=X2%, i=1,...,n,
then, from Eq. (5) one derives
d
E{(“Oft):X(“)o‘fta (6)

so that
aoéi=a<X(a)=0.

3. Bundles, Homomorphisms and Extensions

A bundle is a triple (M, E, i) consisting of two sets I and Z, and a
map s of M onto E. The set M is called the bundle space, £ — the base
space and 7 — the projection. For any « € £, the set =1 (x) is called the
fibre over z. A subset @ C M such that & restricted to @ is a bijection onto
E is called a cross section of the bundle (3, K, 7). For reasons of linguistic
simplicity, we shall often say that @ is a cross section of M to mean
that it is a cross section of the bundle (M, E, 7). With any cross section
@ of M there is canonically associated a map ¢:FE — M such that
wo@=1id and @(#)= @. Conversely, to any map ¢: % — M such
that & o @ = id there corresponds the cross section @ = ¢ (£).

As an example, one can consider the product bundle (E x F, E, 7),
where 7z (2, ¥) =, (x,y) € £ x F. If f is a map of F into ' and ¢y is the
corresponding graph map, ¢;(x) = (, f(x)), then ¢,(F) is a cross section,
called the graph of f. In the case of a product bundle, in addition to the
bundle projection 7, one has a second projection ¢ : £ X F — F, defined
by o(, y) = y.

Let (M, By, ;) and (M,, E,, 7z,) be bundles; a map o : M; - M, is
called a bundle homomorphism of M; into M, if there exists a map
£: B, — E, such that m, o w = & oz, (More precisely, one should say
18*
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that the pair (w, &) of maps w: My~ M, and &: B, -~ E, is a homo-
morphism of the bundle (M, By, ;) in the bundle (M,, K, ;) if
7y 0w = £ oy, cf. [4]). For any w, the map &, if it exists, is unique. A
bundle homomorphism may be characterized by the property that it
maps fibres into fibres. Let o be a bundle homomorphism of M; into M,
such that the corresponding map & : E, — K, is bijective; if ¢ : £, — M,
corresponds to the cross section @ of M, then w o ¢ o &1 corresponds to
the cross section w (D) of M,. If there are given three bundles, (M,, B;, ),
t=1,2,3, and two bundle homomorphisms, (w;, §;), = 1,2, such
that w;: M; - M, and &;: E; -~ E;,, then the pair (w, 0 w;, & 0 &)
is a bundle homomorphism of (M, £, 7,) in (M, E,, ;). A bundle
homomorphism w of M, into M, such that both w and & are bijective is
called a bundle isomorphism. In particular, if the bundles (M, £;, 7;)
and (M,, E,, m,) coincide, then a bundle isomorphism of M, onto M,
is called a bundle automorphism.

A set [ of cross sections of M is said to separate the points of the base
space £ if, for any 2, z, € M not belonging to the same fibre, there exists
a cross section @ € [ containing both z; and z,. Let w be a bijection of
M onto M and @ ¢ I, then o (D), in general, is not a cross section (cf.
the example given in the Introduction). The question as to what bi-
jections carry cross sections into cross sections is clarified by the
following

Lemma 1. If I" separates the points of K, then a necessary and sufficient
condition for both w (D) and w=1(D) to be cross sections for all @ € I' is that
w be a bundle automorphism.

The sufficiency of this condition is obvious: if ¢ is the map associated
with @ ¢ I' and o is a bundle automorphism with 7 o w = £ o 7, then
o (D) is the cross section corresponding to the map w o ¢ o &~1. To prove
that the condition is necessary, we note first that a bijection w : M — M
is a bundle automorphism if and only if it permutes the set of all fibres.
Suppose now that a bijection w is not a permutation of the set of all
fibres. This means that there exist z,, z, € M such that either 7 (z,) ==
+7m(2) and mow(z)=mow(@,) or m(z)=7m(2) and mow(z)+
=+ 7 o w(2,). In the first case, we take a cross section @ ¢ I containing
both z; and z, and observe that o (@) is not a cross section. In the second
case, the same argument can be applied to w=1.

Let (M, E, n) and (M, E, 7) be two bundles with the same base space.
We say that the second bundle is a j-extension of the first, if there are
given two sets I" and I, consisting of cross sections of M and M, respec-
tively, and a map j: I'— I, called the extension map, such that

for any z € M there exists @ ¢ I' such that z (@), (7)
and

if @,¥cl, then zGH(D@)Nj)Cx(®nP). (8)
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For the sake of simplicity, we shall also say that M is an extension of
M ; the cross section j (@) will be written as @.

If M is an extension of M defined by j: I'— I, then there exists a
unique bundle homomorphism 7 of M onto M, such that

mot=x® and 7Toj=1id.
The map 7 is called the projection of M onto M, defined by j. Let
(M,, E,, @;) be an extension of (M, E,, m;), defined by j,: [, — I,
t=1,2. A bundle homomorphism (w, &), where w:M; > M, and
& B, — E,, is said to be compatible with these extensions if
o)l
and

(£ 07) (D N P)C A (0 (D) N oo (P))

for any @, ¥ ¢ I'l. I o is compatible with the extensions then it can be
extended to a bundle homomorphism & : M; — M, in such a way that

T,ob=wot; and doj=jow,

where 7; is the projection of M, on M,, defined by j,. If, in addition,
&1 By~ E, is bijective, ¢: B, —~ M, corresponds to @ ¢}, and
@: By, — M, corresponds to @ = j, (@) € I';, then the map

wopoll=wopoét 9)

corresponds to @ (®) = w (D) € [,

If there are given three bundles (M, E;, 7r;), their extensions
(M, E, @), i=1,2,3 and two bundle homomorphisms (w;, &),
w;: M;— M;y, & E;—~ E;q, j=1,2, compatible with these exten-
sions, then the bundle homomorphism (w, 0 w;, & 0 &) is also com-
patible and

Wy 0 Wy = @y 0 @y - (10)

As a corollary, one infers that if w: M; — M, is a bundle isomorphism
and both o and w~! are compatible with the extensmns then @ : M, —~ M,
is also a bundle isomorphism and &' = o~

4. Jet Extensions

Let 7 and IV be positive integers and consider the manifolds £ = R»,
F=RY, F=E*®@F~R"Y, F=F*® E*®F ~R"Y, M= FE x F,
M =M x Fand M = M x F. Here E* is the dual of E, considered as a

vector space and as denotes a natural identification. Typical elements of
these manifolds will be denoted in the following manner: x = (2) € E,

Y= (a) CF = () €1, i = (yais) EF, 2= (@) € M, 2= (2, y,9) € M,



254 A. TRAUTMAXN:

etc., where ¢,7=1,...,nand 4 = 1,..., N. As explained in Section 3,
the set of all mappings of E into ¥ may be identified with the set I” of
all differentiable cross sections of the product bundle (M, E, ), where
7 (x, y) = «. Clearly, this set of cross sections of (M, E, 7r) separates the
points of B. Let I" denote the set of all differentiable cross sections of the
bundle (I, E, 7), where @(x,y, §) =« We can now define a map
j: ' T, allowing us to consider M as an extension of M. Given a
mapping f: ff — F, the graph mapping ¢,: £ — M,

ps(@) = (z, [(2)) (11)
associated with it, and the cross section @ = ¢;(E), we define j(D) to be

the cross section of JI corresponding to @,: B — M, where

(@) = (@, f (x), f' ()
and ' = gradf = (@f4/0x?). Clearly, j: I'— I is an extension map, i.e.
conditions (7) and (8) arc satisfied. One says that j defines (M, B, 7) as the
(first) jet extension of (M, E, m) [5]. The projection 7: M — M is now a
mapping given by 7(z, ¥, %) = (z, y). In addition, one can define two
other projections, o: M - F, o(x,y) =y and ¢: M F, oz, v, 9) =19.
Jet extensions of higher order may be defined in a similar way. Here we
need only the second jet extension (M, B, %) of (M, B, x) defined by
associating with the graph mapping (11) the mapping ¢, : £ — M such
that
Pr(x) = (, f(2), f (@), " (2)) ,

where [ = (02f /0% 027) is the set of all second partial derivatives of f.
Any differentiable homomorphism (w, &) of the bundle (3,, £}, 77;) in
the bundle (}M,, E,, 71,) is compatible with their jet extensions (here and
subsequently, E, = R", F, =R, M,= H, x F,, etc., n; and N, are
positive integers, ¢ = 1, 2). For any (z, y) € 3,
o, y) = (E@), 7@ )
where #:M;— I, is a mapping. In vparticular, let K, = F,=Z,
7 M~ I, be a mapping and ¢, denote the bundle homomorphism of
A, into M, such that 7, o ¢, = 77; and g, 0 ¢, = y, that is

Given y, one defines a mapping Grad y — (Grad, ) : M, —~ Fy,i—=1,.. ., 0,
by writing the extension @, of ¢, as
¢1<fca Ys ?]) = (iL’, Z(xi y); (Gl’&d%) (56, Y, ?])) . (12)

Note that Gradp = ¢. If y: My » F, = I ® I}, then Divy denotes the
obvious contraction of Grady:

(Divy)y = Grad,;»';; i=1,...,m; A=1,...,N,.
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With any transformation & : Z — F one can associate the bundle homo-
morphism ys: M — M given by
pel@,y) = (E@), y) -

To evaluate the extended homomorphism ¢ : M — M, one may use
formula (9). The result is

1/)5(‘%7?}?/.) = (5(27), y:g'é‘ﬁl’(w)) (13)

where the significance of the symbols is the obvious one:

. , o&-v
@&V @)ai=ya; 5 05@) -
Any differentiable bundle automorphism w: M —~ M, row=Eox
may be represented as
W= PO @y,
where 7 = p o w. Using Egs. (10), (12) and (13) one obtains the following
general formula for the extended automorphism @,
@(x, y,9) = (@), (=, y), (Gradn) (@, y, g) - £ (2)) - (14)
For an arbitrary mapping y: M; - F, and bundle automorphism
o : My — My, equation (9) applied to ¢, o @ gives
(Grady) o @ = Grad(y o w) - &V (15)
Similarly, if ¢, : B -~ M, is a graph mapping, then
(Grad ) o @y = grad (y © ¢y) - (16)
Since the bundle (17, B, ) may be considered, in an obvious and natural
manner, as an extension of (M, I, ), it is clear how the Grad map may
be generalized to be applicable to mappings like 7 : M, — F,. For the
mapping Grad y: I, —\»1.1%2 the analogues of formulae (15) and (16) are

(Grady) o w = Grad(y o @) - &V (17)
and B
(Grady) o ¢; = grad(y o @) , (18)

where @ is the extension of o to JI.

Let us now consider a one-parameter group (w,);cg of automorphisms
of M, 7w ow, = & om. Clearly, (£,),cr is a onc-parameter group of trans-
formations of I and

OJt(Q}, y) = (S&t(x)a 777:(933 ?/)) .
The vector fields induced by the groups (§,) and (w,) are, respectively,
dEl

A= dt lt=

and Z=(X,Y), where = (19)
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The families (@,);cp and (w,),cp of extensions of the automorphisms
w, also constitute one-parameter groups of transformations, respectively
of M and of M.The vector field Z induced on 3 by (@,) may be evaluated
from Eq. (14),

Z=(X,Y,GradY — p- X'). (20)

The map Z — Z is a Lie algebra homomorphism: it is linear and
(2, Zs) = 17y, Zs)

where the brackets denote the usual commutators of vector fields.

5. Euler-Lagrange Equation and Symmetry Transformations

We wish now to consider physical systems whose evolution is de-
scribed by differential equations derivable from a variational principle
with a Lagrange function depending on field variables, their first deri-
vatives and possibly also on the independent variables. More precisely,
we assume that the Austories of a physical system may be identified with,
or described by, cross sections of a bundle (M, E, ). By a Lagrange
function we understand a function L defined on the bundle space M of
the first jet extension of (M, E, n), the significance of the symbols being
the same as in the previous section.

Given the Lagrange function,

L:M~—~R,
one can form the Huler-Lagrange mapping

[L]: 0 > F*
defined by
oL . oL

[L]:ﬁ— — Div =
Yy oy

Let f: E — F and ¢, be the second jet extension of the graph mapping
@y of f. One says that f satisfies the Euler-Lagrange equation, if

[L]1ogp,=0.

We now wish to consider the following problem: what are the maps
that carry solutions of the Euler-Lagrange equation into solutions of the
same equation ? Lemma 1 suggests that we should look for these maps
among automorphisms of M. Accordingly, we define a symmetry trans-
formation as an automorphism w of the bundle (M, Z, ) such that

if f:E—~F and [L]log,=0, then [Llowog,=0. (21)

An important example of symmetry transformations is provided by
transformations leaving invariant the action corresponding to L,

[ Lo,
Q
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where Q2 C B is a compact domain and the integral is taken with respect
to the Lebesgue measure. An automorphism w of M is called an invariant
transformation of L if, for any £ and f,

[Logs;= [Lowogo&t
a ()

where, as before, w o w = & o . The domain 2 and the mapping f being
arbitrary, the last equation is equivalent to

L=JLo& (22)
where J is the jacobian of &,
a&iy

To show that an invariant transformation is indeed a symmetry trans-
formation, one can use the following

Lemma 2. If L: M — R is a Lagrange function and w: M — M is a
bundle automorphism, w (x, y) = (& (x), n(x, y)), then

ULOGH:J%%{MBOE. (23)

This can be proved by a straightforward computation, using formula (17)
and the obvious identities
0
yai

91z
ys ’

Grad;np = % o, ‘a’%,{ Grad; 7 = Grad,

s (7 %5 o) = 0°

Now, if w is an invariant transformation, then Eq. (22) holds and
Eq. (23) becomes

[MA:Jggmeoz. (24)

Since w is a transformation, the matrix (J d%p/0y,) is non-singular and
Eq. (24) implies condition (21).

An important class of symmetry transformations wider than the
class of invariant transformations, consists of all those automorphisms
w of M for which Eq. (24) holds; we shall call them generalized invariant
transformations. Their basic property is given by

Lemma 3. 4 bundle automorphism w: M — M is a generalized in-
variant transformation if and only if there exists a mapping y: M — E
such that

JLow+ Divy=1L.

This is a direct consequence of Eqs. (23) and (24) and of a classical
theorem [6]: if K is a Lagrange function, then a necessary and sufficient
condition for [K] = 0 is that there be a mapping y: M — £ such that
K = Divy.
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6. Conservation Laws

Lemma 4. If (w,) is a one-parameter group of aultomorphisms of the
bundle (M, E, 7t), w o w; = &, o 7, and L is a Lagrange function, then

A I Lod) =T (Z(L)+ LdivX) o3, (25)

where J, = det (0 &) and Z is the vector field induced on M by the group
(@) of automorphisms, obtained by extension of (w,).
This is a simple consequence of Eq. (6) and
B J@iv) o,
where X is given by (19) and divX = 0 X¢/o«".

Theorem 1. A necessary and sufficient condition for the one-parameter
group (w,) of automorphisms of M to consist of generalized invariant trans-
formations of L is that there exist a mapping V : M — K such that

Z(L)+ LdivX + DivV =0. (26)
The notation here is that of the previous lemma.

Proof. Let (w,) be a one-parameter group of automorphisms of 3. By
Lemma 3, the group consists of generalized invariant transformations of
L if, for any t, there is a y,: M — I such that

K, = Divy, 27)
where
K,=L—-J,Low,. (28)
If this is so, then, putting
_ 9
V=)o

differentiating both sides of Eq. (27) with respect to ¢ and using Lemma 4,
one arrives at Eq. (26). Conversely, if we assume liq. (26) to hold and
construct the group (w,) generated by the vector field Z, then, by (25),
(26), and (28):

g, DivY)om,.
Using Lemma 2 and the identity [Div V] = 0, onc obtains from the last
equation

SK1-0.

Together with K, = 0, this implies [X,] = 0 and ensures the existence of
%, such that Eq. (27) holds.

The Noether-Bessel-HHagen [1], [2] equation (26) is, in {act, equi-
valent to a system of partial differential equations of the first order, linear
and homogeneous in the unknowns (Z, V). If (Z;, V;) and (Z,, V,) are
solutions of Eq. (26), then so is (Z,, V), where
Ziy = [Za, Zy] and  Vy=Zy(Vy) — Zy(Vy) +

4 VydivX, — Vi divX, - X{-V,+ XJ- V.
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In particular, if Z is induced by an invariant transformation, then it
satisfies the Noether equation

Z(L)+ LdivX =0. (29)

The set of all solutions of Eq. (29) forms a subalgebra of the Lie algebra
of all vector fields on M.

Let (o, p) =Tr(x® f) for o ¢ F and  €F* @ B, where B is a
vector space. The following identity can be derived by a direct computa-
tion:

Z(L) + LdivX = (¥ — ¢+ X, [L]) + Div (XL+<Y — \%{7» .
This, together with Eq. (18), leads to

Theorem 2. 7f f is a solution of the Euler-Lagrange equation and Z
generates a one-parameter group of generalized invariant transformations,
then

div(7 o g;) =0, (30)

where
7= XL+<Y—@-X,-2-§—>+ V.

Formula (30) may be interpreted, in a well-known manner [7, 8], as
expressing a conservation law in a differential form. For example, if the
base space is one-dimensional, then Eq. (30) reduces to d (7' o @,)/dx = 0,
i.e., to the assertion that 7' is a constant of the motion.

7. Examples

1. Invariant Field Theories

A field theory whose equations follow from a Lagrange function L
is said to be generally invariant (or covariant), if to any ‘coordinate’
transformation & : I/ — E there corresponds a transformation w: M —~ M
such that the pair (w, &) is a generalized invariant transformation of L.
More precisely let o denote a Lie algebra homomorphism of gl (n)~ £ @ E*
into gl(N) ~ ¥ @ F* and put

o(e;® ef) = o et ® ey,

where (e;), (¢%), (e4) and (e,) are the canonical bases of H, E*, F' and F'¥,
respectively. One says that L describes a generally invariant field theory
of quantities of type o if, for any vector field X on Z, with Y given by

.. 0X¢

Yo, y) = o4 5 (@)1p

there exists a V : M — I such that Eq. (26) is satisfied. In this case, the
Lic algebra of solutions of Kq. (26) is infinite-dimensional and, in addition
to the ‘weak’ conservation law (30), one can derive a generalized Bianchi
identity and a ‘strong’ conservation law [9].
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2. Canonical Transformations
Let E = R be the base space, /' = R™, and M = E x F x F* be the
bundle space. Let z = (x,¢,p) denote a typical element of i,
g=@"EF, p=(p,) cF* a=1, ,m. The set # of all functions
on M is a Lie algebra with respect to the Poisson bracket
{A,B}: 04 oB- 04 0B

o op,  opa a0 D BEF
An automorphism w of the bundle (M, E, x) is called a canonical trans-
formation if, for any 4, B ¢ #
{4, Bjow={4d ocw, Bow}.
Let (w;) be a one-parameter group of automorphisms of M and
= (X, @, P) the vector field induced on M by (w,;). A necessary and

sufficient condition for (w,) to be a one-parameter group of canonical
transformations is that Z be a dertvation of the Lie algebra %

Z({4, BY) = {Z(4), B} +- {4, Z(B)} .

From this one obtains that there is a G €% such that Q* = —0G/dp,,
P, = 0G[0gq”. Therefore, for any 4 ¢ .

04

In particular, if (w,) is a group of time-independent canonical trans-
formations, then X = 0 and Z is an inner derivation of %. Let the
Lagrange function be of the form

- 1
L) =5 (¢"p. — ¢"P.) — H(g, ), HCF
Assuming, for simplicity, that Z does not depend on the time x, one gets
. 1 8@ 1, a¢a
= {H, G} + Div (G “ Py, T 2 o )
This implies the well-known result that Z generates a (generalized)
invariant, time-independent canonical transformation if and only if
{H, G} = 0 and that @ is the corresponding conserved quantity.

3. A Simple Bxample
The following elementary example shows how the Noether equation
can be solved explicitly in specific cases. Let £ = R, F = R™, F ~ F
and M = E x F. Let the Lagrange function be L = @?, p > 0, where
is the positive definite, quadratic form on F,

QW) = ™y, a f=1.....m
If one puts Z = (X, Y), ¥ = (Y* and remembers Kq. (20), then one
can write the Noether equation as
o0Yr

.4 oYh L
(1= 20) 5 Q) + 2pai* (% + 5 97) = 0.
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For p == 5, its general solution is
2p—1

X=px+r, Y*=ow%yf+ 0"+ 55

my*
where u, v, 6% and w* are real numbers subject to
oy g + ag, 0%, = 0.
For p = % , in addition to the solutions described above, there exists an

infinite dimensional space of solutions, obtained by taking for X an
arbitrary function on R and putting ¥ = 0. This is a particularly simple
case of a generally invariant theory, corresponding to n = 1 and ¢ = 0.
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