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. INTRODUCTION

(XRAVITATIONAL waves are usually defined by their geometric
properties. For example, plane waves are Invariant under a 5-para-
meter group of motions [1]. Pirani’s definition of pure radiation
fields refers to the algebraic structure of the Riemannian tensor [2].
However, the elegant geometrical approach cannot easily be applied
to the problem of spherical gravitational waves. In this case no
more than axial symmetry can be assumed. The Riemannian tensor
of a spherical wave is expected to be of type 1.

There is another important property of waves, both linear and
gravitational: waves can propagate wformation. This means that
wave-like solutions depend on arbitrary functions, the shape of
which contains the information -ecarried by the wave. This is
obviously true of both linear waves and the known gravitational
waves. The dependence on these arbitrary functions can be very
sumple, as in the case of plane waves, or more complicated as in the
case of cylindrical waves.

We shall show how one can deduce certain properties of waves
trom the fact that they carry information. We shall begin with
very simple remarks on linear Waves. In the gravitational case
we have only been able to rederive Robinson’s line-element for
plane-fronted waves [3], [4]. However, it may be possible to obtain
some 1nformation about spherical waves by the method outlined

2. WAVES IN LINEAR THEORIE S

Let us start with scalar waves in Minkowski space. We shall
consider solutions of the wave equation

(g!wau aw = ”2)¢ = 4, g = 1, gUk = (), !’Ml — (SM? (1)
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which have the form

p = (@, £ (o)) (2)

where F (o) is an arbitrary (twice differentiable) function of the
scalar ¢ = o(x). The form (2) includes plane and spherical but not
cylindrical waves. Derivatives with respect to F will be denoted
by primes. A comma followed by an index will denote differentiation
with respect to the x’s which appear in ¢ explicitly; for instance:

av(P — (p,v'—{— (PIF’O',, Y G',v — 01,0'.

The function F being arbitrary, we obtain from (1):

9" ,0, =0, (3a)
guv (299:54 O, -+ (P’O',.m-) = 0 ’ (Sb)
gﬂv¢,u1r+ %299 = 0. " (30)

The surfaces ¢ = const turn out to be null. ‘Equation (3b) is a typical
propagation equation (cf., for example, [5]) and the meaning of (3¢)
18 obvious.

It 18 easy to write down equations analogous to (3) in Maxwell’s

theory. In order to include both plane and some spherical waves
let us take for the electromagnetic tensor:

fuw = (@) F (0) +Y (@) F' (0)+3f . (@) F'' (0). (4)
Maxwell’s equations give:
o, =0, (Da)
' 0,2, = 0, (8D
fe,+ ", =0, (5c)
Ofm,v = 0, . (5(1)

and similar equations with the f’s replaced by their duals. If follows
that ¢, is null and 2f is a null bivector which satisfies a propagation
equatlon identical in form to (3b). This means 2fF"’ is the pure
radiation part of the wave; if o, satisfies Robinson’s equation [3]
and ¢“’c ,, # 0 then 2f falls off hke 1/r [5] The propagation equa-
tions for °f and !f are

2Propf+°fdo+0OY = 0,
2Propif+ifde+ 0% = 0.

(We have suppressed the indices and introduced the operators
PI‘Op — g“"a,ﬂa, [3]’ [ = gmau av')
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We can easily write down the electromagnetic potentials corre-
sponding to the field given by q. (4). The potentials of a typical
spherical wave produced by a Hertz dipole are of the form:

A

— A (@) F (o) +'A (@) F' ()5 ,+ A (x) F"(0)0,.. (6)

/"

In this case we have [5]:
1
O.,Q fQ[” 0",,] = {

and Robinson’s equation follows from KEqs (5). For the poten-
tials of a plane wave depending on one arbitrary function of ¢ we

can choose the expression
A, = A(x)l (o). ‘ (7)

Electromagnetic potentials are not interesting from the point of
view of the theory but their form may suggest possible metrics
corresponding to gravitational waves.

3. GRAVITATIONAL WAVES

It is not quite easy to apply our method to the gravitational
field. Arbitrary functions can be introduced into every metric by
coordinate transformations. Metrics containing only arbitrary
functions which can be removed by a change of coordinates do not
carry information and cannot be called waves. We do not know,
however, how to distinguish beforehand between spurious and
genuine arbitrary functions. We are therefore forced to check the
character of a metric only after the field equations have been solved.

The second difficulty is of a technical character but 1s by no
means less serious. Suppose we take for g, a simple function of ¥,
say & polynomial in F and its derivatives up to a certain order.
However, the corresponding inverse tensor ¢ need not be simple;
in general it will be an infinite series in F and 1ts derivatives. The
field equations will split into an infinite and overdetermined set
of equations and the whole procedure will closely resemble an

approximation method.
In order to avoid this difficulty we shall investigate only the

simplest case, when both ¢, and ¢" depend linearly on F alone.
We can show that the metric must then be of the form:

Oy = gm(w)+F(0)hp(w)hv(w) (8)
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g, and g“ to be simple functions of F. Secondly, the simplest gravita-
tional spherical wave may be described as a “quadrupole” wave.

g“hh, =0, g'g,, = 6" o (9) Therefore, it will probably be necessary to introduce into the metric
0 U derivatives of I/ of a higher order than in equation (4).

The metric tensor with upper indices has the form:
9" = 9" —LFh"W REFERENCES

where A, is & null vector with respect to the background metric g,,:
| - | 0

0
where [1] H. Bonpi, F. A. E. P1raN1 and I. ROBINSON, Proc. Roy. Soc. A 251, 519 (1959).
h* = g“h,. ' (2] F. A. E. Piran1, Phys. Rev. 105, 1089 (1957). ‘
0 | [3] I. RoBiNSON, Lectures at the Institute of Physics in Warsaw, 1959 (un-
In the following we shall use ¢ to raise the indices. Covariant published).
- _ 0 [4] I. RoBiNsoN, Report to the International Colloquium on Gravitation,
differentiation with respect to the background metric will be denoted Royaumont 1959.

[6] R. Sacus, Distance and the Asymptotic Behaviour of Waves in General

by a semicolon. The operators Prop and M will also be understood
Relativity p. 397 (in this work)..

to be taken with respect to g¢,,.
0

- Einstein’s field equations R, = 0 lead to the following conditions
on ¢,,, h, and o:
0

() the Riemann space detined by the background metric must
by emptY? R/.n-' — 0;

0
(b) 90,0, = 0;
0
(¢) Ko, = 0, theretore h, = ho,;
(d) Cle = 0;
(e) (Prop)2H = 0, where H = h2;
- (f) 2(PropH , 0 5)— (Prop H) 404 -+Prop(Ho,,s)— 3 Ho 0,5 = 0.
If we choose the flat metric for ¢,, we can take
0

it

and x' as the preferred parameter along rays. The general solution
of (e) and (f) is of the form:

H — M(moa 24, :I}3)—|-m1N(£00)
with M satisfying
0 (10)

y33 T

M 0+ M

The arbitrary function N is spurious, i.e., it can be transformed
away. The line-element reduces to that of plane-fronted waves,

as® = M (a°. m2? x3) (dx®)2+ 2 de'drt — (dx?)2 — (da®)?

with M restricted by equation (10) only and F (x°) absorbed into M.
Spherical gravitational waves will be more complicated than
plane waves in several respects. First of all, we cannot expect both



