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Einstein’s equations for empty space are solved for the class of metries which admit a
family of hypersurface-orthogonal, non-shearing, diverging null curves. Some of these
metrics may be considered as representing a simple kind of spherical, outgoing radiation.
(Among them are solutions admitting no Killing field whatsoever.) Examples of solutions
to the Maxwell-Einstein equations with & similar geometry are also given.

1. INTRODUCTION

The aim of this paper is to provide a class of metrics some of which represent a very
simple kind of spherical radiation. At great distances from the source, and over not
too large regions of space, these metrics seem to be good approximations to actual
radiation fields. They have an asymptotic structure similar to that of retarded waves
in the linear approximation to Einstein’s theory of gravitation. Some of the exact
solutions exhibit a feature typical of waves: they depend on an arbitrary function of
time. The geometric conditions imposed on our solutions, however, are too stringent
to allow for completely realistic fields. In the most interesting cases, besides the point
singularity representing the bounded source, there appear other singularities which
can be pictured in three dimensions as occurring along lines extending from the
origin to infinity.

We can form an intuitive picture of some of the new metrics by considering a
special solution of Maxwell’s equations in flat space. We write the line-element of
Minkowski space in the form

ds? = — 2p2p—2d¢dl + 2dp do +do?,
where p = 1+ 3¢¢, and introduce a complex null bivector,§
Ny = 2pp~io 1.8 .
Then, if A(£, ) is any function of £ and ¢ analytic in ¢, the real part of
By = A, 0)p7'pNy (1)
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enclosed. '
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represents a null electromagnetic field. Its physical components fall off like 1/p
along the rays { = const., o = const., and, unless 4 = 0, they are singular for at
least one value of £. For example, if A does not depend on ¢, some of the field com-
ponents tend to infinity for £ - oo. Introducing the polar co-ordinates 9, ¢ by
¢ = /2e% cot 39, one sees that in this case the field is singular along the straight
line & = 0.

The real part of oFE,.

with F, given by (1) has all the algebraic and differential properties of a linearized
Riemann tensor. This null expanding solution of the linearized gravitational equa-
tions exhibits also at least one line singularity. Similar singularities oceur among
those exact null solutions described in this paper which correspond to spherical
waves. i

The congruence of null rays associated with the field (1) is geodetic, shear-free,
hypersurface-orthogonal and diverging. The last two properties of the congruence
are special but the first are general: every null electromagnetic or gravitational field
defines a shear-free family of null geodesics (Robinson 1959). Conversely, one can
associate a null solution of Maxwell’s equations with every null congruence that is
geodetic and shear-free (Robinson 1961). It has long been known that a gravita-
tional field subject to a reasonable analogue of Sommerfeld’s radiation conditions
is asymptotically null (Trautman 1958). Asymptotically, therefore, it tends to a
metric which admits a null, geodetic, shear-free congruence; and it seems reasonable
to demand, in a simplified model, that such a congruence should exist everywhere.
We need not fear that this condition would restrict us to null fields, since Sachs
(1961) has shown that the condition is satisfied in all solutions with algebraically
degenerate curvature tensors.

In the next section is given the canonical form for a metric which admits a shear-
free, diverging and hypersurface-orthogonal null vector field o, and which satisfies
R, 00" = 0. The remaining field equations are solved and discussed in §3. It is
shown that solutions of the type considered here define two families of V;and admit
a number of local and integral invariants (§4). The algebraic properties of the cur-
vature tensor and its rate of change along rays are discussed in § 5. Finally, the paper
presents several explicit solutions of the Einstein and of the Maxwell-Einstein
- equations. Among them are null solutions of Einstein’s equations analogous to the
electromagnetic waves (1). Our class of fields contains the Schwarzschild metric as
well as some static degenerate solutions of Levi-Civita’s. We present also more
general, type IIT and IT, fields which have no obvious electromagnetic analogues.

2. THE LINE-ELEMENT
Let ¥, be a four-dimensional Riemann space with signature —2. Consider a
family of hypersurfaces, o(z) = constant, such that o ; is null
g%o ;0= 0. (2)
The curves x* = x%(p) defined by
8xil3p = gito 3)




Spherical gravitational waves in general relativity 465

are null geodesics; and p is an affine parameter. Each of these rays lies on a hyper-
surface of constant o. It is therefore possible to introduce co-ordinates in ¥, such
that #* = o and the rays are co-ordinate lines of 23 = p (i.e. 21 = £, 22 = 9 and 2*
are constant along each ray). With this choice of co-ordinates, equation (3) can be
written as 8 = g%, so that the contravariant metric tensor becomes

/ P2 173 & O\
YW i b oo
a b ¢ —¢ O
0o o 1 0

where y'* is a negative-definite unimodular matrix.

The family of null hypersurfaces is invariant under a replacement of o by a
function of o. By virtue of (3), this is accompanied by a change in the affine para-
meter on each hypersurface. The origin of p can be chosen on each ray at will;
finally, a transformation of £, 7 into functions of £, # and o is a simple relabelling
of therays. In other words, the form (4) of the metric is invariant under the following
transformations (y = dy/d¢’):

g = 05(57 77’7 GJ): H= ﬁ(g’s 7]‘,: G_r)} pi=p / )+5(g 7? i ) = Y(O'r)'

Let us assume that the congruence of null rays defined by (3) is shear-free, so that
U’iis Subject to G_;]do_,kl s %(O’ Rk)z- = (5)
Writing this condition with g? given by (4) one obtains

dy*ldp=0 (,x=1,2).
Then, by a transformation of £ and #, one can impose the further restriction

.-},uc - _“(Suc_
The dependence of P on p can be obtained by integration of the field equation
RikO',,;O"k: 0. (6)

Indeed, by virtue of (5) and (6), the rate of change of o, . * along the rays is given by

(o ")jep = — (o1 ")
so that either o, ¥ = 0, or p — 2/c, /¥ is independent of p. In the second case, the only
one which will be considered here, we get

by a co-ordinate transformation of the form p+8(&, %, o) — p. On the other hand,

o, * = —2P-19P|dp; so that P = p/p, where p is a function independent of p.
Thus we obtain

ds? = —p?p~[(d§ —ado)? + (dy —bdo)?]+2dpdo +cde®, Opfdp=0. (8)

It is convenient to introduce a complex variable § through /2§ = £+iy. The
group of co-ordinate transformations which leave invariant the form (8) of the

metric i3 S :
: =L, p=pipo’) o=y, (9)
where ¢/ is a funetion analytic in ',
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3. THE FIELD EQUATIONS

The role of different groups of field equations is clearly visible when one considers
the projections of the Ricei tensor along the vectors of a null complex tetrad as-
sociated with the metric (8). Let the tetrad vectors &, &, 7, and o, be such that

g = 0T+ 7:0%— 56— Ll
and o, = 0 ;.
Equation (6) is already satisfied by the form (8); the equations
R, 0tk =0 and R, =0 (10)
are equivalent to a+ib)fdgp =0 and d(a+ib)/of = 0. (11)

Therefore a +ib is an analytic function of ¢ and can be reduced to zero by a trans-
formation (9). In any case, equations (11) assert that there exists a function ¢ of o,

&
£ and 7, such that o= ogfay, b= 0g/oE, (12)
e Aq = pA(E[a82 + *[o7?) g = O. (13)

If one normalizes the co-ordinates by the condition ¢ = 0, then the line-element
becomes simply

ds? = —p2p~2(dE2 +dn?)+ 2dpdo +cdo?, dpfdp = 0. (14)

The group of transformations which preserve this form is given by (9) with
independent of o'

Next, from Ryl g =0 (15)
it follows that ¢ = —-2-;m+K—2Hp, (16)
L 0p By op oq opdq
h eyl 94 i CE e B
where 80’+8§8n o an+ aﬂag, (17)
K =Alnp, (18)

and m is independent of p. The equation
R; otk =0
is then satisfied identically; and the two equations
Bert*=0 . (19)

tell us that m is a function of o alone.
Finally, if the previous field equations are satisfied,

ARy 7ir% = JAK — 2200 — 3H)m. (20)

If m is non-zero then it can be always reduced to unity by means of a co-ordinate
transformation (cf. next section). In the frame with ¢ zero, the equation R, 7ir% = 0

hiecapcs 31npoo+AAInp = 0.
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In this case, the entire solution is uniquely determined if p is specified on a single
hypersurface of constant o.
If m = 0, the last field equation reduces to

AK = 0.

Here the dependence of p on o is unrestricted; and we have information carrying
waves.
4. INVARIANTS

As we shall see in the next section, the curvature tensor determines the direction
of o, uniquely, except in the case described as D, where ¢ ; points in one of two
well-defined directions. With this qualification, o is geometrically determined up to
the transformation o — 7y(c), and the tensor o ;p ,+p ;0 ;+¢o ;0 is fully
determined. We have thus picked out two families of two-dimensional Riemannian
spaces: Vy(p,o) with a line-element proportional to di? = p=*d&*+dy?); and
7, (£,7) with the line-element di = 2dpdo +cdo?. K/p?and 2m/p? are the Gaussian
curvatures of ¥V, and V,, respectively.

Under a transformation (9), the quantities appearing in the metric transform
according to the equations

m' =9%m, K' =7K, }
H' =yH+jly, v =7p/|oy[eg].

It is easy to construct invariants under these transformations; such are, for

(21)

HShIRCe, mp=3, Kp=2, (3H—dlum/do)p,
l[p=* and [n|p~?, (22)
o ( 50 oK\? ) oH
= =i EOWCY fete e N =
where I =3mp 8{,’( a€)+p D (8{.’) , =P ag(p ag). (23)

If, moreover, I is an invariant, so are

(3]

One might be tempted to interpret m as the mass of the source, and solutions
with dm/do non-zero as representing radiation. However, the first of equations (21)
shows that m can be always reduced locally to a constant. Unless there exists an
independent way of fixing the retarded time co-ordinate o, it is impossible to attach
any meaning to the dependence of m on ¢. On the other hand, dm/do—3Hm = 0is
an invariant statement, and it may be taken, very tentatively, as a criterion for
radiation in the case m % 0,

In some cases one can also form integral invariants, such as

p and p~2AL

Kp2dgdy, f mip—2dEdy,
7, v,

if these integrals exist. If R,,7i7* = 0 and there are no singularities, the latter
invariant is a constant of motion. It is a special case of an invariant found for type II
spaces by Sachs.
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5. THE CURVATURE TENSOR

Let us now further specialize the tetrad vectors by requiring them to be parallelly

propagated along rays. With ¢ = 0, a possible choice is
Go=pp % p Th=Pp+30 ;5 0p=0;
It is convenient to introduce three complex bivectors which are also covariantly
constant along rays,
Ny = 200380 My = 20047 +288, Ly = 2r0n
These bivectors are self-dual, in the sense that
i*Nkz = A‘Tkl, etC.,

where *Ny = %\/( —9) €xnn N, €te.,

and €,;,,, is the Levi-Civita symbol. From the curvature tensor, we can form two

duals * n
R]ci.’mn = E\/( — 9) €lipg qum'm

R;flmn = %\/( = g) €pamn ijﬂq,

which are equal if and only if B;; = 1Ry, ~
If all the field equations are satisfied, the curvature tensor for our metric can be
obtained from the formula :

2m
SI;Imn = F (Mkerm = Nkl Lmn 7 LIﬂINm'n)

p oK 10 oc
b Eaig (JIJIHNmn + N;’rllwmﬂ.) _FTQ aig (102 'Ez) Nkl'lvmn' (24)

Here S;;,,, is the complex self-dual tensor
— 1%
Sklmn == Rk!nm"'l Rk?mn'

Equation (24) shows explicitly that the field is algebraically degenerate and that
o, defines its propagation direction,

' —
O-L'L‘Sk]lmn oo™ = 0.

Coldberg & Sachs (1961) have generalized this result by proving that any empty-
space solution admitting a null, geodetic, shear-free congruence is algebraically
degenerate.

The Riemann tensor can be split into three parts differing in their rate of change

along rays
Sklmﬂ. = p_SDklmn it p—ZIIIkImn it pllNkImm (25)

+ There are four principal null directions associated with a Riemann tensor in empty
space (Ruse 1944 ; Debever 1959; Penrose 1960). A set of coineident principal null directions
is here described as a propagation direction. To be quite precise, we should say that there
are two propagation directions in the case described below as .
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where Dy, 1, and Ny, are tensors of Petrov’s type I degenerate (D), type III,
and type IT null (), respectively

Dktm'n, = zm(Mkanm = -N:’cl Lmn i LkIN

n)s

oK 0 oK
IIIic?mn =0 TC (ﬂﬁ,}cINmn + NkI-Mfmn) = a_é (pz a_é‘) Niclen »

0 oH
Nt = 26~T€ (}92 "é_g‘) -
They are covariantly constant along propagation rays. The decomposition (25)
is a stronger form of one given by Sachs (1961): starting from the Bianchi identities,

Sachs found for algebraically degenerate fields with hypersurface-orthogonal,
diverging rays the slightly weaker law,

Sklmn = P—SIIklnm + p_2IIIkImn A P—lNklmw

where II;,,,, is a tensor of type IT or D.

The three terms appearing in (24) are of type D, type III, and type N, respectively;
and oy, is their common propagation vector. It is seen by inspection that a solution
isoftype Il or D, if m = 0, and of type III, N or flat, if m = 0.

In the latter case, type III occurs if 0K /0§ + 0 (i.e. I + 0), type N occurs if
0K[of =0 (i.e.l=0)and n # 0. The spaceisflatif m =l =n = 0.

For m # 0, the Riemann tensor may be written as the real part of

2m ’ ’ x ’ l
3 (Mk.l an o Mclen = Lkl-Nmn) &7 W Nkl wa
; oK
where My, = M+ g—f@a—c Ny,
' pp K pp 0K\?
Ly = Lkz—@a—ngz— (@E Ny
Therefore m=+0 and =0

are necessary and sufficient conditions for the field to be of type D.

Spaces of type D with n = 0 have the Gaussian curvature K independent of £ and
7; let us call them DS-spaces. The classification of our empty-space metrics can then
be summarized in the table

L=
1+ 0 w0 % = 0
m £ 0 11 D DS
m =0 111 N 0

where 0 stands for the flat space.

6. SPECIAL CASES AND EXPLICIT SOLUTIONS

Examples of explicit solutions to the field equations can be given in several special
cases. In general, it is convenient to choose ¢ = 0; and this will be done in the follow-
ing, unless otherwise specified. As has already been mentioned, either m is equal to
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0, or it can be reduced to 1 by a co-ordinate transformation. Similarly, if 0K /[of = 0,
then one can reduce K to one of the values — 1, 0, or 1. Finally, the function H can
be transformed away if it does not depend on £ and 7. In general, however, these
three specializations cannot be achieved at the same time.

(i) Special solutions of type 11,

m =0, 0K[o+0, oH|[0{=0.

H can be reduced to zero, and then 8p/do = 0. It follows from the field equations
that p(£, 7) must satisfy AR = ooiists (26)

and sm is given by m(o) = m(0) + 1oAK. (27)
The curvature tensor for this case is given by
San = P2 Digimn+ P~ A g0,
As an example, one can mention
p = £ m = const. & 0.
(i) Special solutions of type III,
m=0, 8K[e{+0, oH[e{=0.

The field equations reduce to AK = 0. The curvature tensor gdes like p=2. As
before, we can make 9p/d¢ zero. Example: p = £ m=0.

(ii) DS-spaces, w0, PEBELG B2
If one normalizes ¢ by requiring m to be constant, then the field equations give
op/do = 0. Therefore K is a constant. The co-ordinates £, y may be chosen so that

p=1+iKEE (28)

The metric for positive K is the Schwarzschild solution with a mass mK-%. The
remaining solutions are due to Levi-Civita. The constant K may be reduced to one
of the three values —1, 0, 1. Alternatively, we can put m equal to 1 and retain
K as a parameter. The solution with zero K then appears as a limiting case of the
Schwarzsehild solution, corresponding to infinite mass. We can gain some further
insight into this limiting process by constructing a flat background metric for the
Schwarzschild solution. Knowing the transformation properties of p,o, and m
we can easily verify that the tensor mp—to ;o ; is invariantly defined; and the
background metric N
G+ 2mp~lo 0
is evidently flat. In the full metric, the subspace p = 01is distinguished by the pro-
perty that one scalar of the Riemann tensor is infinite there. In the background
metric, it is a time-like line. This is one of the points of view from which the Schwarz-
schild solution may be identified as a model of a particle with a time-like path. From
the same point of view, the limiting case, K = 0, looks like a model of a particle with
a null path.

In each of these three cases, the Riemann tensor is proportional to p=.
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(iv) A solution of Levi-Civita’s, rediscovered by Newman & Tamburino (1961),

may be written as g=£& m=1, p?=dz/dy

where z is a function of % such that
dz/dn = —22% + ya® +ve,

4 and v being constants. This is a metric of type D. The subspace curvature K is
variable,
K = 6x—pu;

and AK is non-zero.

The Riemann tensor contains the p~! term which seems characteristic of radiation.
The metric, however, admits a time-like hypersurface-orthogonal Killing field.
The solution might therefore be described as both static and radiative.

(v) Null solutions, s By DRBE ey
Again K is locally reducible to —1, 0, or 1. Allowing ¢ to be different from 0, one
can put p in the form (28); and the only field equation is

Ag = 0.
The Riemann tensor is given by the real part of

2nptN, N,

mmn?

and, therefore, falls off like p~2. These solutions and the plane gravitational waves
have the same local geometry, since their curvature tensors are algebraically
indistinguishable. The plane-fronted waves, characterized by the existence of a
covariantly constant null vector, can be obtained from the diverging null solutions
by a limiting process (Robinson & Trautman 1960).

The dependence of ¢ on ¢ is completely arbitrary, a property which is typical of
waves. The wave fronts are subspaces of constant p and ¢; in the most interesting
case, K = 1, they are spheres of radius p. These solutions represent, therefore a
kind of spherical radiation. However, there appears at least one singularity on any
wave front where n = 0. These line singularities are analogous to those occurring in
the corresponding solutions in Maxwell’s theory and in the linear approximation
to Einstein’s theory. :

It is interesting to note that in the co-ordinate system defined by (8), (12), and
(28) all components of the curvature tensor—covariant, contravariant, and mixed—
are homogeneously linear in g. The contravariant metric tensor is linear in ¢.
There is thus a very close relation between the rigorous solution and its linear ap-
proximation. It is conceivable, nevertheless, that the line singularity has a special
significance in the rigorous case: P. G. Bergmann has suggested that it represents
a flow of matter which restores to the source the energy carried away by radiation.
Something of this sort is to be expected, since there are solutions, such as

m=0, p=1+3}E+9?), q=-efcos(n—o),

in which there is no secular change which could be identified as loss of energy by
the source. This solution, incidentally, does not admit any continuous group of
motions. : . :
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7. SOME SOLUTIONS OF THE EINSTEIN-MAXWELL EQUATIONS

Let F,; denote the electromagnetic field bivector plus i times its dual. The com-
bined Einstein and Maxwell equations can be written as

2By, = mkFi.'m_l'kaFEm5 (29)

Fggm1= 0. (30)

Assume now that Fj, admits o ; satisfying (2), (5), and (7) as a principal null
vector; i.e.

o Fgot = 0. (31)

Let &, &, 74> and o, = 7, be again a null tetrad, then equations (29) and (31) imply
that the first 5 empty-space field equations, (6) and (10), must be satisfied. There-
fore, one is again led to consider the line-element (14). The most general solution of
equation (31) can be written as

Fiy = ep~* My +[pp~ Ny,

where ¢ and f are complex functions of all co-ordinates: Maxwell’s equations tell
us that e does not depend on p and isanalyticin, e = ¢(, o), and that f has the form

f=A—p710e[0C,
where 4 is a complex function of £, 7, and o, subject to
84 [0E = d(ep~?)foo. (32)
Contracting equation (29) with ¢*¢’ one obtains
c=eep~2—2Mp—1+ K —2Hp.
where oM[dp =0, K=Alnp and H =p~'ep/do.

We shall not attempt here to solve the remaining field equations in the general
case, but rather give explicit solutions in two special cases.

(i) Generalized Reissner solutions

If A = 0 then it can easily be shown from equation (32) that e can be reduced to
a complex constant. The remaining equations then imply that p is a function of £
and 7 subject to the condition (26) and M = m(g) is given by (27). The case when
K =1 and e is real corresponds to the Reissner solution for an electron.

(ii) Solutions with @ null electromagnetic field

Ife = 0, then A = A(f, o) must be analytic in {, and M = m(c). The only further
condition to be satisfied is

1AK —2(3/60 — 3H)m = p?A A.

The analyticity of 4 implies Aln |4| = 0, and thus imposes an integrability con-
dition on the left-hand side of this equation. In the case K = 0, for example, it
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follows from the integrability condition that H is independent of £ and 7 and, conse-
quently, is reducible to zero. In this co-ordinate system p is time-independent, and,
since K = 0, can be chosen equal to 1. Therefore 4 is a function of o only and

m(@) = m(0) fo |A@)[2dA.

The authors are indebted to P. G. Bergmann, B. S. DeWitt, R. K. Sachs, and
E. Schiicking for enlightening discussions.
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